ants/pool.go

437 lines
11 KiB
Go
Raw Permalink Normal View History

2018-05-20 18:57:48 +03:00
// MIT License
2018-05-20 11:37:17 +03:00
// Copyright (c) 2018 Andy Pan
2018-05-20 18:57:48 +03:00
2018-05-20 11:37:17 +03:00
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
2018-05-20 18:57:48 +03:00
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
2018-05-20 11:37:17 +03:00
//
2018-05-20 18:57:48 +03:00
// The above copyright notice and this permission notice shall be included in all
2018-05-20 11:37:17 +03:00
// copies or substantial portions of the Software.
//
2018-05-20 18:57:48 +03:00
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
2018-05-20 16:41:32 +03:00
2018-05-19 07:28:03 +03:00
package ants
import (
2022-05-06 15:27:08 +03:00
"context"
2018-05-20 16:29:38 +03:00
"sync"
"sync/atomic"
2018-07-06 09:33:07 +03:00
"time"
2019-10-04 06:24:13 +03:00
syncx "github.com/panjf2000/ants/v2/internal/sync"
2018-05-19 07:28:03 +03:00
)
type poolCommon struct {
2020-05-27 17:19:53 +03:00
// capacity of the pool, a negative value means that the capacity of pool is limitless, an infinite pool is used to
// avoid potential issue of endless blocking caused by nested usage of a pool: submitting a task to pool
// which submits a new task to the same pool.
2018-05-20 16:29:38 +03:00
capacity int32
2018-05-20 16:09:45 +03:00
2018-05-21 05:37:03 +03:00
// running is the number of the currently running goroutines.
2018-05-20 16:29:38 +03:00
running int32
2018-05-20 16:09:45 +03:00
2021-05-23 15:23:43 +03:00
// lock for protecting the worker queue.
lock sync.Locker
2018-05-21 05:37:03 +03:00
// workers is a slice that store the available workers.
workers workerQueue
2018-05-20 16:09:45 +03:00
// state is used to notice the pool to closed itself.
state int32
2018-05-20 16:09:45 +03:00
// cond for waiting to get an idle worker.
cond *sync.Cond
2018-09-30 04:41:47 +03:00
// done is used to indicate that all workers are done.
allDone chan struct{}
// once is used to make sure the pool is closed just once.
once *sync.Once
// workerCache speeds up the obtainment of a usable worker in function:retrieveWorker.
workerCache sync.Pool
2019-01-26 16:45:49 +03:00
// waiting is the number of goroutines already been blocked on pool.Submit(), protected by pool.lock
waiting int32
2022-12-20 16:55:28 +03:00
purgeDone int32
purgeCtx context.Context
2022-12-20 16:55:28 +03:00
stopPurge context.CancelFunc
ticktockDone int32
ticktockCtx context.Context
stopTicktock context.CancelFunc
now atomic.Value
options *Options
2018-05-19 07:28:03 +03:00
}
2018-08-08 13:08:06 +03:00
// Pool accepts the tasks and process them concurrently,
// it limits the total of goroutines to a given number by recycling goroutines.
type Pool struct {
poolCommon
}
// purgeStaleWorkers clears stale workers periodically, it runs in an individual goroutine, as a scavenger.
func (p *Pool) purgeStaleWorkers() {
2022-12-20 16:55:28 +03:00
ticker := time.NewTicker(p.options.ExpiryDuration)
2022-05-06 15:27:08 +03:00
defer func() {
2022-12-20 16:55:28 +03:00
ticker.Stop()
atomic.StoreInt32(&p.purgeDone, 1)
2022-05-06 15:27:08 +03:00
}()
2018-11-19 05:57:53 +03:00
purgeCtx := p.purgeCtx // copy to the local variable to avoid race from Reboot()
for {
select {
case <-purgeCtx.Done():
return
2022-12-20 16:55:28 +03:00
case <-ticker.C:
}
if p.IsClosed() {
break
}
var isDormant bool
2018-07-24 17:30:37 +03:00
p.lock.Lock()
staleWorkers := p.workers.refresh(p.options.ExpiryDuration)
n := p.Running()
isDormant = n == 0 || n == len(staleWorkers)
2018-07-24 17:30:37 +03:00
p.lock.Unlock()
// Notify obsolete workers to stop.
// This notification must be outside the p.lock, since w.task
// may be blocking and may consume a lot of time if many workers
// are located on non-local CPUs.
for i := range staleWorkers {
staleWorkers[i].finish()
staleWorkers[i] = nil
}
// There might be a situation where all workers have been cleaned up (no worker is running),
// while some invokers still are stuck in p.cond.Wait(), then we need to awake those invokers.
if isDormant && p.Waiting() > 0 {
p.cond.Broadcast()
}
2018-07-24 17:30:37 +03:00
}
2018-07-06 09:33:07 +03:00
}
// ticktock is a goroutine that updates the current time in the pool regularly.
func (p *Pool) ticktock() {
ticker := time.NewTicker(nowTimeUpdateInterval)
defer func() {
ticker.Stop()
atomic.StoreInt32(&p.ticktockDone, 1)
}()
ticktockCtx := p.ticktockCtx // copy to the local variable to avoid race from Reboot()
for {
select {
case <-ticktockCtx.Done():
return
case <-ticker.C:
}
if p.IsClosed() {
break
}
p.now.Store(time.Now())
}
}
2022-12-20 16:55:28 +03:00
func (p *Pool) goPurge() {
2022-12-20 17:09:35 +03:00
if p.options.DisablePurge {
return
}
// Start a goroutine to clean up expired workers periodically.
p.purgeCtx, p.stopPurge = context.WithCancel(context.Background())
go p.purgeStaleWorkers()
}
2022-12-20 16:55:28 +03:00
func (p *Pool) goTicktock() {
p.now.Store(time.Now())
p.ticktockCtx, p.stopTicktock = context.WithCancel(context.Background())
go p.ticktock()
}
func (p *Pool) nowTime() time.Time {
return p.now.Load().(time.Time)
}
// NewPool instantiates a Pool with customized options.
func NewPool(size int, options ...Option) (*Pool, error) {
2020-05-27 17:19:53 +03:00
if size <= 0 {
size = -1
}
opts := loadOptions(options...)
if !opts.DisablePurge {
if expiry := opts.ExpiryDuration; expiry < 0 {
return nil, ErrInvalidPoolExpiry
} else if expiry == 0 {
opts.ExpiryDuration = DefaultCleanIntervalTime
}
}
2020-03-12 19:02:19 +03:00
if opts.Logger == nil {
opts.Logger = defaultLogger
}
p := &Pool{poolCommon: poolCommon{
2022-05-06 15:27:08 +03:00
capacity: int32(size),
allDone: make(chan struct{}),
lock: syncx.NewSpinLock(),
once: &sync.Once{},
2022-05-06 15:27:08 +03:00
options: opts,
}}
2019-10-24 17:32:12 +03:00
p.workerCache.New = func() interface{} {
return &goWorker{
pool: p,
task: make(chan func(), workerChanCap),
}
2019-10-05 21:02:40 +03:00
}
if p.options.PreAlloc {
2020-05-27 17:19:53 +03:00
if size == -1 {
return nil, ErrInvalidPreAllocSize
}
2023-06-08 19:12:59 +03:00
p.workers = newWorkerQueue(queueTypeLoopQueue, size)
} else {
2023-06-08 19:12:59 +03:00
p.workers = newWorkerQueue(queueTypeStack, 0)
2018-05-19 07:28:03 +03:00
}
2019-09-27 15:51:46 +03:00
p.cond = sync.NewCond(p.lock)
2022-12-20 16:55:28 +03:00
p.goPurge()
p.goTicktock()
return p, nil
2018-05-19 07:28:03 +03:00
}
2018-08-04 06:12:06 +03:00
// Submit submits a task to this pool.
//
// Note that you are allowed to call Pool.Submit() from the current Pool.Submit(),
// but what calls for special attention is that you will get blocked with the last
// Pool.Submit() call once the current Pool runs out of its capacity, and to avoid this,
// you should instantiate a Pool with ants.WithNonblocking(true).
func (p *Pool) Submit(task func()) error {
if p.IsClosed() {
2018-05-20 16:41:32 +03:00
return ErrPoolClosed
2018-05-19 07:28:03 +03:00
}
w, err := p.retrieveWorker()
if w != nil {
w.inputFunc(task)
}
return err
2018-05-19 07:28:03 +03:00
}
2018-05-19 21:52:39 +03:00
// Running returns the number of workers currently running.
2018-05-19 10:22:14 +03:00
func (p *Pool) Running() int {
return int(atomic.LoadInt32(&p.running))
2018-05-19 07:57:01 +03:00
}
// Free returns the number of available workers, -1 indicates this pool is unlimited.
2018-05-19 10:22:14 +03:00
func (p *Pool) Free() int {
c := p.Cap()
if c < 0 {
return -1
}
return c - p.Running()
2018-05-19 07:28:03 +03:00
}
// Waiting returns the number of tasks waiting to be executed.
func (p *Pool) Waiting() int {
return int(atomic.LoadInt32(&p.waiting))
}
2018-08-04 06:12:06 +03:00
// Cap returns the capacity of this pool.
2018-05-19 10:22:14 +03:00
func (p *Pool) Cap() int {
return int(atomic.LoadInt32(&p.capacity))
2018-05-19 07:28:03 +03:00
}
2021-05-23 15:23:43 +03:00
// Tune changes the capacity of this pool, note that it is noneffective to the infinite or pre-allocation pool.
2019-08-25 09:25:09 +03:00
func (p *Pool) Tune(size int) {
capacity := p.Cap()
if capacity == -1 || size <= 0 || size == capacity || p.options.PreAlloc {
2018-07-15 21:33:43 +03:00
return
2018-07-15 21:43:38 +03:00
}
atomic.StoreInt32(&p.capacity, int32(size))
if size > capacity {
if size-capacity == 1 {
p.cond.Signal()
return
}
p.cond.Broadcast()
}
}
// IsClosed indicates whether the pool is closed.
func (p *Pool) IsClosed() bool {
return atomic.LoadInt32(&p.state) == CLOSED
}
2021-05-23 15:23:43 +03:00
// Release closes this pool and releases the worker queue.
2019-08-19 11:35:58 +03:00
func (p *Pool) Release() {
if !atomic.CompareAndSwapInt32(&p.state, OPENED, CLOSED) {
return
}
if p.stopPurge != nil {
p.stopPurge()
p.stopPurge = nil
}
if p.stopTicktock != nil {
p.stopTicktock()
p.stopTicktock = nil
}
p.lock.Lock()
p.workers.reset()
p.lock.Unlock()
// There might be some callers waiting in retrieveWorker(), so we need to wake them up to prevent
// those callers blocking infinitely.
p.cond.Broadcast()
}
// ReleaseTimeout is like Release but with a timeout, it waits all workers to exit before timing out.
func (p *Pool) ReleaseTimeout(timeout time.Duration) error {
2022-12-20 17:29:21 +03:00
if p.IsClosed() || (!p.options.DisablePurge && p.stopPurge == nil) || p.stopTicktock == nil {
2022-05-06 15:27:08 +03:00
return ErrPoolClosed
}
p.Release()
2022-05-06 15:27:08 +03:00
var purgeCh <-chan struct{}
if !p.options.DisablePurge {
purgeCh = p.purgeCtx.Done()
} else {
purgeCh = p.allDone
}
if p.Running() == 0 {
p.once.Do(func() {
close(p.allDone)
})
}
timer := time.NewTimer(timeout)
defer timer.Stop()
for {
select {
case <-timer.C:
return ErrTimeout
case <-p.allDone:
<-purgeCh
<-p.ticktockCtx.Done()
if p.Running() == 0 &&
(p.options.DisablePurge || atomic.LoadInt32(&p.purgeDone) == 1) &&
atomic.LoadInt32(&p.ticktockDone) == 1 {
return nil
}
}
}
}
// Reboot reboots a closed pool, it does nothing if the pool is not closed.
// If you intend to reboot a closed pool, use ReleaseTimeout() instead of
// Release() to ensure that all workers are stopped and resource are released
// before rebooting, otherwise you may run into data race.
func (p *Pool) Reboot() {
if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) {
2022-12-20 16:55:28 +03:00
atomic.StoreInt32(&p.purgeDone, 0)
p.goPurge()
atomic.StoreInt32(&p.ticktockDone, 0)
2022-12-20 16:55:28 +03:00
p.goTicktock()
p.allDone = make(chan struct{})
p.once = &sync.Once{}
}
2018-07-15 20:21:23 +03:00
}
func (p *Pool) addRunning(delta int) int {
return int(atomic.AddInt32(&p.running, int32(delta)))
2018-07-31 06:05:05 +03:00
}
func (p *Pool) addWaiting(delta int) {
atomic.AddInt32(&p.waiting, int32(delta))
2018-07-31 06:05:05 +03:00
}
// retrieveWorker returns an available worker to run the tasks.
func (p *Pool) retrieveWorker() (w worker, err error) {
p.lock.Lock()
retry:
// First try to fetch the worker from the queue.
if w = p.workers.detach(); w != nil {
p.lock.Unlock()
return
}
// If the worker queue is empty, and we don't run out of the pool capacity,
// then just spawn a new worker goroutine.
if capacity := p.Cap(); capacity == -1 || capacity > p.Running() {
p.lock.Unlock()
2019-10-05 21:02:40 +03:00
w = p.workerCache.Get().(*goWorker)
w.run()
return
}
2018-05-20 10:28:27 +03:00
// Bail out early if it's in nonblocking mode or the number of pending callers reaches the maximum limit value.
if p.options.Nonblocking || (p.options.MaxBlockingTasks != 0 && p.Waiting() >= p.options.MaxBlockingTasks) {
2019-01-26 23:05:58 +03:00
p.lock.Unlock()
return nil, ErrPoolOverload
}
// Otherwise, we'll have to keep them blocked and wait for at least one worker to be put back into pool.
p.addWaiting(1)
p.cond.Wait() // block and wait for an available worker
p.addWaiting(-1)
if p.IsClosed() {
p.lock.Unlock()
return nil, ErrPoolClosed
2018-05-19 13:24:36 +03:00
}
goto retry
2018-05-19 13:24:36 +03:00
}
// revertWorker puts a worker back into free pool, recycling the goroutines.
func (p *Pool) revertWorker(worker *goWorker) bool {
if capacity := p.Cap(); (capacity > 0 && p.Running() > capacity) || p.IsClosed() {
p.cond.Broadcast()
2019-04-13 05:35:39 +03:00
return false
}
2023-03-23 13:18:52 +03:00
worker.lastUsed = p.nowTime()
2023-03-23 13:18:52 +03:00
p.lock.Lock()
2020-10-15 06:35:55 +03:00
// To avoid memory leaks, add a double check in the lock scope.
// Issue: https://github.com/panjf2000/ants/issues/113
if p.IsClosed() {
2020-10-15 06:35:55 +03:00
p.lock.Unlock()
return false
}
if err := p.workers.insert(worker); err != nil {
p.lock.Unlock()
return false
}
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
p.cond.Signal()
2018-09-29 05:19:17 +03:00
p.lock.Unlock()
2019-04-13 05:35:39 +03:00
return true
}