ledisdb/cmd/vendor/github.com/ugorji/go/codec/gen.go

1729 lines
52 KiB
Go

// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"bytes"
"encoding/base64"
"errors"
"fmt"
"go/format"
"io"
"io/ioutil"
"math/rand"
"reflect"
"regexp"
"strconv"
"strings"
"sync"
"text/template"
"time"
)
// ---------------------------------------------------
// codecgen only works in the following:
// - extensions are not supported. Do not make a type a Selfer and an extension.
// - Selfer takes precedence.
// Any type that implements it knows how to encode/decode itself statically.
// Extensions are only known at runtime.
// codecgen only looks at the Kind of the type.
//
// - the following types are supported:
// array: [n]T
// slice: []T
// map: map[K]V
// primitive: [u]int[n], float(32|64), bool, string
// struct
//
// ---------------------------------------------------
// Note that a Selfer cannot call (e|d).(En|De)code on itself,
// as this will cause a circular reference, as (En|De)code will call Selfer methods.
// Any type that implements Selfer must implement completely and not fallback to (En|De)code.
//
// In addition, code in this file manages the generation of fast-path implementations of
// encode/decode of slices/maps of primitive keys/values.
//
// Users MUST re-generate their implementations whenever the code shape changes.
// The generated code will panic if it was generated with a version older than the supporting library.
// ---------------------------------------------------
//
// codec framework is very feature rich.
// When encoding or decoding into an interface, it depends on the runtime type of the interface.
// The type of the interface may be a named type, an extension, etc.
// Consequently, we fallback to runtime codec for encoding/decoding interfaces.
// In addition, we fallback for any value which cannot be guaranteed at runtime.
// This allows us support ANY value, including any named types, specifically those which
// do not implement our interfaces (e.g. Selfer).
//
// This explains some slowness compared to other code generation codecs (e.g. msgp).
// This reduction in speed is only seen when your refers to interfaces,
// e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} }
//
// codecgen will panic if the file was generated with an old version of the library in use.
//
// Note:
// It was a concious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil.
// This way, there isn't a function call overhead just to see that we should not enter a block of code.
const GenVersion = 2 // increment this value each time codecgen changes fundamentally.
const (
genCodecPkg = "codec1978"
genTempVarPfx = "yy"
// ignore canBeNil parameter, and always set to true.
// This is because nil can appear anywhere, so we should always check.
genAnythingCanBeNil = true
// if genUseOneFunctionForDecStructMap, make a single codecDecodeSelferFromMap function;
// else make codecDecodeSelferFromMap{LenPrefix,CheckBreak} so that conditionals
// are not executed a lot.
//
// From testing, it didn't make much difference in runtime, so keep as true (one function only)
genUseOneFunctionForDecStructMap = true
)
var (
genAllTypesSamePkgErr = errors.New("All types must be in the same package")
genExpectArrayOrMapErr = errors.New("unexpected type. Expecting array/map/slice")
genBase64enc = base64.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789__")
genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`)
)
// genRunner holds some state used during a Gen run.
type genRunner struct {
w io.Writer // output
c uint64 // ctr used for generating varsfx
t []reflect.Type // list of types to run selfer on
tc reflect.Type // currently running selfer on this type
te map[uintptr]bool // types for which the encoder has been created
td map[uintptr]bool // types for which the decoder has been created
cp string // codec import path
im map[string]reflect.Type // imports to add
is map[reflect.Type]struct{} // types seen during import search
bp string // base PkgPath, for which we are generating for
cpfx string // codec package prefix
unsafe bool // is unsafe to be used in generated code?
ts map[reflect.Type]struct{} // types for which enc/dec must be generated
xs string // top level variable/constant suffix
hn string // fn helper type name
rr *rand.Rand // random generator for file-specific types
}
// Gen will write a complete go file containing Selfer implementations for each
// type passed. All the types must be in the same package.
func Gen(w io.Writer, buildTags, pkgName string, useUnsafe bool, typ ...reflect.Type) {
if len(typ) == 0 {
return
}
x := genRunner{
unsafe: useUnsafe,
w: w,
t: typ,
te: make(map[uintptr]bool),
td: make(map[uintptr]bool),
im: make(map[string]reflect.Type),
is: make(map[reflect.Type]struct{}),
ts: make(map[reflect.Type]struct{}),
bp: typ[0].PkgPath(),
rr: rand.New(rand.NewSource(time.Now().UnixNano())),
}
// gather imports first:
x.cp = reflect.TypeOf(x).PkgPath()
for _, t := range typ {
// fmt.Printf("###########: PkgPath: '%v', Name: '%s'\n", t.PkgPath(), t.Name())
if t.PkgPath() != x.bp {
panic(genAllTypesSamePkgErr)
}
x.genRefPkgs(t)
}
if buildTags != "" {
x.line("//+build " + buildTags)
x.line("")
}
x.line(`
// ************************************************************
// DO NOT EDIT.
// THIS FILE IS AUTO-GENERATED BY codecgen.
// ************************************************************
`)
x.line("package " + pkgName)
x.line("")
x.line("import (")
if x.cp != x.bp {
x.cpfx = genCodecPkg + "."
x.linef("%s \"%s\"", genCodecPkg, x.cp)
}
for k, _ := range x.im {
x.line("\"" + k + "\"")
}
// add required packages
for _, k := range [...]string{"reflect", "unsafe", "runtime", "fmt", "errors"} {
if _, ok := x.im[k]; !ok {
if k == "unsafe" && !x.unsafe {
continue
}
x.line("\"" + k + "\"")
}
}
x.line(")")
x.line("")
x.xs = strconv.FormatInt(x.rr.Int63n(9999), 10)
x.line("const (")
x.linef("codecSelferC_UTF8%s = %v", x.xs, int64(c_UTF8))
x.linef("codecSelferC_RAW%s = %v", x.xs, int64(c_RAW))
x.linef("codecSelverValueTypeArray%s = %v", x.xs, int64(valueTypeArray))
x.linef("codecSelverValueTypeMap%s = %v", x.xs, int64(valueTypeMap))
x.line(")")
x.line("var (")
x.line("codecSelferBitsize" + x.xs + " = uint8(reflect.TypeOf(uint(0)).Bits())")
x.line("codecSelferOnlyMapOrArrayEncodeToStructErr" + x.xs + " = errors.New(`only encoded map or array can be decoded into a struct`)")
x.line(")")
x.line("")
if x.unsafe {
x.line("type codecSelferUnsafeString" + x.xs + " struct { Data uintptr; Len int}")
x.line("")
}
x.hn = "codecSelfer" + x.xs
x.line("type " + x.hn + " struct{}")
x.line("")
x.line("func init() {")
x.linef("if %sGenVersion != %v {", x.cpfx, GenVersion)
x.line("_, file, _, _ := runtime.Caller(0)")
x.line(`err := fmt.Errorf("codecgen version mismatch: current: %v, need %v. Re-generate file: %v", `)
x.linef(`%v, %sGenVersion, file)`, GenVersion, x.cpfx)
x.line("panic(err)")
// x.linef(`panic(fmt.Errorf("Re-run codecgen due to version mismatch: `+
// `current: %%v, need %%v, file: %%v", %v, %sGenVersion, file))`, GenVersion, x.cpfx)
x.linef("}")
x.line("if false { // reference the types, but skip this branch at build/run time")
var n int
for _, t := range x.im {
x.linef("var v%v %s", n, t.String())
n++
}
if x.unsafe {
x.linef("var v%v unsafe.Pointer", n)
n++
}
if n > 0 {
x.out("_")
for i := 1; i < n; i++ {
x.out(", _")
}
x.out(" = v0")
for i := 1; i < n; i++ {
x.outf(", v%v", i)
}
}
x.line("} ") // close if false
x.line("}") // close init
x.line("")
// generate rest of type info
for _, t := range typ {
x.tc = t
x.selfer(true)
x.selfer(false)
}
for t, _ := range x.ts {
rtid := reflect.ValueOf(t).Pointer()
// generate enc functions for all these slice/map types.
x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx)
x.genRequiredMethodVars(true)
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
x.encListFallback("v", t)
case reflect.Map:
x.encMapFallback("v", t)
default:
panic(genExpectArrayOrMapErr)
}
x.line("}")
x.line("")
// generate dec functions for all these slice/map types.
x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx)
x.genRequiredMethodVars(false)
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
x.decListFallback("v", rtid, t)
case reflect.Map:
x.decMapFallback("v", rtid, t)
default:
panic(genExpectArrayOrMapErr)
}
x.line("}")
x.line("")
}
x.line("")
}
func (x *genRunner) arr2str(t reflect.Type, s string) string {
if t.Kind() == reflect.Array {
return s
}
return ""
}
func (x *genRunner) genRequiredMethodVars(encode bool) {
x.line("var h " + x.hn)
if encode {
x.line("z, r := " + x.cpfx + "GenHelperEncoder(e)")
} else {
x.line("z, r := " + x.cpfx + "GenHelperDecoder(d)")
}
x.line("_, _, _ = h, z, r")
}
func (x *genRunner) genRefPkgs(t reflect.Type) {
if _, ok := x.is[t]; ok {
return
}
// fmt.Printf(">>>>>>: PkgPath: '%v', Name: '%s'\n", t.PkgPath(), t.Name())
x.is[t] = struct{}{}
tpkg, tname := t.PkgPath(), t.Name()
if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' {
x.im[tpkg] = t
}
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan:
x.genRefPkgs(t.Elem())
case reflect.Map:
x.genRefPkgs(t.Elem())
x.genRefPkgs(t.Key())
case reflect.Struct:
for i := 0; i < t.NumField(); i++ {
if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' {
x.genRefPkgs(t.Field(i).Type)
}
}
}
}
func (x *genRunner) line(s string) {
x.out(s)
if len(s) == 0 || s[len(s)-1] != '\n' {
x.out("\n")
}
}
func (x *genRunner) varsfx() string {
x.c++
return strconv.FormatUint(x.c, 10)
}
func (x *genRunner) out(s string) {
if _, err := io.WriteString(x.w, s); err != nil {
panic(err)
}
}
func (x *genRunner) linef(s string, params ...interface{}) {
x.line(fmt.Sprintf(s, params...))
}
func (x *genRunner) outf(s string, params ...interface{}) {
x.out(fmt.Sprintf(s, params...))
}
func (x *genRunner) genTypeName(t reflect.Type) (n string) {
return genTypeName(t, x.tc)
}
func (x *genRunner) genMethodNameT(t reflect.Type) (s string) {
return genMethodNameT(t, x.tc)
}
func (x *genRunner) selfer(encode bool) {
t := x.tc
t0 := t
// always make decode use a pointer receiver,
// and structs always use a ptr receiver (encode|decode)
isptr := !encode || t.Kind() == reflect.Struct
fnSigPfx := "func (x "
if isptr {
fnSigPfx += "*"
}
fnSigPfx += x.genTypeName(t)
x.out(fnSigPfx)
if isptr {
t = reflect.PtrTo(t)
}
if encode {
x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {")
x.genRequiredMethodVars(true)
// x.enc("x", t)
x.encVar("x", t)
} else {
x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
// do not use decVar, as there is no need to check TryDecodeAsNil
// or way to elegantly handle that, and also setting it to a
// non-nil value doesn't affect the pointer passed.
// x.decVar("x", t, false)
x.dec("x", t0)
}
x.line("}")
x.line("")
if encode || t0.Kind() != reflect.Struct {
return
}
// write is containerMap
if genUseOneFunctionForDecStructMap {
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 0)
x.line("}")
x.line("")
} else {
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMapLenPrefix(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 1)
x.line("}")
x.line("")
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMapCheckBreak(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 2)
x.line("}")
x.line("")
}
// write containerArray
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructArray("x", "l", "return", reflect.ValueOf(t0).Pointer(), t0)
x.line("}")
x.line("")
}
// used for chan, array, slice, map
func (x *genRunner) xtraSM(varname string, encode bool, t reflect.Type) {
if encode {
x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), varname)
// x.line("h.enc" + x.genMethodNameT(t) + "(" + x.genTypeName(t) + "(" + varname + "), e)")
} else {
x.linef("h.dec%s((*%s)(%s), d)", x.genMethodNameT(t), x.genTypeName(t), varname)
// x.line("h.dec" + x.genMethodNameT(t) + "((*" + x.genTypeName(t) + ")(" + varname + "), d)")
}
x.ts[t] = struct{}{}
}
// encVar will encode a variable.
// The parameter, t, is the reflect.Type of the variable itself
func (x *genRunner) encVar(varname string, t reflect.Type) {
var checkNil bool
switch t.Kind() {
case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan:
checkNil = true
}
if checkNil {
x.linef("if %s == nil { r.EncodeNil() } else { ", varname)
}
switch t.Kind() {
case reflect.Ptr:
switch t.Elem().Kind() {
case reflect.Struct, reflect.Array:
x.enc(varname, genNonPtr(t))
default:
i := x.varsfx()
x.line(genTempVarPfx + i + " := *" + varname)
x.enc(genTempVarPfx+i, genNonPtr(t))
}
case reflect.Struct, reflect.Array:
i := x.varsfx()
x.line(genTempVarPfx + i + " := &" + varname)
x.enc(genTempVarPfx+i, t)
default:
x.enc(varname, t)
}
if checkNil {
x.line("}")
}
}
// enc will encode a variable (varname) of type T,
// except t is of kind reflect.Struct or reflect.Array, wherein varname is of type *T (to prevent copying)
func (x *genRunner) enc(varname string, t reflect.Type) {
// varName here must be to a pointer to a struct, or to a value directly.
rtid := reflect.ValueOf(t).Pointer()
// We call CodecEncodeSelf if one of the following are honored:
// - the type already implements Selfer, call that
// - the type has a Selfer implementation just created, use that
// - the type is in the list of the ones we will generate for, but it is not currently being generated
if t.Implements(selferTyp) {
x.line(varname + ".CodecEncodeSelf(e)")
return
}
if t.Kind() == reflect.Struct && reflect.PtrTo(t).Implements(selferTyp) {
x.line(varname + ".CodecEncodeSelf(e)")
return
}
if _, ok := x.te[rtid]; ok {
x.line(varname + ".CodecEncodeSelf(e)")
return
}
inlist := false
for _, t0 := range x.t {
if t == t0 {
inlist = true
if t != x.tc {
x.line(varname + ".CodecEncodeSelf(e)")
return
}
break
}
}
var rtidAdded bool
if t == x.tc {
x.te[rtid] = true
rtidAdded = true
}
switch t.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x.line("r.EncodeInt(int64(" + varname + "))")
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
x.line("r.EncodeUint(uint64(" + varname + "))")
case reflect.Float32:
x.line("r.EncodeFloat32(float32(" + varname + "))")
case reflect.Float64:
x.line("r.EncodeFloat64(float64(" + varname + "))")
case reflect.Bool:
x.line("r.EncodeBool(bool(" + varname + "))")
case reflect.String:
x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(" + varname + "))")
case reflect.Chan:
x.xtraSM(varname, true, t)
// x.encListFallback(varname, rtid, t)
case reflect.Array:
x.xtraSM(varname, true, t)
case reflect.Slice:
// if nil, call dedicated function
// if a []uint8, call dedicated function
// if a known fastpath slice, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
if rtid == uint8SliceTypId {
x.line("r.EncodeStringBytes(codecSelferC_RAW" + x.xs + ", []byte(" + varname + "))")
} else if fastpathAV.index(rtid) != -1 {
g := genV{Slice: true, Elem: x.genTypeName(t.Elem())}
x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", false, e)")
} else {
x.xtraSM(varname, true, t)
// x.encListFallback(varname, rtid, t)
}
case reflect.Map:
// if nil, call dedicated function
// if a known fastpath map, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
// x.line("if " + varname + " == nil { \nr.EncodeNil()\n } else { ")
if fastpathAV.index(rtid) != -1 {
g := genV{Slice: false,
Elem: x.genTypeName(t.Elem()),
MapKey: x.genTypeName(t.Key())}
x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", false, e)")
} else {
x.xtraSM(varname, true, t)
// x.encMapFallback(varname, rtid, t)
}
case reflect.Struct:
if !inlist {
delete(x.te, rtid)
x.line("z.EncFallback(" + varname + ")")
break
}
x.encStruct(varname, rtid, t)
default:
if rtidAdded {
delete(x.te, rtid)
}
x.line("z.EncFallback(" + varname + ")")
}
}
func (x *genRunner) encZero(t reflect.Type) {
switch t.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x.line("r.EncodeInt(0)")
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
x.line("r.EncodeUint(0)")
case reflect.Float32:
x.line("r.EncodeFloat32(0)")
case reflect.Float64:
x.line("r.EncodeFloat64(0)")
case reflect.Bool:
x.line("r.EncodeBool(false)")
case reflect.String:
x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + `, "")`)
default:
x.line("r.EncodeNil()")
}
}
func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) {
// Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. )
// replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it
// if t === type currently running selfer on, do for all
ti := getTypeInfo(rtid, t)
i := x.varsfx()
sepVarname := genTempVarPfx + "sep" + i
firstVarname := genTempVarPfx + "first" + i
numfieldsvar := genTempVarPfx + "q" + i
ti2arrayvar := genTempVarPfx + "r" + i
struct2arrvar := genTempVarPfx + "2arr" + i
x.line(sepVarname + " := !z.EncBinary()")
x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar)
x.line("var " + firstVarname + " bool")
tisfi := ti.sfip // always use sequence from file. decStruct expects same thing.
// due to omitEmpty, we need to calculate the
// number of non-empty things we write out first.
// This is required as we need to pre-determine the size of the container,
// to support length-prefixing.
x.linef("var %s [%v]bool", numfieldsvar, len(tisfi))
x.linef("_, _, _, _ = %s, %s, %s, %s", sepVarname, firstVarname, numfieldsvar, struct2arrvar)
x.linef("const %s bool = %v", ti2arrayvar, ti.toArray)
nn := 0
for j, si := range tisfi {
if !si.omitEmpty {
nn++
continue
}
var t2 reflect.StructField
var omitline string
if si.i != -1 {
t2 = t.Field(int(si.i))
} else {
t2typ := t
varname3 := varname
for _, ix := range si.is {
for t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
t2 = t2typ.Field(ix)
t2typ = t2.Type
varname3 = varname3 + "." + t2.Name
if t2typ.Kind() == reflect.Ptr {
omitline += varname3 + " != nil && "
}
}
}
// never check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc.
// also, for maps/slices/arrays, check if len ! 0 (not if == zero value)
switch t2.Type.Kind() {
case reflect.Struct:
omitline += " true"
case reflect.Map, reflect.Slice, reflect.Array, reflect.Chan:
omitline += "len(" + varname + "." + t2.Name + ") != 0"
default:
omitline += varname + "." + t2.Name + " != " + genZeroValueR(t2.Type, x.tc)
}
x.linef("%s[%v] = %s", numfieldsvar, j, omitline)
}
x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray {
x.line("r.EncodeArrayStart(" + strconv.FormatInt(int64(len(tisfi)), 10) + ")")
x.linef("} else {") // if not ti.toArray
x.linef("var %snn%s int = %v", genTempVarPfx, i, nn)
x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i)
x.linef("r.EncodeMapStart(%snn%s)", genTempVarPfx, i)
// x.line("r.EncodeMapStart(" + strconv.FormatInt(int64(len(tisfi)), 10) + ")")
x.line("}") // close if not StructToArray
for j, si := range tisfi {
i := x.varsfx()
isNilVarName := genTempVarPfx + "n" + i
var labelUsed bool
var t2 reflect.StructField
if si.i != -1 {
t2 = t.Field(int(si.i))
} else {
t2typ := t
varname3 := varname
for _, ix := range si.is {
// fmt.Printf("%%%% %v, ix: %v\n", t2typ, ix)
for t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
t2 = t2typ.Field(ix)
t2typ = t2.Type
varname3 = varname3 + "." + t2.Name
if t2typ.Kind() == reflect.Ptr {
if !labelUsed {
x.line("var " + isNilVarName + " bool")
}
x.line("if " + varname3 + " == nil { " + isNilVarName + " = true ")
x.line("goto LABEL" + i)
x.line("}")
labelUsed = true
// "varname3 = new(" + x.genTypeName(t3.Elem()) + ") }")
}
}
// t2 = t.FieldByIndex(si.is)
}
if labelUsed {
x.line("LABEL" + i + ":")
}
// if the type of the field is a Selfer, or one of the ones
x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray
if j > 0 {
x.line("if " + sepVarname + " {")
x.line("r.EncodeArrayEntrySeparator()")
x.line("}")
}
if labelUsed {
x.line("if " + isNilVarName + " { r.EncodeNil() } else { ")
}
if si.omitEmpty {
x.linef("if %s[%v] {", numfieldsvar, j)
// omitEmptyVarNameX := genTempVarPfx + "ov" + i
// x.line("var " + omitEmptyVarNameX + " " + x.genTypeName(t2.Type))
// x.encVar(omitEmptyVarNameX, t2.Type)
}
x.encVar(varname+"."+t2.Name, t2.Type)
if si.omitEmpty {
x.linef("} else {")
x.encZero(t2.Type)
x.linef("}")
}
if labelUsed {
x.line("}")
}
x.linef("} else {") // if not ti.toArray
// omitEmptyVar := genTempVarPfx + "x" + i + t2.Name
// x.line("const " + omitEmptyVar + " bool = " + strconv.FormatBool(si.omitEmpty))
// doOmitEmpty := si.omitEmpty && t2.Type.Kind() != reflect.Struct
if si.omitEmpty {
x.linef("if %s[%v] {", numfieldsvar, j)
// x.linef(`println("Encoding field: %v")`, j)
// x.out("if ")
// if labelUsed {
// x.out("!" + isNilVarName + " && ")
// }
// x.line(varname + "." + t2.Name + " != " + genZeroValueR(t2.Type, x.tc) + " {")
}
if j == 0 {
x.linef("%s = true", firstVarname)
} else {
x.linef("if %s { r.EncodeMapEntrySeparator() } else { %s = true }", firstVarname, firstVarname)
}
// x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(\"" + t2.Name + "\"))")
x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(\"" + si.encName + "\"))")
x.line("if " + sepVarname + " {")
x.line("r.EncodeMapKVSeparator()")
x.line("}")
if labelUsed {
x.line("if " + isNilVarName + " { r.EncodeNil() } else { ")
x.encVar(varname+"."+t2.Name, t2.Type)
x.line("}")
} else {
x.encVar(varname+"."+t2.Name, t2.Type)
}
if si.omitEmpty {
x.line("}")
}
x.linef("} ") // end if/else ti.toArray
}
x.line("if " + sepVarname + " {")
x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray {
x.line("r.EncodeArrayEnd()")
x.linef("} else {") // if not ti.toArray
x.line("r.EncodeMapEnd()")
x.linef("} ") // end if/else ti.toArray
x.line("}")
}
func (x *genRunner) encListFallback(varname string, t reflect.Type) {
i := x.varsfx()
g := genTempVarPfx
x.line("r.EncodeArrayStart(len(" + varname + "))")
x.line(genTempVarPfx + "s" + i + " := !z.EncBinary()")
x.line("if " + genTempVarPfx + "s" + i + " {")
if t.Kind() == reflect.Chan {
x.linef("for %si%s, %si2%s := 0, len(%s); %si%s < %si2%s; %si%s++ {", g, i, g, i, varname, g, i, g, i, g, i)
x.linef("%sv%s := <-%s", g, i, varname)
} else {
x.linef("for %si%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname)
}
x.linef("if %si%s > 0 { r.EncodeArrayEntrySeparator() }", genTempVarPfx, i)
x.encVar(genTempVarPfx+"v"+i, t.Elem())
x.line("}")
x.line("r.EncodeArrayEnd()")
x.line("} else {")
if t.Kind() == reflect.Chan {
x.linef("for %si%s, %si2%s := 0, len(%s); %si%s < %si2%s; %si%s++ {", g, i, g, i, varname, g, i, g, i, g, i)
x.linef("%sv%s := <-%s", g, i, varname)
} else {
x.line("for _, " + genTempVarPfx + "v" + i + " := range " + varname + " {")
}
x.encVar(genTempVarPfx+"v"+i, t.Elem())
x.line("}")
x.line("}")
}
func (x *genRunner) encMapFallback(varname string, t reflect.Type) {
i := x.varsfx()
x.line("r.EncodeMapStart(len(" + varname + "))")
x.line(genTempVarPfx + "s" + i + " := !z.EncBinary()")
x.line(genTempVarPfx + "j" + i + " := 0")
x.line("if " + genTempVarPfx + "s" + i + " {")
x.line("for " + genTempVarPfx + "k" + i + ", " +
genTempVarPfx + "v" + i + " := range " + varname + " {")
x.line("if " + genTempVarPfx + "j" + i + " > 0 { r.EncodeMapEntrySeparator() }")
x.encVar(genTempVarPfx+"k"+i, t.Key())
x.line("r.EncodeMapKVSeparator()")
x.encVar(genTempVarPfx+"v"+i, t.Elem())
x.line(genTempVarPfx + "j" + i + "++")
x.line("}")
x.line("r.EncodeMapEnd()")
x.line("} else {")
x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname)
x.encVar(genTempVarPfx+"k"+i, t.Key())
x.encVar(genTempVarPfx+"v"+i, t.Elem())
x.line("}")
x.line("}")
}
func (x *genRunner) decVar(varname string, t reflect.Type, canBeNil bool) {
// We only encode as nil if a nillable value.
// This removes some of the wasted checks for TryDecodeAsNil.
// We need to think about this more, to see what happens if omitempty, etc
// cause a nil value to be stored when something is expected.
// This could happen when decoding from a struct encoded as an array.
// For that, decVar should be called with canNil=true, to force true as its value.
i := x.varsfx()
if !canBeNil {
canBeNil = genAnythingCanBeNil || !genIsImmutable(t)
}
if canBeNil {
x.line("if r.TryDecodeAsNil() {")
if t.Kind() == reflect.Ptr {
x.line("if " + varname + " != nil { ")
// x.line("var " + genTempVarPfx + i + " " + x.genTypeName(t.Elem()))
// x.line("*" + varname + " = " + genTempVarPfx + i)
// if varname is a field of a struct (has a dot in it),
// then just set it to nil
if strings.IndexByte(varname, '.') != -1 {
x.line(varname + " = nil")
} else {
x.line("*" + varname + " = " + genZeroValueR(t.Elem(), x.tc))
}
// x.line("*" + varname + " = nil")
x.line("}")
} else {
// x.line("var " + genTempVarPfx + i + " " + x.genTypeName(t))
// x.line(varname + " = " + genTempVarPfx + i)
x.line(varname + " = " + genZeroValueR(t, x.tc))
}
x.line("} else {")
} else {
x.line("// cannot be nil")
}
if t.Kind() != reflect.Ptr {
if x.decTryAssignPrimitive(varname, t) {
x.line(genTempVarPfx + "v" + i + " := &" + varname)
x.dec(genTempVarPfx+"v"+i, t)
}
} else {
x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem()))
// Ensure we set underlying ptr to a non-nil value (so we can deref to it later).
// There's a chance of a **T in here which is nil.
var ptrPfx string
for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() {
ptrPfx += "*"
x.linef("if %s%s == nil { %s%s = new(%s)}",
ptrPfx, varname, ptrPfx, varname, x.genTypeName(t))
}
// if varname has [ in it, then create temp variable for this ptr thingie
if strings.Index(varname, "[") >= 0 {
varname2 := genTempVarPfx + "w" + i
x.line(varname2 + " := " + varname)
varname = varname2
}
if ptrPfx == "" {
x.dec(varname, t)
} else {
x.line(genTempVarPfx + "z" + i + " := " + ptrPfx + varname)
x.dec(genTempVarPfx+"z"+i, t)
}
}
if canBeNil {
x.line("} ")
}
}
func (x *genRunner) dec(varname string, t reflect.Type) {
// assumptions:
// - the varname is to a pointer already. No need to take address of it
rtid := reflect.ValueOf(t).Pointer()
if t.Implements(selferTyp) || (t.Kind() == reflect.Struct &&
reflect.PtrTo(t).Implements(selferTyp)) {
x.line(varname + ".CodecDecodeSelf(d)")
return
}
if _, ok := x.td[rtid]; ok {
x.line(varname + ".CodecDecodeSelf(d)")
return
}
inlist := false
for _, t0 := range x.t {
if t == t0 {
inlist = true
if t != x.tc {
x.line(varname + ".CodecDecodeSelf(d)")
return
}
break
}
}
var rtidAdded bool
if t == x.tc {
x.td[rtid] = true
rtidAdded = true
}
// Since these are pointers, we cannot share, and have to use them one by one
switch t.Kind() {
case reflect.Int:
x.line("*((*int)(" + varname + ")) = int(r.DecodeInt(codecSelferBitsize" + x.xs + "))")
// x.line("z.DecInt((*int)(" + varname + "))")
case reflect.Int8:
x.line("*((*int8)(" + varname + ")) = int8(r.DecodeInt(8))")
// x.line("z.DecInt8((*int8)(" + varname + "))")
case reflect.Int16:
x.line("*((*int16)(" + varname + ")) = int16(r.DecodeInt(16))")
// x.line("z.DecInt16((*int16)(" + varname + "))")
case reflect.Int32:
x.line("*((*int32)(" + varname + ")) = int32(r.DecodeInt(32))")
// x.line("z.DecInt32((*int32)(" + varname + "))")
case reflect.Int64:
x.line("*((*int64)(" + varname + ")) = int64(r.DecodeInt(64))")
// x.line("z.DecInt64((*int64)(" + varname + "))")
case reflect.Uint:
x.line("*((*uint)(" + varname + ")) = uint(r.DecodeUint(codecSelferBitsize" + x.xs + "))")
// x.line("z.DecUint((*uint)(" + varname + "))")
case reflect.Uint8:
x.line("*((*uint8)(" + varname + ")) = uint8(r.DecodeUint(8))")
// x.line("z.DecUint8((*uint8)(" + varname + "))")
case reflect.Uint16:
x.line("*((*uint16)(" + varname + ")) = uint16(r.DecodeUint(16))")
//x.line("z.DecUint16((*uint16)(" + varname + "))")
case reflect.Uint32:
x.line("*((*uint32)(" + varname + ")) = uint32(r.DecodeUint(32))")
//x.line("z.DecUint32((*uint32)(" + varname + "))")
case reflect.Uint64:
x.line("*((*uint64)(" + varname + ")) = uint64(r.DecodeUint(64))")
//x.line("z.DecUint64((*uint64)(" + varname + "))")
case reflect.Float32:
x.line("*((*float32)(" + varname + ")) = float32(r.DecodeFloat(true))")
//x.line("z.DecFloat32((*float32)(" + varname + "))")
case reflect.Float64:
x.line("*((*float64)(" + varname + ")) = float64(r.DecodeFloat(false))")
// x.line("z.DecFloat64((*float64)(" + varname + "))")
case reflect.Bool:
x.line("*((*bool)(" + varname + ")) = r.DecodeBool()")
// x.line("z.DecBool((*bool)(" + varname + "))")
case reflect.String:
x.line("*((*string)(" + varname + ")) = r.DecodeString()")
// x.line("z.DecString((*string)(" + varname + "))")
case reflect.Array, reflect.Chan:
x.xtraSM(varname, false, t)
// x.decListFallback(varname, rtid, true, t)
case reflect.Slice:
// if a []uint8, call dedicated function
// if a known fastpath slice, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
if rtid == uint8SliceTypId {
x.line("*" + varname + " = r.DecodeBytes(*(*[]byte)(" + varname + "), false, false)")
} else if fastpathAV.index(rtid) != -1 {
g := genV{Slice: true, Elem: x.genTypeName(t.Elem())}
x.line("z.F." + g.MethodNamePfx("Dec", false) + "X(" + varname + ", false, d)")
// x.line("z." + g.MethodNamePfx("Dec", false) + "(" + varname + ")")
// x.line(g.FastpathName(false) + "(" + varname + ", d)")
} else {
x.xtraSM(varname, false, t)
// x.decListFallback(varname, rtid, false, t)
}
case reflect.Map:
// if a known fastpath map, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
if fastpathAV.index(rtid) != -1 {
g := genV{Slice: false, Elem: x.genTypeName(t.Elem()), MapKey: x.genTypeName(t.Key())}
x.line("z.F." + g.MethodNamePfx("Dec", false) + "X(" + varname + ", false, d)")
// x.line("z." + g.MethodNamePfx("Dec", false) + "(" + varname + ")")
// x.line(g.FastpathName(false) + "(" + varname + ", d)")
} else {
x.xtraSM(varname, false, t)
// x.decMapFallback(varname, rtid, t)
}
case reflect.Struct:
if inlist {
x.decStruct(varname, rtid, t)
} else {
// delete(x.td, rtid)
x.line("z.DecFallback(" + varname + ", false)")
}
default:
if rtidAdded {
delete(x.te, rtid)
}
x.line("z.DecFallback(" + varname + ", true)")
}
}
func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type) (tryAsPtr bool) {
// We have to use the actual type name when doing a direct assignment.
// We don't have the luxury of casting the pointer to the underlying type.
//
// Consequently, in the situation of a
// type Message int32
// var x Message
// var i int32 = 32
// x = i // this will bomb
// x = Message(i) // this will work
// *((*int32)(&x)) = i // this will work
//
// Consequently, we replace:
// case reflect.Uint32: x.line(varname + " = uint32(r.DecodeUint(32))")
// with:
// case reflect.Uint32: x.line(varname + " = " + genTypeNamePrimitiveKind(t, x.tc) + "(r.DecodeUint(32))")
xfn := func(t reflect.Type) string {
return genTypeNamePrimitiveKind(t, x.tc)
}
switch t.Kind() {
case reflect.Int:
x.linef("%s = %s(r.DecodeInt(codecSelferBitsize%s))", varname, xfn(t), x.xs)
case reflect.Int8:
x.linef("%s = %s(r.DecodeInt(8))", varname, xfn(t))
case reflect.Int16:
x.linef("%s = %s(r.DecodeInt(16))", varname, xfn(t))
case reflect.Int32:
x.linef("%s = %s(r.DecodeInt(32))", varname, xfn(t))
case reflect.Int64:
x.linef("%s = %s(r.DecodeInt(64))", varname, xfn(t))
case reflect.Uint:
x.linef("%s = %s(r.DecodeUint(codecSelferBitsize%s))", varname, xfn(t), x.xs)
case reflect.Uint8:
x.linef("%s = %s(r.DecodeUint(8))", varname, xfn(t))
case reflect.Uint16:
x.linef("%s = %s(r.DecodeUint(16))", varname, xfn(t))
case reflect.Uint32:
x.linef("%s = %s(r.DecodeUint(32))", varname, xfn(t))
case reflect.Uint64:
x.linef("%s = %s(r.DecodeUint(64))", varname, xfn(t))
case reflect.Float32:
x.linef("%s = %s(r.DecodeFloat(true))", varname, xfn(t))
case reflect.Float64:
x.linef("%s = %s(r.DecodeFloat(false))", varname, xfn(t))
case reflect.Bool:
x.linef("%s = %s(r.DecodeBool())", varname, xfn(t))
case reflect.String:
x.linef("%s = %s(r.DecodeString())", varname, xfn(t))
default:
tryAsPtr = true
}
return
}
func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) {
type tstruc struct {
TempVar string
Rand string
Varname string
CTyp string
Typ string
Immutable bool
}
telem := t.Elem()
ts := tstruc{genTempVarPfx, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem)}
funcs := make(template.FuncMap)
funcs["decLineVar"] = func(varname string) string {
x.decVar(varname, telem, false)
return ""
}
funcs["decLine"] = func(pfx string) string {
x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(telem), false)
return ""
}
funcs["var"] = func(s string) string {
return ts.TempVar + s + ts.Rand
}
funcs["zero"] = func() string {
return genZeroValueR(telem, x.tc)
}
funcs["isArray"] = func() bool {
return t.Kind() == reflect.Array
}
funcs["isSlice"] = func() bool {
return t.Kind() == reflect.Slice
}
funcs["isChan"] = func() bool {
return t.Kind() == reflect.Chan
}
tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl)
if err != nil {
panic(err)
}
if err = tm.Execute(x.w, &ts); err != nil {
panic(err)
}
}
func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) {
type tstruc struct {
TempVar string
Rand string
Varname string
KTyp string
Typ string
}
telem := t.Elem()
tkey := t.Key()
ts := tstruc{genTempVarPfx, x.varsfx(), varname, x.genTypeName(tkey), x.genTypeName(telem)}
funcs := make(template.FuncMap)
funcs["decLineVarK"] = func(varname string) string {
x.decVar(varname, tkey, false)
return ""
}
funcs["decLineVar"] = func(varname string) string {
x.decVar(varname, telem, false)
return ""
}
funcs["decLineK"] = func(pfx string) string {
x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(tkey), false)
return ""
}
funcs["decLine"] = func(pfx string) string {
x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(telem), false)
return ""
}
funcs["var"] = func(s string) string {
return ts.TempVar + s + ts.Rand
}
tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl)
if err != nil {
panic(err)
}
if err = tm.Execute(x.w, &ts); err != nil {
panic(err)
}
}
func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) {
ti := getTypeInfo(rtid, t)
tisfi := ti.sfip // always use sequence from file. decStruct expects same thing.
x.line("switch (" + kName + ") {")
for _, si := range tisfi {
x.line("case \"" + si.encName + "\":")
var t2 reflect.StructField
if si.i != -1 {
t2 = t.Field(int(si.i))
} else {
// t2 = t.FieldByIndex(si.is)
t2typ := t
varname3 := varname
for _, ix := range si.is {
for t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
t2 = t2typ.Field(ix)
t2typ = t2.Type
varname3 = varname3 + "." + t2.Name
if t2typ.Kind() == reflect.Ptr {
x.line("if " + varname3 + " == nil {" +
varname3 + " = new(" + x.genTypeName(t2typ.Elem()) + ") }")
}
}
}
x.decVar(varname+"."+t2.Name, t2.Type, false)
}
x.line("default:")
// pass the slice here, so that the string will not escape, and maybe save allocation
x.line("z.DecStructFieldNotFound(-1, " + kName + ")")
// x.line("z.DecStructFieldNotFoundB(" + kName + "Slc)")
x.line("} // end switch " + kName)
}
func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type, style uint8) {
tpfx := genTempVarPfx
i := x.varsfx()
kName := tpfx + "s" + i
// We thought to use ReadStringAsBytes, as go compiler might optimize the copy out.
// However, using that was more expensive, as it seems that the switch expression
// is evaluated each time.
//
// We could depend on decodeString using a temporary/shared buffer internally.
// However, this model of creating a byte array, and using explicitly is faster,
// and allows optional use of unsafe []byte->string conversion without alloc.
// Also, ensure that the slice array doesn't escape.
// That will help escape analysis prevent allocation when it gets better.
// x.line("var " + kName + "Arr = [32]byte{} // default string to decode into")
// x.line("var " + kName + "Slc = " + kName + "Arr[:] // default slice to decode into")
// use the scratch buffer to avoid allocation (most field names are < 32).
x.line("var " + kName + "Slc = z.DecScratchBuffer() // default slice to decode into")
// x.line("var " + kName + " string // default string to decode into")
// x.line("_ = " + kName)
x.line("_ = " + kName + "Slc")
// x.linef("var %sb%s bool", tpfx, i) // break
switch style {
case 1:
x.linef("for %sj%s := 0; %sj%s < %s; %sj%s++ {", tpfx, i, tpfx, i, lenvarname, tpfx, i)
case 2:
x.linef("for %sj%s := 0; !r.CheckBreak(); %sj%s++ {", tpfx, i, tpfx, i)
x.linef("if %sj%s > 0 { r.ReadMapEntrySeparator() }", tpfx, i)
default: // 0, otherwise.
x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
x.linef("for %sj%s := 0; ; %sj%s++ {", tpfx, i, tpfx, i)
x.linef("if %shl%s { if %sj%s >= %s { break }", tpfx, i, tpfx, i, lenvarname)
x.linef("} else { if r.CheckBreak() { break }; if %sj%s > 0 { r.ReadMapEntrySeparator() } }",
tpfx, i)
}
// x.line(kName + " = z.ReadStringAsBytes(" + kName + ")")
// x.line(kName + " = z.ReadString()")
x.line(kName + "Slc = r.DecodeBytes(" + kName + "Slc, true, true)")
// let string be scoped to this loop alone, so it doesn't escape.
// x.line(kName + " := " + x.cpfx + "GenBytesToStringRO(" + kName + "Slc)")
if x.unsafe {
x.line(kName + "SlcHdr := codecSelferUnsafeString" + x.xs + "{uintptr(unsafe.Pointer(&" +
kName + "Slc[0])), len(" + kName + "Slc)}")
x.line(kName + " := *(*string)(unsafe.Pointer(&" + kName + "SlcHdr))")
} else {
x.line(kName + " := string(" + kName + "Slc)")
}
switch style {
case 1:
case 2:
x.line("r.ReadMapKVSeparator()")
default:
x.linef("if !%shl%s { r.ReadMapKVSeparator() }", tpfx, i)
}
x.decStructMapSwitch(kName, varname, rtid, t)
x.line("} // end for " + tpfx + "j" + i)
switch style {
case 1:
case 2:
x.line("r.ReadMapEnd()")
default:
x.linef("if !%shl%s { r.ReadMapEnd() }", tpfx, i)
}
}
func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) {
tpfx := genTempVarPfx
i := x.varsfx()
ti := getTypeInfo(rtid, t)
tisfi := ti.sfip // always use sequence from file. decStruct expects same thing.
x.linef("var %sj%s int", tpfx, i)
x.linef("var %sb%s bool", tpfx, i) // break
// x.linef("var %sl%s := r.ReadArrayStart()", tpfx, i)
x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
for j, si := range tisfi {
var t2 reflect.StructField
if si.i != -1 {
t2 = t.Field(int(si.i))
} else {
t2 = t.FieldByIndex(si.is)
}
x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }",
tpfx, i, tpfx, i, tpfx, i,
tpfx, i, lenvarname, tpfx, i)
// x.line("if " + tpfx + "j" + i + "++; " + tpfx + "j" +
// i + " <= " + tpfx + "l" + i + " {")
x.linef("if %sb%s { r.ReadArrayEnd(); %s }", tpfx, i, breakString)
if j > 0 {
x.line("r.ReadArrayEntrySeparator()")
}
x.decVar(varname+"."+t2.Name, t2.Type, true)
// x.line("} // end if " + tpfx + "j" + i + " <= " + tpfx + "l" + i)
}
// read remaining values and throw away.
x.line("for {")
x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }",
tpfx, i, tpfx, i, tpfx, i,
tpfx, i, lenvarname, tpfx, i)
x.linef("if %sb%s { break }", tpfx, i)
x.linef("if %sj%s > 1 { r.ReadArrayEntrySeparator() }", tpfx, i)
x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i)
x.line("}")
x.line("r.ReadArrayEnd()")
}
func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) {
// if container is map
// x.line("if z.DecContainerIsMap() { ")
i := x.varsfx()
x.line("if r.IsContainerType(codecSelverValueTypeMap" + x.xs + ") {")
x.line(genTempVarPfx + "l" + i + " := r.ReadMapStart()")
x.linef("if %sl%s == 0 {", genTempVarPfx, i)
x.line("r.ReadMapEnd()")
if genUseOneFunctionForDecStructMap {
x.line("} else { ")
x.linef("x.codecDecodeSelfFromMap(%sl%s, d)", genTempVarPfx, i)
} else {
x.line("} else if " + genTempVarPfx + "l" + i + " > 0 { ")
x.line("x.codecDecodeSelfFromMapLenPrefix(" + genTempVarPfx + "l" + i + ", d)")
x.line("} else {")
x.line("x.codecDecodeSelfFromMapCheckBreak(" + genTempVarPfx + "l" + i + ", d)")
}
x.line("}")
// else if container is array
// x.line("} else if z.DecContainerIsArray() { ")
x.line("} else if r.IsContainerType(codecSelverValueTypeArray" + x.xs + ") {")
x.line(genTempVarPfx + "l" + i + " := r.ReadArrayStart()")
x.linef("if %sl%s == 0 {", genTempVarPfx, i)
x.line("r.ReadArrayEnd()")
x.line("} else { ")
x.linef("x.codecDecodeSelfFromArray(%sl%s, d)", genTempVarPfx, i)
x.line("}")
// else panic
x.line("} else { ")
x.line("panic(codecSelferOnlyMapOrArrayEncodeToStructErr" + x.xs + ")")
// x.line("panic(`only encoded map or array can be decoded into a struct`)")
x.line("} ")
}
// --------
type genV struct {
// genV is either a primitive (Primitive != "") or a slice (Slice = true) or a map.
Slice bool
MapKey string
Elem string
Primitive string
}
func (x *genV) MethodNamePfx(prefix string, prim bool) string {
var name []byte
if prefix != "" {
name = append(name, prefix...)
}
if prim {
name = append(name, genTitleCaseName(x.Primitive)...)
} else {
if x.Slice {
name = append(name, "Slice"...)
} else {
name = append(name, "Map"...)
name = append(name, genTitleCaseName(x.MapKey)...)
}
name = append(name, genTitleCaseName(x.Elem)...)
}
return string(name)
}
func genNonPtr(t reflect.Type) reflect.Type {
for t.Kind() == reflect.Ptr {
t = t.Elem()
}
return t
}
func genTitleCaseName(s string) string {
switch s {
case "interface{}":
return "Intf"
default:
return strings.ToUpper(s[0:1]) + s[1:]
}
}
func genTypeNamePrimitiveKind(t reflect.Type, tRef reflect.Type) (n string) {
if tRef != nil && t.PkgPath() == tRef.PkgPath() && t.Name() != "" {
return t.Name()
} else {
return t.String() // best way to get the package name inclusive
}
}
func genTypeName(t reflect.Type, tRef reflect.Type) (n string) {
// defer func() { fmt.Printf(">>>> ####: genTypeName: t: %v, name: '%s'\n", t, n) }()
// if the type has a PkgPath, which doesn't match the current package,
// then include it.
// We cannot depend on t.String() because it includes current package,
// or t.PkgPath because it includes full import path,
//
var ptrPfx string
for t.Kind() == reflect.Ptr {
ptrPfx += "*"
t = t.Elem()
}
if tn := t.Name(); tn != "" {
return ptrPfx + genTypeNamePrimitiveKind(t, tRef)
}
switch t.Kind() {
case reflect.Map:
return ptrPfx + "map[" + genTypeName(t.Key(), tRef) + "]" + genTypeName(t.Elem(), tRef)
case reflect.Slice:
return ptrPfx + "[]" + genTypeName(t.Elem(), tRef)
case reflect.Array:
return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + genTypeName(t.Elem(), tRef)
case reflect.Chan:
return ptrPfx + t.ChanDir().String() + " " + genTypeName(t.Elem(), tRef)
default:
if t == intfTyp {
return ptrPfx + "interface{}"
} else {
return ptrPfx + genTypeNamePrimitiveKind(t, tRef)
}
}
}
func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) {
var ptrPfx string
for t.Kind() == reflect.Ptr {
ptrPfx += "Ptrto"
t = t.Elem()
}
if tn := t.Name(); tn != "" {
if tRef != nil && t.PkgPath() == tRef.PkgPath() {
return ptrPfx + tn
} else {
tstr := t.String()
if genQNameRegex.MatchString(tstr) {
return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
} else {
return ptrPfx + genCustomTypeName(tstr)
}
}
}
switch t.Kind() {
case reflect.Map:
return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef)
case reflect.Slice:
return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef)
case reflect.Array:
return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef)
case reflect.Chan:
var cx string
switch t.ChanDir() {
case reflect.SendDir:
cx = "ChanSend"
case reflect.RecvDir:
cx = "ChanRecv"
default:
cx = "Chan"
}
return ptrPfx + cx + genMethodNameT(t.Elem(), tRef)
default:
if t == intfTyp {
return ptrPfx + "Interface"
} else {
if tRef != nil && t.PkgPath() == tRef.PkgPath() {
if t.Name() != "" {
return ptrPfx + t.Name()
} else {
return ptrPfx + genCustomTypeName(t.String())
}
} else {
// best way to get the package name inclusive
// return ptrPfx + strings.Replace(t.String(), ".", "_", 1000)
// return ptrPfx + genBase64enc.EncodeToString([]byte(t.String()))
tstr := t.String()
if t.Name() != "" && genQNameRegex.MatchString(tstr) {
return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
} else {
return ptrPfx + genCustomTypeName(tstr)
}
}
}
}
}
// genCustomNameForType base64encodes the t.String() value in such a way
// that it can be used within a function name.
func genCustomTypeName(tstr string) string {
len2 := genBase64enc.EncodedLen(len(tstr))
bufx := make([]byte, len2)
genBase64enc.Encode(bufx, []byte(tstr))
for i := len2 - 1; i >= 0; i-- {
if bufx[i] == '=' {
len2--
} else {
break
}
}
return string(bufx[:len2])
}
func genIsImmutable(t reflect.Type) (v bool) {
return isMutableKind(t.Kind())
}
func genZeroValueR(t reflect.Type, tRef reflect.Type) string {
// if t is a named type, w
switch t.Kind() {
case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func,
reflect.Slice, reflect.Map, reflect.Invalid:
return "nil"
case reflect.Bool:
return "false"
case reflect.String:
return `""`
case reflect.Struct, reflect.Array:
return genTypeName(t, tRef) + "{}"
default: // all numbers
return "0"
}
}
type genInternal struct {
Values []genV
Unsafe bool
}
func (x genInternal) FastpathLen() (l int) {
for _, v := range x.Values {
if v.Primitive == "" {
l++
}
}
return
}
func genInternalZeroValue(s string) string {
switch s {
case "interface{}":
return "nil"
case "bool":
return "false"
case "string":
return `""`
default:
return "0"
}
}
func genInternalEncCommandAsString(s string, vname string) string {
switch s {
case "uint", "uint8", "uint16", "uint32", "uint64":
return "ee.EncodeUint(uint64(" + vname + "))"
case "int", "int8", "int16", "int32", "int64":
return "ee.EncodeInt(int64(" + vname + "))"
case "string":
return "ee.EncodeString(c_UTF8, " + vname + ")"
case "float32":
return "ee.EncodeFloat32(" + vname + ")"
case "float64":
return "ee.EncodeFloat64(" + vname + ")"
case "bool":
return "ee.EncodeBool(" + vname + ")"
case "symbol":
return "ee.EncodeSymbol(" + vname + ")"
default:
return "e.encode(" + vname + ")"
}
}
func genInternalDecCommandAsString(s string) string {
switch s {
case "uint":
return "uint(dd.DecodeUint(uintBitsize))"
case "uint8":
return "uint8(dd.DecodeUint(8))"
case "uint16":
return "uint16(dd.DecodeUint(16))"
case "uint32":
return "uint32(dd.DecodeUint(32))"
case "uint64":
return "dd.DecodeUint(64)"
case "int":
return "int(dd.DecodeInt(intBitsize))"
case "int8":
return "int8(dd.DecodeInt(8))"
case "int16":
return "int16(dd.DecodeInt(16))"
case "int32":
return "int32(dd.DecodeInt(32))"
case "int64":
return "dd.DecodeInt(64)"
case "string":
return "dd.DecodeString()"
case "float32":
return "float32(dd.DecodeFloat(true))"
case "float64":
return "dd.DecodeFloat(false)"
case "bool":
return "dd.DecodeBool()"
default:
panic(errors.New("unknown type for decode: " + s))
}
}
// var genInternalMu sync.Mutex
var genInternalV genInternal
var genInternalTmplFuncs template.FuncMap
var genInternalOnce sync.Once
func genInternalInit() {
types := [...]string{
"interface{}",
"string",
"float32",
"float64",
"uint",
"uint8",
"uint16",
"uint32",
"uint64",
"int",
"int8",
"int16",
"int32",
"int64",
"bool",
}
// keep as slice, so it is in specific iteration order.
// Initial order was uint64, string, interface{}, int, int64
mapvaltypes := [...]string{
"interface{}",
"string",
"uint",
"uint8",
"uint16",
"uint32",
"uint64",
"int",
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"bool",
}
mapvaltypes2 := make(map[string]bool)
for _, s := range mapvaltypes {
mapvaltypes2[s] = true
}
var gt genInternal
// For each slice or map type, there must be a (symetrical) Encode and Decode fast-path function
for _, s := range types {
gt.Values = append(gt.Values, genV{false, "", "", s})
if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already.
gt.Values = append(gt.Values, genV{true, "", s, ""})
}
if !mapvaltypes2[s] {
gt.Values = append(gt.Values, genV{false, s, s, ""})
}
for _, ms := range mapvaltypes {
gt.Values = append(gt.Values, genV{false, s, ms, ""})
}
}
funcs := make(template.FuncMap)
// funcs["haspfx"] = strings.HasPrefix
funcs["encmd"] = genInternalEncCommandAsString
funcs["decmd"] = genInternalDecCommandAsString
funcs["zerocmd"] = genInternalZeroValue
genInternalV = gt
genInternalTmplFuncs = funcs
}
// GenInternalGoFile is used to generate source files from templates.
// It is run by the program author alone.
// Unfortunately, it has to be exported so that it can be called from a command line tool.
// *** DO NOT USE ***
func GenInternalGoFile(r io.Reader, w io.Writer, safe bool) (err error) {
genInternalOnce.Do(genInternalInit)
gt := genInternalV
gt.Unsafe = !safe
t := template.New("").Funcs(genInternalTmplFuncs)
tmplstr, err := ioutil.ReadAll(r)
if err != nil {
return
}
if t, err = t.Parse(string(tmplstr)); err != nil {
return
}
var out bytes.Buffer
err = t.Execute(&out, gt)
if err != nil {
return
}
bout, err := format.Source(out.Bytes())
if err != nil {
w.Write(out.Bytes()) // write out if error, so we can still see.
// w.Write(bout) // write out if error, as much as possible, so we can still see.
return
}
w.Write(bout)
return
}