// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "bytes" "encoding/base64" "errors" "fmt" "go/format" "io" "io/ioutil" "math/rand" "reflect" "regexp" "strconv" "strings" "sync" "text/template" "time" ) // --------------------------------------------------- // codecgen only works in the following: // - extensions are not supported. Do not make a type a Selfer and an extension. // - Selfer takes precedence. // Any type that implements it knows how to encode/decode itself statically. // Extensions are only known at runtime. // codecgen only looks at the Kind of the type. // // - the following types are supported: // array: [n]T // slice: []T // map: map[K]V // primitive: [u]int[n], float(32|64), bool, string // struct // // --------------------------------------------------- // Note that a Selfer cannot call (e|d).(En|De)code on itself, // as this will cause a circular reference, as (En|De)code will call Selfer methods. // Any type that implements Selfer must implement completely and not fallback to (En|De)code. // // In addition, code in this file manages the generation of fast-path implementations of // encode/decode of slices/maps of primitive keys/values. // // Users MUST re-generate their implementations whenever the code shape changes. // The generated code will panic if it was generated with a version older than the supporting library. // --------------------------------------------------- // // codec framework is very feature rich. // When encoding or decoding into an interface, it depends on the runtime type of the interface. // The type of the interface may be a named type, an extension, etc. // Consequently, we fallback to runtime codec for encoding/decoding interfaces. // In addition, we fallback for any value which cannot be guaranteed at runtime. // This allows us support ANY value, including any named types, specifically those which // do not implement our interfaces (e.g. Selfer). // // This explains some slowness compared to other code generation codecs (e.g. msgp). // This reduction in speed is only seen when your refers to interfaces, // e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} } // // codecgen will panic if the file was generated with an old version of the library in use. // // Note: // It was a concious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil. // This way, there isn't a function call overhead just to see that we should not enter a block of code. const GenVersion = 2 // increment this value each time codecgen changes fundamentally. const ( genCodecPkg = "codec1978" genTempVarPfx = "yy" // ignore canBeNil parameter, and always set to true. // This is because nil can appear anywhere, so we should always check. genAnythingCanBeNil = true // if genUseOneFunctionForDecStructMap, make a single codecDecodeSelferFromMap function; // else make codecDecodeSelferFromMap{LenPrefix,CheckBreak} so that conditionals // are not executed a lot. // // From testing, it didn't make much difference in runtime, so keep as true (one function only) genUseOneFunctionForDecStructMap = true ) var ( genAllTypesSamePkgErr = errors.New("All types must be in the same package") genExpectArrayOrMapErr = errors.New("unexpected type. Expecting array/map/slice") genBase64enc = base64.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789__") genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`) ) // genRunner holds some state used during a Gen run. type genRunner struct { w io.Writer // output c uint64 // ctr used for generating varsfx t []reflect.Type // list of types to run selfer on tc reflect.Type // currently running selfer on this type te map[uintptr]bool // types for which the encoder has been created td map[uintptr]bool // types for which the decoder has been created cp string // codec import path im map[string]reflect.Type // imports to add is map[reflect.Type]struct{} // types seen during import search bp string // base PkgPath, for which we are generating for cpfx string // codec package prefix unsafe bool // is unsafe to be used in generated code? ts map[reflect.Type]struct{} // types for which enc/dec must be generated xs string // top level variable/constant suffix hn string // fn helper type name rr *rand.Rand // random generator for file-specific types } // Gen will write a complete go file containing Selfer implementations for each // type passed. All the types must be in the same package. func Gen(w io.Writer, buildTags, pkgName string, useUnsafe bool, typ ...reflect.Type) { if len(typ) == 0 { return } x := genRunner{ unsafe: useUnsafe, w: w, t: typ, te: make(map[uintptr]bool), td: make(map[uintptr]bool), im: make(map[string]reflect.Type), is: make(map[reflect.Type]struct{}), ts: make(map[reflect.Type]struct{}), bp: typ[0].PkgPath(), rr: rand.New(rand.NewSource(time.Now().UnixNano())), } // gather imports first: x.cp = reflect.TypeOf(x).PkgPath() for _, t := range typ { // fmt.Printf("###########: PkgPath: '%v', Name: '%s'\n", t.PkgPath(), t.Name()) if t.PkgPath() != x.bp { panic(genAllTypesSamePkgErr) } x.genRefPkgs(t) } if buildTags != "" { x.line("//+build " + buildTags) x.line("") } x.line(` // ************************************************************ // DO NOT EDIT. // THIS FILE IS AUTO-GENERATED BY codecgen. // ************************************************************ `) x.line("package " + pkgName) x.line("") x.line("import (") if x.cp != x.bp { x.cpfx = genCodecPkg + "." x.linef("%s \"%s\"", genCodecPkg, x.cp) } for k, _ := range x.im { x.line("\"" + k + "\"") } // add required packages for _, k := range [...]string{"reflect", "unsafe", "runtime", "fmt", "errors"} { if _, ok := x.im[k]; !ok { if k == "unsafe" && !x.unsafe { continue } x.line("\"" + k + "\"") } } x.line(")") x.line("") x.xs = strconv.FormatInt(x.rr.Int63n(9999), 10) x.line("const (") x.linef("codecSelferC_UTF8%s = %v", x.xs, int64(c_UTF8)) x.linef("codecSelferC_RAW%s = %v", x.xs, int64(c_RAW)) x.linef("codecSelverValueTypeArray%s = %v", x.xs, int64(valueTypeArray)) x.linef("codecSelverValueTypeMap%s = %v", x.xs, int64(valueTypeMap)) x.line(")") x.line("var (") x.line("codecSelferBitsize" + x.xs + " = uint8(reflect.TypeOf(uint(0)).Bits())") x.line("codecSelferOnlyMapOrArrayEncodeToStructErr" + x.xs + " = errors.New(`only encoded map or array can be decoded into a struct`)") x.line(")") x.line("") if x.unsafe { x.line("type codecSelferUnsafeString" + x.xs + " struct { Data uintptr; Len int}") x.line("") } x.hn = "codecSelfer" + x.xs x.line("type " + x.hn + " struct{}") x.line("") x.line("func init() {") x.linef("if %sGenVersion != %v {", x.cpfx, GenVersion) x.line("_, file, _, _ := runtime.Caller(0)") x.line(`err := fmt.Errorf("codecgen version mismatch: current: %v, need %v. Re-generate file: %v", `) x.linef(`%v, %sGenVersion, file)`, GenVersion, x.cpfx) x.line("panic(err)") // x.linef(`panic(fmt.Errorf("Re-run codecgen due to version mismatch: `+ // `current: %%v, need %%v, file: %%v", %v, %sGenVersion, file))`, GenVersion, x.cpfx) x.linef("}") x.line("if false { // reference the types, but skip this branch at build/run time") var n int for _, t := range x.im { x.linef("var v%v %s", n, t.String()) n++ } if x.unsafe { x.linef("var v%v unsafe.Pointer", n) n++ } if n > 0 { x.out("_") for i := 1; i < n; i++ { x.out(", _") } x.out(" = v0") for i := 1; i < n; i++ { x.outf(", v%v", i) } } x.line("} ") // close if false x.line("}") // close init x.line("") // generate rest of type info for _, t := range typ { x.tc = t x.selfer(true) x.selfer(false) } for t, _ := range x.ts { rtid := reflect.ValueOf(t).Pointer() // generate enc functions for all these slice/map types. x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(true) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.encListFallback("v", t) case reflect.Map: x.encMapFallback("v", t) default: panic(genExpectArrayOrMapErr) } x.line("}") x.line("") // generate dec functions for all these slice/map types. x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(false) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.decListFallback("v", rtid, t) case reflect.Map: x.decMapFallback("v", rtid, t) default: panic(genExpectArrayOrMapErr) } x.line("}") x.line("") } x.line("") } func (x *genRunner) arr2str(t reflect.Type, s string) string { if t.Kind() == reflect.Array { return s } return "" } func (x *genRunner) genRequiredMethodVars(encode bool) { x.line("var h " + x.hn) if encode { x.line("z, r := " + x.cpfx + "GenHelperEncoder(e)") } else { x.line("z, r := " + x.cpfx + "GenHelperDecoder(d)") } x.line("_, _, _ = h, z, r") } func (x *genRunner) genRefPkgs(t reflect.Type) { if _, ok := x.is[t]; ok { return } // fmt.Printf(">>>>>>: PkgPath: '%v', Name: '%s'\n", t.PkgPath(), t.Name()) x.is[t] = struct{}{} tpkg, tname := t.PkgPath(), t.Name() if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' { x.im[tpkg] = t } switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan: x.genRefPkgs(t.Elem()) case reflect.Map: x.genRefPkgs(t.Elem()) x.genRefPkgs(t.Key()) case reflect.Struct: for i := 0; i < t.NumField(); i++ { if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' { x.genRefPkgs(t.Field(i).Type) } } } } func (x *genRunner) line(s string) { x.out(s) if len(s) == 0 || s[len(s)-1] != '\n' { x.out("\n") } } func (x *genRunner) varsfx() string { x.c++ return strconv.FormatUint(x.c, 10) } func (x *genRunner) out(s string) { if _, err := io.WriteString(x.w, s); err != nil { panic(err) } } func (x *genRunner) linef(s string, params ...interface{}) { x.line(fmt.Sprintf(s, params...)) } func (x *genRunner) outf(s string, params ...interface{}) { x.out(fmt.Sprintf(s, params...)) } func (x *genRunner) genTypeName(t reflect.Type) (n string) { return genTypeName(t, x.tc) } func (x *genRunner) genMethodNameT(t reflect.Type) (s string) { return genMethodNameT(t, x.tc) } func (x *genRunner) selfer(encode bool) { t := x.tc t0 := t // always make decode use a pointer receiver, // and structs always use a ptr receiver (encode|decode) isptr := !encode || t.Kind() == reflect.Struct fnSigPfx := "func (x " if isptr { fnSigPfx += "*" } fnSigPfx += x.genTypeName(t) x.out(fnSigPfx) if isptr { t = reflect.PtrTo(t) } if encode { x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {") x.genRequiredMethodVars(true) // x.enc("x", t) x.encVar("x", t) } else { x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) // do not use decVar, as there is no need to check TryDecodeAsNil // or way to elegantly handle that, and also setting it to a // non-nil value doesn't affect the pointer passed. // x.decVar("x", t, false) x.dec("x", t0) } x.line("}") x.line("") if encode || t0.Kind() != reflect.Struct { return } // write is containerMap if genUseOneFunctionForDecStructMap { x.out(fnSigPfx) x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 0) x.line("}") x.line("") } else { x.out(fnSigPfx) x.line(") codecDecodeSelfFromMapLenPrefix(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 1) x.line("}") x.line("") x.out(fnSigPfx) x.line(") codecDecodeSelfFromMapCheckBreak(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap("x", "l", reflect.ValueOf(t0).Pointer(), t0, 2) x.line("}") x.line("") } // write containerArray x.out(fnSigPfx) x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructArray("x", "l", "return", reflect.ValueOf(t0).Pointer(), t0) x.line("}") x.line("") } // used for chan, array, slice, map func (x *genRunner) xtraSM(varname string, encode bool, t reflect.Type) { if encode { x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), varname) // x.line("h.enc" + x.genMethodNameT(t) + "(" + x.genTypeName(t) + "(" + varname + "), e)") } else { x.linef("h.dec%s((*%s)(%s), d)", x.genMethodNameT(t), x.genTypeName(t), varname) // x.line("h.dec" + x.genMethodNameT(t) + "((*" + x.genTypeName(t) + ")(" + varname + "), d)") } x.ts[t] = struct{}{} } // encVar will encode a variable. // The parameter, t, is the reflect.Type of the variable itself func (x *genRunner) encVar(varname string, t reflect.Type) { var checkNil bool switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan: checkNil = true } if checkNil { x.linef("if %s == nil { r.EncodeNil() } else { ", varname) } switch t.Kind() { case reflect.Ptr: switch t.Elem().Kind() { case reflect.Struct, reflect.Array: x.enc(varname, genNonPtr(t)) default: i := x.varsfx() x.line(genTempVarPfx + i + " := *" + varname) x.enc(genTempVarPfx+i, genNonPtr(t)) } case reflect.Struct, reflect.Array: i := x.varsfx() x.line(genTempVarPfx + i + " := &" + varname) x.enc(genTempVarPfx+i, t) default: x.enc(varname, t) } if checkNil { x.line("}") } } // enc will encode a variable (varname) of type T, // except t is of kind reflect.Struct or reflect.Array, wherein varname is of type *T (to prevent copying) func (x *genRunner) enc(varname string, t reflect.Type) { // varName here must be to a pointer to a struct, or to a value directly. rtid := reflect.ValueOf(t).Pointer() // We call CodecEncodeSelf if one of the following are honored: // - the type already implements Selfer, call that // - the type has a Selfer implementation just created, use that // - the type is in the list of the ones we will generate for, but it is not currently being generated if t.Implements(selferTyp) { x.line(varname + ".CodecEncodeSelf(e)") return } if t.Kind() == reflect.Struct && reflect.PtrTo(t).Implements(selferTyp) { x.line(varname + ".CodecEncodeSelf(e)") return } if _, ok := x.te[rtid]; ok { x.line(varname + ".CodecEncodeSelf(e)") return } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if t != x.tc { x.line(varname + ".CodecEncodeSelf(e)") return } break } } var rtidAdded bool if t == x.tc { x.te[rtid] = true rtidAdded = true } switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(int64(" + varname + "))") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: x.line("r.EncodeUint(uint64(" + varname + "))") case reflect.Float32: x.line("r.EncodeFloat32(float32(" + varname + "))") case reflect.Float64: x.line("r.EncodeFloat64(float64(" + varname + "))") case reflect.Bool: x.line("r.EncodeBool(bool(" + varname + "))") case reflect.String: x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(" + varname + "))") case reflect.Chan: x.xtraSM(varname, true, t) // x.encListFallback(varname, rtid, t) case reflect.Array: x.xtraSM(varname, true, t) case reflect.Slice: // if nil, call dedicated function // if a []uint8, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if rtid == uint8SliceTypId { x.line("r.EncodeStringBytes(codecSelferC_RAW" + x.xs + ", []byte(" + varname + "))") } else if fastpathAV.index(rtid) != -1 { g := genV{Slice: true, Elem: x.genTypeName(t.Elem())} x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", false, e)") } else { x.xtraSM(varname, true, t) // x.encListFallback(varname, rtid, t) } case reflect.Map: // if nil, call dedicated function // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. // x.line("if " + varname + " == nil { \nr.EncodeNil()\n } else { ") if fastpathAV.index(rtid) != -1 { g := genV{Slice: false, Elem: x.genTypeName(t.Elem()), MapKey: x.genTypeName(t.Key())} x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", false, e)") } else { x.xtraSM(varname, true, t) // x.encMapFallback(varname, rtid, t) } case reflect.Struct: if !inlist { delete(x.te, rtid) x.line("z.EncFallback(" + varname + ")") break } x.encStruct(varname, rtid, t) default: if rtidAdded { delete(x.te, rtid) } x.line("z.EncFallback(" + varname + ")") } } func (x *genRunner) encZero(t reflect.Type) { switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(0)") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: x.line("r.EncodeUint(0)") case reflect.Float32: x.line("r.EncodeFloat32(0)") case reflect.Float64: x.line("r.EncodeFloat64(0)") case reflect.Bool: x.line("r.EncodeBool(false)") case reflect.String: x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + `, "")`) default: x.line("r.EncodeNil()") } } func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) { // Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. ) // replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it // if t === type currently running selfer on, do for all ti := getTypeInfo(rtid, t) i := x.varsfx() sepVarname := genTempVarPfx + "sep" + i firstVarname := genTempVarPfx + "first" + i numfieldsvar := genTempVarPfx + "q" + i ti2arrayvar := genTempVarPfx + "r" + i struct2arrvar := genTempVarPfx + "2arr" + i x.line(sepVarname + " := !z.EncBinary()") x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar) x.line("var " + firstVarname + " bool") tisfi := ti.sfip // always use sequence from file. decStruct expects same thing. // due to omitEmpty, we need to calculate the // number of non-empty things we write out first. // This is required as we need to pre-determine the size of the container, // to support length-prefixing. x.linef("var %s [%v]bool", numfieldsvar, len(tisfi)) x.linef("_, _, _, _ = %s, %s, %s, %s", sepVarname, firstVarname, numfieldsvar, struct2arrvar) x.linef("const %s bool = %v", ti2arrayvar, ti.toArray) nn := 0 for j, si := range tisfi { if !si.omitEmpty { nn++ continue } var t2 reflect.StructField var omitline string if si.i != -1 { t2 = t.Field(int(si.i)) } else { t2typ := t varname3 := varname for _, ix := range si.is { for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(ix) t2typ = t2.Type varname3 = varname3 + "." + t2.Name if t2typ.Kind() == reflect.Ptr { omitline += varname3 + " != nil && " } } } // never check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc. // also, for maps/slices/arrays, check if len ! 0 (not if == zero value) switch t2.Type.Kind() { case reflect.Struct: omitline += " true" case reflect.Map, reflect.Slice, reflect.Array, reflect.Chan: omitline += "len(" + varname + "." + t2.Name + ") != 0" default: omitline += varname + "." + t2.Name + " != " + genZeroValueR(t2.Type, x.tc) } x.linef("%s[%v] = %s", numfieldsvar, j, omitline) } x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray { x.line("r.EncodeArrayStart(" + strconv.FormatInt(int64(len(tisfi)), 10) + ")") x.linef("} else {") // if not ti.toArray x.linef("var %snn%s int = %v", genTempVarPfx, i, nn) x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i) x.linef("r.EncodeMapStart(%snn%s)", genTempVarPfx, i) // x.line("r.EncodeMapStart(" + strconv.FormatInt(int64(len(tisfi)), 10) + ")") x.line("}") // close if not StructToArray for j, si := range tisfi { i := x.varsfx() isNilVarName := genTempVarPfx + "n" + i var labelUsed bool var t2 reflect.StructField if si.i != -1 { t2 = t.Field(int(si.i)) } else { t2typ := t varname3 := varname for _, ix := range si.is { // fmt.Printf("%%%% %v, ix: %v\n", t2typ, ix) for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(ix) t2typ = t2.Type varname3 = varname3 + "." + t2.Name if t2typ.Kind() == reflect.Ptr { if !labelUsed { x.line("var " + isNilVarName + " bool") } x.line("if " + varname3 + " == nil { " + isNilVarName + " = true ") x.line("goto LABEL" + i) x.line("}") labelUsed = true // "varname3 = new(" + x.genTypeName(t3.Elem()) + ") }") } } // t2 = t.FieldByIndex(si.is) } if labelUsed { x.line("LABEL" + i + ":") } // if the type of the field is a Selfer, or one of the ones x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray if j > 0 { x.line("if " + sepVarname + " {") x.line("r.EncodeArrayEntrySeparator()") x.line("}") } if labelUsed { x.line("if " + isNilVarName + " { r.EncodeNil() } else { ") } if si.omitEmpty { x.linef("if %s[%v] {", numfieldsvar, j) // omitEmptyVarNameX := genTempVarPfx + "ov" + i // x.line("var " + omitEmptyVarNameX + " " + x.genTypeName(t2.Type)) // x.encVar(omitEmptyVarNameX, t2.Type) } x.encVar(varname+"."+t2.Name, t2.Type) if si.omitEmpty { x.linef("} else {") x.encZero(t2.Type) x.linef("}") } if labelUsed { x.line("}") } x.linef("} else {") // if not ti.toArray // omitEmptyVar := genTempVarPfx + "x" + i + t2.Name // x.line("const " + omitEmptyVar + " bool = " + strconv.FormatBool(si.omitEmpty)) // doOmitEmpty := si.omitEmpty && t2.Type.Kind() != reflect.Struct if si.omitEmpty { x.linef("if %s[%v] {", numfieldsvar, j) // x.linef(`println("Encoding field: %v")`, j) // x.out("if ") // if labelUsed { // x.out("!" + isNilVarName + " && ") // } // x.line(varname + "." + t2.Name + " != " + genZeroValueR(t2.Type, x.tc) + " {") } if j == 0 { x.linef("%s = true", firstVarname) } else { x.linef("if %s { r.EncodeMapEntrySeparator() } else { %s = true }", firstVarname, firstVarname) } // x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(\"" + t2.Name + "\"))") x.line("r.EncodeString(codecSelferC_UTF8" + x.xs + ", string(\"" + si.encName + "\"))") x.line("if " + sepVarname + " {") x.line("r.EncodeMapKVSeparator()") x.line("}") if labelUsed { x.line("if " + isNilVarName + " { r.EncodeNil() } else { ") x.encVar(varname+"."+t2.Name, t2.Type) x.line("}") } else { x.encVar(varname+"."+t2.Name, t2.Type) } if si.omitEmpty { x.line("}") } x.linef("} ") // end if/else ti.toArray } x.line("if " + sepVarname + " {") x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray { x.line("r.EncodeArrayEnd()") x.linef("} else {") // if not ti.toArray x.line("r.EncodeMapEnd()") x.linef("} ") // end if/else ti.toArray x.line("}") } func (x *genRunner) encListFallback(varname string, t reflect.Type) { i := x.varsfx() g := genTempVarPfx x.line("r.EncodeArrayStart(len(" + varname + "))") x.line(genTempVarPfx + "s" + i + " := !z.EncBinary()") x.line("if " + genTempVarPfx + "s" + i + " {") if t.Kind() == reflect.Chan { x.linef("for %si%s, %si2%s := 0, len(%s); %si%s < %si2%s; %si%s++ {", g, i, g, i, varname, g, i, g, i, g, i) x.linef("%sv%s := <-%s", g, i, varname) } else { x.linef("for %si%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname) } x.linef("if %si%s > 0 { r.EncodeArrayEntrySeparator() }", genTempVarPfx, i) x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("r.EncodeArrayEnd()") x.line("} else {") if t.Kind() == reflect.Chan { x.linef("for %si%s, %si2%s := 0, len(%s); %si%s < %si2%s; %si%s++ {", g, i, g, i, varname, g, i, g, i, g, i) x.linef("%sv%s := <-%s", g, i, varname) } else { x.line("for _, " + genTempVarPfx + "v" + i + " := range " + varname + " {") } x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("}") } func (x *genRunner) encMapFallback(varname string, t reflect.Type) { i := x.varsfx() x.line("r.EncodeMapStart(len(" + varname + "))") x.line(genTempVarPfx + "s" + i + " := !z.EncBinary()") x.line(genTempVarPfx + "j" + i + " := 0") x.line("if " + genTempVarPfx + "s" + i + " {") x.line("for " + genTempVarPfx + "k" + i + ", " + genTempVarPfx + "v" + i + " := range " + varname + " {") x.line("if " + genTempVarPfx + "j" + i + " > 0 { r.EncodeMapEntrySeparator() }") x.encVar(genTempVarPfx+"k"+i, t.Key()) x.line("r.EncodeMapKVSeparator()") x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line(genTempVarPfx + "j" + i + "++") x.line("}") x.line("r.EncodeMapEnd()") x.line("} else {") x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname) x.encVar(genTempVarPfx+"k"+i, t.Key()) x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("}") } func (x *genRunner) decVar(varname string, t reflect.Type, canBeNil bool) { // We only encode as nil if a nillable value. // This removes some of the wasted checks for TryDecodeAsNil. // We need to think about this more, to see what happens if omitempty, etc // cause a nil value to be stored when something is expected. // This could happen when decoding from a struct encoded as an array. // For that, decVar should be called with canNil=true, to force true as its value. i := x.varsfx() if !canBeNil { canBeNil = genAnythingCanBeNil || !genIsImmutable(t) } if canBeNil { x.line("if r.TryDecodeAsNil() {") if t.Kind() == reflect.Ptr { x.line("if " + varname + " != nil { ") // x.line("var " + genTempVarPfx + i + " " + x.genTypeName(t.Elem())) // x.line("*" + varname + " = " + genTempVarPfx + i) // if varname is a field of a struct (has a dot in it), // then just set it to nil if strings.IndexByte(varname, '.') != -1 { x.line(varname + " = nil") } else { x.line("*" + varname + " = " + genZeroValueR(t.Elem(), x.tc)) } // x.line("*" + varname + " = nil") x.line("}") } else { // x.line("var " + genTempVarPfx + i + " " + x.genTypeName(t)) // x.line(varname + " = " + genTempVarPfx + i) x.line(varname + " = " + genZeroValueR(t, x.tc)) } x.line("} else {") } else { x.line("// cannot be nil") } if t.Kind() != reflect.Ptr { if x.decTryAssignPrimitive(varname, t) { x.line(genTempVarPfx + "v" + i + " := &" + varname) x.dec(genTempVarPfx+"v"+i, t) } } else { x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem())) // Ensure we set underlying ptr to a non-nil value (so we can deref to it later). // There's a chance of a **T in here which is nil. var ptrPfx string for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() { ptrPfx += "*" x.linef("if %s%s == nil { %s%s = new(%s)}", ptrPfx, varname, ptrPfx, varname, x.genTypeName(t)) } // if varname has [ in it, then create temp variable for this ptr thingie if strings.Index(varname, "[") >= 0 { varname2 := genTempVarPfx + "w" + i x.line(varname2 + " := " + varname) varname = varname2 } if ptrPfx == "" { x.dec(varname, t) } else { x.line(genTempVarPfx + "z" + i + " := " + ptrPfx + varname) x.dec(genTempVarPfx+"z"+i, t) } } if canBeNil { x.line("} ") } } func (x *genRunner) dec(varname string, t reflect.Type) { // assumptions: // - the varname is to a pointer already. No need to take address of it rtid := reflect.ValueOf(t).Pointer() if t.Implements(selferTyp) || (t.Kind() == reflect.Struct && reflect.PtrTo(t).Implements(selferTyp)) { x.line(varname + ".CodecDecodeSelf(d)") return } if _, ok := x.td[rtid]; ok { x.line(varname + ".CodecDecodeSelf(d)") return } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if t != x.tc { x.line(varname + ".CodecDecodeSelf(d)") return } break } } var rtidAdded bool if t == x.tc { x.td[rtid] = true rtidAdded = true } // Since these are pointers, we cannot share, and have to use them one by one switch t.Kind() { case reflect.Int: x.line("*((*int)(" + varname + ")) = int(r.DecodeInt(codecSelferBitsize" + x.xs + "))") // x.line("z.DecInt((*int)(" + varname + "))") case reflect.Int8: x.line("*((*int8)(" + varname + ")) = int8(r.DecodeInt(8))") // x.line("z.DecInt8((*int8)(" + varname + "))") case reflect.Int16: x.line("*((*int16)(" + varname + ")) = int16(r.DecodeInt(16))") // x.line("z.DecInt16((*int16)(" + varname + "))") case reflect.Int32: x.line("*((*int32)(" + varname + ")) = int32(r.DecodeInt(32))") // x.line("z.DecInt32((*int32)(" + varname + "))") case reflect.Int64: x.line("*((*int64)(" + varname + ")) = int64(r.DecodeInt(64))") // x.line("z.DecInt64((*int64)(" + varname + "))") case reflect.Uint: x.line("*((*uint)(" + varname + ")) = uint(r.DecodeUint(codecSelferBitsize" + x.xs + "))") // x.line("z.DecUint((*uint)(" + varname + "))") case reflect.Uint8: x.line("*((*uint8)(" + varname + ")) = uint8(r.DecodeUint(8))") // x.line("z.DecUint8((*uint8)(" + varname + "))") case reflect.Uint16: x.line("*((*uint16)(" + varname + ")) = uint16(r.DecodeUint(16))") //x.line("z.DecUint16((*uint16)(" + varname + "))") case reflect.Uint32: x.line("*((*uint32)(" + varname + ")) = uint32(r.DecodeUint(32))") //x.line("z.DecUint32((*uint32)(" + varname + "))") case reflect.Uint64: x.line("*((*uint64)(" + varname + ")) = uint64(r.DecodeUint(64))") //x.line("z.DecUint64((*uint64)(" + varname + "))") case reflect.Float32: x.line("*((*float32)(" + varname + ")) = float32(r.DecodeFloat(true))") //x.line("z.DecFloat32((*float32)(" + varname + "))") case reflect.Float64: x.line("*((*float64)(" + varname + ")) = float64(r.DecodeFloat(false))") // x.line("z.DecFloat64((*float64)(" + varname + "))") case reflect.Bool: x.line("*((*bool)(" + varname + ")) = r.DecodeBool()") // x.line("z.DecBool((*bool)(" + varname + "))") case reflect.String: x.line("*((*string)(" + varname + ")) = r.DecodeString()") // x.line("z.DecString((*string)(" + varname + "))") case reflect.Array, reflect.Chan: x.xtraSM(varname, false, t) // x.decListFallback(varname, rtid, true, t) case reflect.Slice: // if a []uint8, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if rtid == uint8SliceTypId { x.line("*" + varname + " = r.DecodeBytes(*(*[]byte)(" + varname + "), false, false)") } else if fastpathAV.index(rtid) != -1 { g := genV{Slice: true, Elem: x.genTypeName(t.Elem())} x.line("z.F." + g.MethodNamePfx("Dec", false) + "X(" + varname + ", false, d)") // x.line("z." + g.MethodNamePfx("Dec", false) + "(" + varname + ")") // x.line(g.FastpathName(false) + "(" + varname + ", d)") } else { x.xtraSM(varname, false, t) // x.decListFallback(varname, rtid, false, t) } case reflect.Map: // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if fastpathAV.index(rtid) != -1 { g := genV{Slice: false, Elem: x.genTypeName(t.Elem()), MapKey: x.genTypeName(t.Key())} x.line("z.F." + g.MethodNamePfx("Dec", false) + "X(" + varname + ", false, d)") // x.line("z." + g.MethodNamePfx("Dec", false) + "(" + varname + ")") // x.line(g.FastpathName(false) + "(" + varname + ", d)") } else { x.xtraSM(varname, false, t) // x.decMapFallback(varname, rtid, t) } case reflect.Struct: if inlist { x.decStruct(varname, rtid, t) } else { // delete(x.td, rtid) x.line("z.DecFallback(" + varname + ", false)") } default: if rtidAdded { delete(x.te, rtid) } x.line("z.DecFallback(" + varname + ", true)") } } func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type) (tryAsPtr bool) { // We have to use the actual type name when doing a direct assignment. // We don't have the luxury of casting the pointer to the underlying type. // // Consequently, in the situation of a // type Message int32 // var x Message // var i int32 = 32 // x = i // this will bomb // x = Message(i) // this will work // *((*int32)(&x)) = i // this will work // // Consequently, we replace: // case reflect.Uint32: x.line(varname + " = uint32(r.DecodeUint(32))") // with: // case reflect.Uint32: x.line(varname + " = " + genTypeNamePrimitiveKind(t, x.tc) + "(r.DecodeUint(32))") xfn := func(t reflect.Type) string { return genTypeNamePrimitiveKind(t, x.tc) } switch t.Kind() { case reflect.Int: x.linef("%s = %s(r.DecodeInt(codecSelferBitsize%s))", varname, xfn(t), x.xs) case reflect.Int8: x.linef("%s = %s(r.DecodeInt(8))", varname, xfn(t)) case reflect.Int16: x.linef("%s = %s(r.DecodeInt(16))", varname, xfn(t)) case reflect.Int32: x.linef("%s = %s(r.DecodeInt(32))", varname, xfn(t)) case reflect.Int64: x.linef("%s = %s(r.DecodeInt(64))", varname, xfn(t)) case reflect.Uint: x.linef("%s = %s(r.DecodeUint(codecSelferBitsize%s))", varname, xfn(t), x.xs) case reflect.Uint8: x.linef("%s = %s(r.DecodeUint(8))", varname, xfn(t)) case reflect.Uint16: x.linef("%s = %s(r.DecodeUint(16))", varname, xfn(t)) case reflect.Uint32: x.linef("%s = %s(r.DecodeUint(32))", varname, xfn(t)) case reflect.Uint64: x.linef("%s = %s(r.DecodeUint(64))", varname, xfn(t)) case reflect.Float32: x.linef("%s = %s(r.DecodeFloat(true))", varname, xfn(t)) case reflect.Float64: x.linef("%s = %s(r.DecodeFloat(false))", varname, xfn(t)) case reflect.Bool: x.linef("%s = %s(r.DecodeBool())", varname, xfn(t)) case reflect.String: x.linef("%s = %s(r.DecodeString())", varname, xfn(t)) default: tryAsPtr = true } return } func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) { type tstruc struct { TempVar string Rand string Varname string CTyp string Typ string Immutable bool } telem := t.Elem() ts := tstruc{genTempVarPfx, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem)} funcs := make(template.FuncMap) funcs["decLineVar"] = func(varname string) string { x.decVar(varname, telem, false) return "" } funcs["decLine"] = func(pfx string) string { x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(telem), false) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } funcs["zero"] = func() string { return genZeroValueR(telem, x.tc) } funcs["isArray"] = func() bool { return t.Kind() == reflect.Array } funcs["isSlice"] = func() bool { return t.Kind() == reflect.Slice } funcs["isChan"] = func() bool { return t.Kind() == reflect.Chan } tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl) if err != nil { panic(err) } if err = tm.Execute(x.w, &ts); err != nil { panic(err) } } func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) { type tstruc struct { TempVar string Rand string Varname string KTyp string Typ string } telem := t.Elem() tkey := t.Key() ts := tstruc{genTempVarPfx, x.varsfx(), varname, x.genTypeName(tkey), x.genTypeName(telem)} funcs := make(template.FuncMap) funcs["decLineVarK"] = func(varname string) string { x.decVar(varname, tkey, false) return "" } funcs["decLineVar"] = func(varname string) string { x.decVar(varname, telem, false) return "" } funcs["decLineK"] = func(pfx string) string { x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(tkey), false) return "" } funcs["decLine"] = func(pfx string) string { x.decVar(ts.TempVar+pfx+ts.Rand, reflect.PtrTo(telem), false) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl) if err != nil { panic(err) } if err = tm.Execute(x.w, &ts); err != nil { panic(err) } } func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) { ti := getTypeInfo(rtid, t) tisfi := ti.sfip // always use sequence from file. decStruct expects same thing. x.line("switch (" + kName + ") {") for _, si := range tisfi { x.line("case \"" + si.encName + "\":") var t2 reflect.StructField if si.i != -1 { t2 = t.Field(int(si.i)) } else { // t2 = t.FieldByIndex(si.is) t2typ := t varname3 := varname for _, ix := range si.is { for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(ix) t2typ = t2.Type varname3 = varname3 + "." + t2.Name if t2typ.Kind() == reflect.Ptr { x.line("if " + varname3 + " == nil {" + varname3 + " = new(" + x.genTypeName(t2typ.Elem()) + ") }") } } } x.decVar(varname+"."+t2.Name, t2.Type, false) } x.line("default:") // pass the slice here, so that the string will not escape, and maybe save allocation x.line("z.DecStructFieldNotFound(-1, " + kName + ")") // x.line("z.DecStructFieldNotFoundB(" + kName + "Slc)") x.line("} // end switch " + kName) } func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type, style uint8) { tpfx := genTempVarPfx i := x.varsfx() kName := tpfx + "s" + i // We thought to use ReadStringAsBytes, as go compiler might optimize the copy out. // However, using that was more expensive, as it seems that the switch expression // is evaluated each time. // // We could depend on decodeString using a temporary/shared buffer internally. // However, this model of creating a byte array, and using explicitly is faster, // and allows optional use of unsafe []byte->string conversion without alloc. // Also, ensure that the slice array doesn't escape. // That will help escape analysis prevent allocation when it gets better. // x.line("var " + kName + "Arr = [32]byte{} // default string to decode into") // x.line("var " + kName + "Slc = " + kName + "Arr[:] // default slice to decode into") // use the scratch buffer to avoid allocation (most field names are < 32). x.line("var " + kName + "Slc = z.DecScratchBuffer() // default slice to decode into") // x.line("var " + kName + " string // default string to decode into") // x.line("_ = " + kName) x.line("_ = " + kName + "Slc") // x.linef("var %sb%s bool", tpfx, i) // break switch style { case 1: x.linef("for %sj%s := 0; %sj%s < %s; %sj%s++ {", tpfx, i, tpfx, i, lenvarname, tpfx, i) case 2: x.linef("for %sj%s := 0; !r.CheckBreak(); %sj%s++ {", tpfx, i, tpfx, i) x.linef("if %sj%s > 0 { r.ReadMapEntrySeparator() }", tpfx, i) default: // 0, otherwise. x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length x.linef("for %sj%s := 0; ; %sj%s++ {", tpfx, i, tpfx, i) x.linef("if %shl%s { if %sj%s >= %s { break }", tpfx, i, tpfx, i, lenvarname) x.linef("} else { if r.CheckBreak() { break }; if %sj%s > 0 { r.ReadMapEntrySeparator() } }", tpfx, i) } // x.line(kName + " = z.ReadStringAsBytes(" + kName + ")") // x.line(kName + " = z.ReadString()") x.line(kName + "Slc = r.DecodeBytes(" + kName + "Slc, true, true)") // let string be scoped to this loop alone, so it doesn't escape. // x.line(kName + " := " + x.cpfx + "GenBytesToStringRO(" + kName + "Slc)") if x.unsafe { x.line(kName + "SlcHdr := codecSelferUnsafeString" + x.xs + "{uintptr(unsafe.Pointer(&" + kName + "Slc[0])), len(" + kName + "Slc)}") x.line(kName + " := *(*string)(unsafe.Pointer(&" + kName + "SlcHdr))") } else { x.line(kName + " := string(" + kName + "Slc)") } switch style { case 1: case 2: x.line("r.ReadMapKVSeparator()") default: x.linef("if !%shl%s { r.ReadMapKVSeparator() }", tpfx, i) } x.decStructMapSwitch(kName, varname, rtid, t) x.line("} // end for " + tpfx + "j" + i) switch style { case 1: case 2: x.line("r.ReadMapEnd()") default: x.linef("if !%shl%s { r.ReadMapEnd() }", tpfx, i) } } func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) { tpfx := genTempVarPfx i := x.varsfx() ti := getTypeInfo(rtid, t) tisfi := ti.sfip // always use sequence from file. decStruct expects same thing. x.linef("var %sj%s int", tpfx, i) x.linef("var %sb%s bool", tpfx, i) // break // x.linef("var %sl%s := r.ReadArrayStart()", tpfx, i) x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length for j, si := range tisfi { var t2 reflect.StructField if si.i != -1 { t2 = t.Field(int(si.i)) } else { t2 = t.FieldByIndex(si.is) } x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }", tpfx, i, tpfx, i, tpfx, i, tpfx, i, lenvarname, tpfx, i) // x.line("if " + tpfx + "j" + i + "++; " + tpfx + "j" + // i + " <= " + tpfx + "l" + i + " {") x.linef("if %sb%s { r.ReadArrayEnd(); %s }", tpfx, i, breakString) if j > 0 { x.line("r.ReadArrayEntrySeparator()") } x.decVar(varname+"."+t2.Name, t2.Type, true) // x.line("} // end if " + tpfx + "j" + i + " <= " + tpfx + "l" + i) } // read remaining values and throw away. x.line("for {") x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }", tpfx, i, tpfx, i, tpfx, i, tpfx, i, lenvarname, tpfx, i) x.linef("if %sb%s { break }", tpfx, i) x.linef("if %sj%s > 1 { r.ReadArrayEntrySeparator() }", tpfx, i) x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i) x.line("}") x.line("r.ReadArrayEnd()") } func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) { // if container is map // x.line("if z.DecContainerIsMap() { ") i := x.varsfx() x.line("if r.IsContainerType(codecSelverValueTypeMap" + x.xs + ") {") x.line(genTempVarPfx + "l" + i + " := r.ReadMapStart()") x.linef("if %sl%s == 0 {", genTempVarPfx, i) x.line("r.ReadMapEnd()") if genUseOneFunctionForDecStructMap { x.line("} else { ") x.linef("x.codecDecodeSelfFromMap(%sl%s, d)", genTempVarPfx, i) } else { x.line("} else if " + genTempVarPfx + "l" + i + " > 0 { ") x.line("x.codecDecodeSelfFromMapLenPrefix(" + genTempVarPfx + "l" + i + ", d)") x.line("} else {") x.line("x.codecDecodeSelfFromMapCheckBreak(" + genTempVarPfx + "l" + i + ", d)") } x.line("}") // else if container is array // x.line("} else if z.DecContainerIsArray() { ") x.line("} else if r.IsContainerType(codecSelverValueTypeArray" + x.xs + ") {") x.line(genTempVarPfx + "l" + i + " := r.ReadArrayStart()") x.linef("if %sl%s == 0 {", genTempVarPfx, i) x.line("r.ReadArrayEnd()") x.line("} else { ") x.linef("x.codecDecodeSelfFromArray(%sl%s, d)", genTempVarPfx, i) x.line("}") // else panic x.line("} else { ") x.line("panic(codecSelferOnlyMapOrArrayEncodeToStructErr" + x.xs + ")") // x.line("panic(`only encoded map or array can be decoded into a struct`)") x.line("} ") } // -------- type genV struct { // genV is either a primitive (Primitive != "") or a slice (Slice = true) or a map. Slice bool MapKey string Elem string Primitive string } func (x *genV) MethodNamePfx(prefix string, prim bool) string { var name []byte if prefix != "" { name = append(name, prefix...) } if prim { name = append(name, genTitleCaseName(x.Primitive)...) } else { if x.Slice { name = append(name, "Slice"...) } else { name = append(name, "Map"...) name = append(name, genTitleCaseName(x.MapKey)...) } name = append(name, genTitleCaseName(x.Elem)...) } return string(name) } func genNonPtr(t reflect.Type) reflect.Type { for t.Kind() == reflect.Ptr { t = t.Elem() } return t } func genTitleCaseName(s string) string { switch s { case "interface{}": return "Intf" default: return strings.ToUpper(s[0:1]) + s[1:] } } func genTypeNamePrimitiveKind(t reflect.Type, tRef reflect.Type) (n string) { if tRef != nil && t.PkgPath() == tRef.PkgPath() && t.Name() != "" { return t.Name() } else { return t.String() // best way to get the package name inclusive } } func genTypeName(t reflect.Type, tRef reflect.Type) (n string) { // defer func() { fmt.Printf(">>>> ####: genTypeName: t: %v, name: '%s'\n", t, n) }() // if the type has a PkgPath, which doesn't match the current package, // then include it. // We cannot depend on t.String() because it includes current package, // or t.PkgPath because it includes full import path, // var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "*" t = t.Elem() } if tn := t.Name(); tn != "" { return ptrPfx + genTypeNamePrimitiveKind(t, tRef) } switch t.Kind() { case reflect.Map: return ptrPfx + "map[" + genTypeName(t.Key(), tRef) + "]" + genTypeName(t.Elem(), tRef) case reflect.Slice: return ptrPfx + "[]" + genTypeName(t.Elem(), tRef) case reflect.Array: return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + genTypeName(t.Elem(), tRef) case reflect.Chan: return ptrPfx + t.ChanDir().String() + " " + genTypeName(t.Elem(), tRef) default: if t == intfTyp { return ptrPfx + "interface{}" } else { return ptrPfx + genTypeNamePrimitiveKind(t, tRef) } } } func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) { var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "Ptrto" t = t.Elem() } if tn := t.Name(); tn != "" { if tRef != nil && t.PkgPath() == tRef.PkgPath() { return ptrPfx + tn } else { tstr := t.String() if genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } switch t.Kind() { case reflect.Map: return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef) case reflect.Slice: return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef) case reflect.Array: return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef) case reflect.Chan: var cx string switch t.ChanDir() { case reflect.SendDir: cx = "ChanSend" case reflect.RecvDir: cx = "ChanRecv" default: cx = "Chan" } return ptrPfx + cx + genMethodNameT(t.Elem(), tRef) default: if t == intfTyp { return ptrPfx + "Interface" } else { if tRef != nil && t.PkgPath() == tRef.PkgPath() { if t.Name() != "" { return ptrPfx + t.Name() } else { return ptrPfx + genCustomTypeName(t.String()) } } else { // best way to get the package name inclusive // return ptrPfx + strings.Replace(t.String(), ".", "_", 1000) // return ptrPfx + genBase64enc.EncodeToString([]byte(t.String())) tstr := t.String() if t.Name() != "" && genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } } } // genCustomNameForType base64encodes the t.String() value in such a way // that it can be used within a function name. func genCustomTypeName(tstr string) string { len2 := genBase64enc.EncodedLen(len(tstr)) bufx := make([]byte, len2) genBase64enc.Encode(bufx, []byte(tstr)) for i := len2 - 1; i >= 0; i-- { if bufx[i] == '=' { len2-- } else { break } } return string(bufx[:len2]) } func genIsImmutable(t reflect.Type) (v bool) { return isMutableKind(t.Kind()) } func genZeroValueR(t reflect.Type, tRef reflect.Type) string { // if t is a named type, w switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func, reflect.Slice, reflect.Map, reflect.Invalid: return "nil" case reflect.Bool: return "false" case reflect.String: return `""` case reflect.Struct, reflect.Array: return genTypeName(t, tRef) + "{}" default: // all numbers return "0" } } type genInternal struct { Values []genV Unsafe bool } func (x genInternal) FastpathLen() (l int) { for _, v := range x.Values { if v.Primitive == "" { l++ } } return } func genInternalZeroValue(s string) string { switch s { case "interface{}": return "nil" case "bool": return "false" case "string": return `""` default: return "0" } } func genInternalEncCommandAsString(s string, vname string) string { switch s { case "uint", "uint8", "uint16", "uint32", "uint64": return "ee.EncodeUint(uint64(" + vname + "))" case "int", "int8", "int16", "int32", "int64": return "ee.EncodeInt(int64(" + vname + "))" case "string": return "ee.EncodeString(c_UTF8, " + vname + ")" case "float32": return "ee.EncodeFloat32(" + vname + ")" case "float64": return "ee.EncodeFloat64(" + vname + ")" case "bool": return "ee.EncodeBool(" + vname + ")" case "symbol": return "ee.EncodeSymbol(" + vname + ")" default: return "e.encode(" + vname + ")" } } func genInternalDecCommandAsString(s string) string { switch s { case "uint": return "uint(dd.DecodeUint(uintBitsize))" case "uint8": return "uint8(dd.DecodeUint(8))" case "uint16": return "uint16(dd.DecodeUint(16))" case "uint32": return "uint32(dd.DecodeUint(32))" case "uint64": return "dd.DecodeUint(64)" case "int": return "int(dd.DecodeInt(intBitsize))" case "int8": return "int8(dd.DecodeInt(8))" case "int16": return "int16(dd.DecodeInt(16))" case "int32": return "int32(dd.DecodeInt(32))" case "int64": return "dd.DecodeInt(64)" case "string": return "dd.DecodeString()" case "float32": return "float32(dd.DecodeFloat(true))" case "float64": return "dd.DecodeFloat(false)" case "bool": return "dd.DecodeBool()" default: panic(errors.New("unknown type for decode: " + s)) } } // var genInternalMu sync.Mutex var genInternalV genInternal var genInternalTmplFuncs template.FuncMap var genInternalOnce sync.Once func genInternalInit() { types := [...]string{ "interface{}", "string", "float32", "float64", "uint", "uint8", "uint16", "uint32", "uint64", "int", "int8", "int16", "int32", "int64", "bool", } // keep as slice, so it is in specific iteration order. // Initial order was uint64, string, interface{}, int, int64 mapvaltypes := [...]string{ "interface{}", "string", "uint", "uint8", "uint16", "uint32", "uint64", "int", "int8", "int16", "int32", "int64", "float32", "float64", "bool", } mapvaltypes2 := make(map[string]bool) for _, s := range mapvaltypes { mapvaltypes2[s] = true } var gt genInternal // For each slice or map type, there must be a (symetrical) Encode and Decode fast-path function for _, s := range types { gt.Values = append(gt.Values, genV{false, "", "", s}) if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already. gt.Values = append(gt.Values, genV{true, "", s, ""}) } if !mapvaltypes2[s] { gt.Values = append(gt.Values, genV{false, s, s, ""}) } for _, ms := range mapvaltypes { gt.Values = append(gt.Values, genV{false, s, ms, ""}) } } funcs := make(template.FuncMap) // funcs["haspfx"] = strings.HasPrefix funcs["encmd"] = genInternalEncCommandAsString funcs["decmd"] = genInternalDecCommandAsString funcs["zerocmd"] = genInternalZeroValue genInternalV = gt genInternalTmplFuncs = funcs } // GenInternalGoFile is used to generate source files from templates. // It is run by the program author alone. // Unfortunately, it has to be exported so that it can be called from a command line tool. // *** DO NOT USE *** func GenInternalGoFile(r io.Reader, w io.Writer, safe bool) (err error) { genInternalOnce.Do(genInternalInit) gt := genInternalV gt.Unsafe = !safe t := template.New("").Funcs(genInternalTmplFuncs) tmplstr, err := ioutil.ReadAll(r) if err != nil { return } if t, err = t.Parse(string(tmplstr)); err != nil { return } var out bytes.Buffer err = t.Execute(&out, gt) if err != nil { return } bout, err := format.Source(out.Bytes()) if err != nil { w.Write(out.Bytes()) // write out if error, so we can still see. // w.Write(bout) // write out if error, as much as possible, so we can still see. return } w.Write(bout) return }