mirror of https://github.com/spf13/viper.git
308 lines
10 KiB
Markdown
308 lines
10 KiB
Markdown
viper [![Build Status](https://travis-ci.org/spf13/viper.svg)](https://travis-ci.org/spf13/viper)
|
||
=====
|
||
|
||
Go configuration with fangs
|
||
|
||
## What is Viper?
|
||
|
||
Viper is a complete configuration solution for go applications. It has
|
||
been designed to work within an application to handle all types of
|
||
configuration. It supports
|
||
|
||
* setting defaults
|
||
* reading from json, toml and yaml config files
|
||
* reading from environment variables
|
||
* reading from remote config systems (Etcd or Consul)
|
||
* reading from command line flags
|
||
* setting explicit values
|
||
|
||
It can be thought of as a registry for all of your applications
|
||
configuration needs.
|
||
|
||
## Why Viper?
|
||
|
||
When building a modern application, you don’t want to have to worry about
|
||
configuration file formats; you want to focus on building awesome software.
|
||
Viper is here to help with that.
|
||
|
||
Viper does the following for you:
|
||
|
||
1. Find, load and marshal a configuration file in JSON, TOML or YAML.
|
||
2. Provide a mechanism to set default values for your different
|
||
configuration options.
|
||
3. Provide a mechanism to set override values for options specified
|
||
through command line flags.
|
||
4. Provide an alias system to easily rename parameters without breaking
|
||
existing code.
|
||
5. Make it easy to tell the difference between when a user has provided
|
||
a command line or config file which is the same as the default.
|
||
|
||
Viper uses the following precedence order. Each item takes precedence
|
||
over the item below it:
|
||
|
||
* explicit call to Set
|
||
* flag
|
||
* env
|
||
* config
|
||
* key/value store
|
||
* default
|
||
|
||
Viper configuration keys are case insensitive.
|
||
|
||
## Putting Values into Viper
|
||
|
||
### Establishing Defaults
|
||
|
||
A good configuration system will support default values. A default value
|
||
is not required for a key, but can establish a default to be used in the
|
||
event that the key hasn’t be set via config file, environment variable,
|
||
remote configuration or flag.
|
||
|
||
Examples:
|
||
|
||
viper.SetDefault("ContentDir", "content")
|
||
viper.SetDefault("LayoutDir", "layouts")
|
||
viper.SetDefault("Taxonomies", map[string]string{"tag": "tags", "category": "categories"})
|
||
|
||
### Reading Config Files
|
||
|
||
If you want to support a config file, Viper requires a minimal
|
||
configuration so it knows where to look for the config file. Viper
|
||
supports json, toml and yaml files. Viper can search multiple paths, but
|
||
currently a single viper only supports a single config file.
|
||
|
||
viper.SetConfigName("config") // name of config file (without extension)
|
||
viper.AddConfigPath("/etc/appname/") // path to look for the config file in
|
||
viper.AddConfigPath("$HOME/.appname") // call multiple times to add many search paths
|
||
viper.ReadInConfig() // Find and read the config file
|
||
|
||
### Setting Overrides
|
||
|
||
These could be from a command line flag, or from your own application logic.
|
||
|
||
viper.Set("Verbose", true)
|
||
viper.Set("LogFile", LogFile)
|
||
|
||
### Registering and Using Aliases
|
||
|
||
Aliases permit a single value to be referenced by multiple keys
|
||
|
||
viper.RegisterAlias("loud", "Verbose")
|
||
|
||
viper.Set("verbose", true) // same result as next line
|
||
viper.Set("loud", true) // same result as prior line
|
||
|
||
viper.GetBool("loud") // true
|
||
viper.GetBool("verbose") // true
|
||
|
||
### Working with Environment Variables
|
||
|
||
Viper has full support for environment variables. This enables 12 factor
|
||
applications out of the box. There are four methods that exist to aid
|
||
with working with ENV:
|
||
|
||
* AutomaticEnv()
|
||
* BindEnv(string...) : error
|
||
* SetEnvPrefix(string)
|
||
* SetEnvReplacer(string...) *strings.Replacer
|
||
|
||
_When working with ENV variables, it’s important to recognize that Viper
|
||
treats ENV variables as case sensitive._
|
||
|
||
Viper provides a mechanism to try to ensure that ENV variables are
|
||
unique. By using SetEnvPrefix, you can tell Viper to use add a prefix
|
||
while reading from the environment variables. Both BindEnv and
|
||
AutomaticEnv will use this prefix.
|
||
|
||
BindEnv takes one or two parameters. The first parameter is the key
|
||
name, the second is the name of the environment variable. The name of
|
||
the environment variable is case sensitive. If the ENV variable name is
|
||
not provided, then Viper will automatically assume that the key name
|
||
matches the ENV variable name but the ENV variable is IN ALL CAPS. When
|
||
you explicitly provide the ENV variable name, it **does not**
|
||
automatically add the prefix.
|
||
|
||
One important thing to recognize when working with ENV variables is that
|
||
the value will be read each time it is accessed. It does not fix the
|
||
value when the BindEnv is called.
|
||
|
||
AutomaticEnv is a powerful helper especially when combined with
|
||
SetEnvPrefix. When called, Viper will check for an environment variable
|
||
any time a viper.Get request is made. It will apply the following rules.
|
||
It will check for a environment variable with a name matching the key
|
||
uppercased and prefixed with the EnvPrefix if set.
|
||
|
||
SetEnvReplacer allows you to use a `strings.Replacer` object to rewrite Env keys
|
||
to an extent. This is useful if you want to use `-` or something in your Get()
|
||
calls, but want your environmental variables to use `_` delimiters. An example
|
||
of using it can be found in `viper_test.go`.
|
||
|
||
#### Env example
|
||
|
||
SetEnvPrefix("spf") // will be uppercased automatically
|
||
BindEnv("id")
|
||
|
||
os.Setenv("SPF_ID", "13") // typically done outside of the app
|
||
|
||
id := Get("id")) // 13
|
||
|
||
|
||
### Working with Flags
|
||
|
||
Viper has the ability to bind to flags. Specifically, Viper supports
|
||
Pflags as used in the [Cobra](https://github.com/spf13/cobra) library.
|
||
|
||
Like BindEnv, the value is not set when the binding method is called, but
|
||
when it is accessed. This means you can bind as early as you want, even
|
||
in an init() function.
|
||
|
||
The BindPFlag() method provides this functionality.
|
||
|
||
Example:
|
||
|
||
serverCmd.Flags().Int("port", 1138, "Port to run Application server on")
|
||
viper.BindPFlag("port", serverCmd.Flags().Lookup("port"))
|
||
|
||
|
||
### Remote Key/Value Store Support
|
||
Viper will read a config string (as JSON, TOML, or YAML) retrieved from a
|
||
path in a Key/Value store such as Etcd or Consul. These values take precedence
|
||
over default values, but are overriden by configuration values retrieved from disk,
|
||
flags, or environment variables.
|
||
|
||
Viper uses [crypt](https://github.com/xordataexchange/crypt) to retrieve configuration
|
||
from the K/V store, which means that you can store your configuration values
|
||
encrypted and have them automatically decrypted if you have the correct
|
||
gpg keyring. Encryption is optional.
|
||
|
||
You can use remote configuration in conjunction with local configuration, or
|
||
independently of it.
|
||
|
||
`crypt` has a command-line helper that you can use to put configurations
|
||
in your K/V store. `crypt` defaults to etcd on http://127.0.0.1:4001.
|
||
|
||
go get github.com/xordataexchange/crypt/bin/crypt
|
||
crypt set -plaintext /config/hugo.json /Users/hugo/settings/config.json
|
||
|
||
Confirm that your value was set:
|
||
|
||
crypt get -plaintext /config/hugo.json
|
||
|
||
See the `crypt` documentation for examples of how to set encrypted values, or how
|
||
to use Consul.
|
||
|
||
### Remote Key/Value Store Example - Unencrypted
|
||
|
||
viper.AddRemoteProvider("etcd", "http://127.0.0.1:4001","/config/hugo.json")
|
||
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
|
||
err := viper.ReadRemoteConfig()
|
||
|
||
### Remote Key/Value Store Example - Encrypted
|
||
|
||
viper.AddSecureRemoteProvider("etcd","http://127.0.0.1:4001","/config/hugo.json","/etc/secrets/mykeyring.gpg")
|
||
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
|
||
err := viper.ReadRemoteConfig()
|
||
|
||
|
||
## Getting Values From Viper
|
||
|
||
In Viper, there are a few ways to get a value depending on what type of value you want to retrieved.
|
||
The following functions and methods exist:
|
||
|
||
* Get(key string) : interface{}
|
||
* GetBool(key string) : bool
|
||
* GetFloat64(key string) : float64
|
||
* GetInt(key string) : int
|
||
* GetString(key string) : string
|
||
* GetStringMap(key string) : map[string]interface{}
|
||
* GetStringMapString(key string) : map[string]string
|
||
* GetStringSlice(key string) : []string
|
||
* GetTime(key string) : time.Time
|
||
* GetDuration(key string) : time.Duration
|
||
* IsSet(key string) : bool
|
||
|
||
One important thing to recognize is that each Get function will return
|
||
its zero value if it’s not found. To check if a given key exists, the IsSet()
|
||
method has been provided.
|
||
|
||
Example:
|
||
|
||
viper.GetString("logfile") // case-insensitive Setting & Getting
|
||
if viper.GetBool("verbose") {
|
||
fmt.Println("verbose enabled")
|
||
}
|
||
|
||
### Marshaling
|
||
|
||
You also have the option of Marshaling all or a specific value to a struct, map, etc.
|
||
|
||
There are two methods to do this:
|
||
|
||
* Marshal(rawVal interface{}) : error
|
||
* MarshalKey(key string, rawVal interface{}) : error
|
||
|
||
Example:
|
||
|
||
type config struct {
|
||
Port int
|
||
Name string
|
||
}
|
||
|
||
var C config
|
||
|
||
err := Marshal(&C)
|
||
if err != nil {
|
||
t.Fatalf("unable to decode into struct, %v", err)
|
||
}
|
||
|
||
|
||
## Viper or Vipers?
|
||
|
||
Viper comes ready to use out of the box. There is no configuration or
|
||
initialization needed to begin using Viper. Since most applications will
|
||
want to use a single central repository for their configuration, the
|
||
viper package provides this. It is similar to a singleton.
|
||
|
||
In all of the examples above, they demonstrate using viper in its
|
||
singleton style approach.
|
||
|
||
### Working with multiple vipers
|
||
|
||
You can also create many different vipers for use in your application.
|
||
Each will have it’s own unique set of configurations and values. Each
|
||
can read from a different config file, key value store, etc. All of the
|
||
functions that viper package supports are mirrored as methods on a viper.
|
||
|
||
Example:
|
||
|
||
x := viper.New()
|
||
y := viper.New()
|
||
|
||
x.SetDefault("ContentDir", "content")
|
||
y.SetDefault("ContentDir", "foobar")
|
||
|
||
...
|
||
|
||
When working with multiple vipers, it is up to the user to keep track of
|
||
the different vipers.
|
||
|
||
## Q & A
|
||
|
||
Q: Why not INI files?
|
||
|
||
A: Ini files are pretty awful. There’s no standard format, and they are hard to
|
||
validate. Viper is designed to work with JSON, TOML or YAML files. If someone
|
||
really wants to add this feature, I’d be happy to merge it. It’s easy to
|
||
specify which formats your application will permit.
|
||
|
||
Q: Why is it called “Viper”?
|
||
|
||
A: Viper is designed to be a [companion](http://en.wikipedia.org/wiki/Viper_(G.I._Joe)) to
|
||
[Cobra](https://github.com/spf13/cobra). While both can operate completely
|
||
independently, together they make a powerful pair to handle much of your
|
||
application foundation needs.
|
||
|
||
Q: Why is it called “Cobra”?
|
||
|
||
A: Is there a better name for a [commander](http://en.wikipedia.org/wiki/Cobra_Commander)?
|