tile38/internal/collection/collection.go

618 lines
14 KiB
Go

package collection
import (
"runtime"
"github.com/tidwall/btree"
"github.com/tidwall/geojson"
"github.com/tidwall/geojson/geometry"
"github.com/tidwall/rtree"
"github.com/tidwall/tile38/internal/deadline"
"github.com/tidwall/tile38/internal/field"
"github.com/tidwall/tile38/internal/object"
)
// yieldStep forces the iterator to yield goroutine every 256 steps.
const yieldStep = 256
// Cursor allows for quickly paging through Scan, Within, Intersects, and Nearby
type Cursor interface {
Offset() uint64
Step(count uint64)
}
func byID(a, b *object.Object) bool {
return a.ID() < b.ID()
}
func byValue(a, b *object.Object) bool {
value1 := a.String()
value2 := b.String()
if value1 < value2 {
return true
}
if value1 > value2 {
return false
}
// the values match so we'll compare IDs, which are always unique.
return byID(a, b)
}
func byExpires(a, b *object.Object) bool {
if a.Expires() < b.Expires() {
return true
}
if a.Expires() > b.Expires() {
return false
}
// the values match so we'll compare IDs, which are always unique.
return byID(a, b)
}
// Collection represents a collection of geojson objects.
type Collection struct {
items *btree.BTreeG[*object.Object] // sorted by id
spatial *rtree.RTreeGN[float32, *object.Object] // geospatially indexed
values *btree.BTreeG[*object.Object] // sorted by value+id
expires *btree.BTreeG[*object.Object] // sorted by ex+id
weight int
points int
objects int // geometry count
nobjects int // non-geometry count
}
var optsNoLock = btree.Options{NoLocks: true}
// New creates an empty collection
func New() *Collection {
col := &Collection{
items: btree.NewBTreeGOptions(byID, optsNoLock),
values: btree.NewBTreeGOptions(byValue, optsNoLock),
expires: btree.NewBTreeGOptions(byExpires, optsNoLock),
spatial: &rtree.RTreeGN[float32, *object.Object]{},
}
return col
}
// Count returns the number of objects in collection.
func (c *Collection) Count() int {
return c.objects + c.nobjects
}
// StringCount returns the number of string values.
func (c *Collection) StringCount() int {
return c.nobjects
}
// PointCount returns the number of points (lat/lon coordinates) in collection.
func (c *Collection) PointCount() int {
return c.points
}
// TotalWeight calculates the in-memory cost of the collection in bytes.
func (c *Collection) TotalWeight() int {
return c.weight
}
// Bounds returns the bounds of all the items in the collection.
func (c *Collection) Bounds() (minX, minY, maxX, maxY float64) {
_, _, left := c.spatial.LeftMost()
_, _, bottom := c.spatial.BottomMost()
_, _, right := c.spatial.RightMost()
_, _, top := c.spatial.TopMost()
if left == nil {
return
}
return left.Rect().Min.X, bottom.Rect().Min.Y,
right.Rect().Max.X, top.Rect().Max.Y
}
func (c *Collection) indexDelete(item *object.Object) {
if !item.Geo().Empty() {
c.spatial.Delete(rtreeItem(item))
}
}
func (c *Collection) indexInsert(item *object.Object) {
if !item.Geo().Empty() {
c.spatial.Insert(rtreeItem(item))
}
}
const dRNDTOWARDS = (1.0 - 1.0/8388608.0) /* Round towards zero */
const dRNDAWAY = (1.0 + 1.0/8388608.0) /* Round away from zero */
func rtreeValueDown(d float64) float32 {
f := float32(d)
if float64(f) > d {
if d < 0 {
f = float32(d * dRNDAWAY)
} else {
f = float32(d * dRNDTOWARDS)
}
}
return f
}
func rtreeValueUp(d float64) float32 {
f := float32(d)
if float64(f) < d {
if d < 0 {
f = float32(d * dRNDTOWARDS)
} else {
f = float32(d * dRNDAWAY)
}
}
return f
}
func rtreeItem(item *object.Object) (min, max [2]float32, data *object.Object) {
min, max = rtreeRect(item.Rect())
return min, max, item
}
func rtreeRect(rect geometry.Rect) (min, max [2]float32) {
return [2]float32{
rtreeValueDown(rect.Min.X),
rtreeValueDown(rect.Min.Y),
}, [2]float32{
rtreeValueUp(rect.Max.X),
rtreeValueUp(rect.Max.Y),
}
}
// Set adds or replaces an object in the collection and returns the fields
// array.
func (c *Collection) Set(obj *object.Object) (prev *object.Object) {
prev, _ = c.items.Set(obj)
if prev != nil {
if prev.IsSpatial() {
c.indexDelete(prev)
c.objects--
} else {
c.values.Delete(prev)
c.nobjects--
}
if prev.Expires() != 0 {
c.expires.Delete(prev)
}
c.points -= prev.Geo().NumPoints()
c.weight -= prev.Weight()
}
if obj.IsSpatial() {
c.indexInsert(obj)
c.objects++
} else {
c.values.Set(obj)
c.nobjects++
}
if obj.Expires() != 0 {
c.expires.Set(obj)
}
c.points += obj.Geo().NumPoints()
c.weight += obj.Weight()
return prev
}
// Delete removes an object and returns it.
// If the object does not exist then the 'ok' return value will be false.
func (c *Collection) Delete(id string) (prev *object.Object) {
key := object.New(id, nil, 0, field.List{})
prev, _ = c.items.Delete(key)
if prev == nil {
return nil
}
if prev.IsSpatial() {
if !prev.Geo().Empty() {
c.indexDelete(prev)
}
c.objects--
} else {
c.values.Delete(prev)
c.nobjects--
}
if prev.Expires() != 0 {
c.expires.Delete(prev)
}
c.points -= prev.Geo().NumPoints()
c.weight -= prev.Weight()
return prev
}
// Get returns an object.
// If the object does not exist then the 'ok' return value will be false.
func (c *Collection) Get(id string) *object.Object {
key := object.New(id, nil, 0, field.List{})
obj, _ := c.items.Get(key)
return obj
}
// Scan iterates though the collection ids.
func (c *Collection) Scan(
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(obj *object.Object) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(obj *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
keepon = iterator(obj)
return keepon
}
if desc {
c.items.Reverse(iter)
} else {
c.items.Scan(iter)
}
return keepon
}
// ScanRange iterates though the collection starting with specified id.
func (c *Collection) ScanRange(
start, end string,
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(o *object.Object) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if !desc {
if o.ID() >= end {
return false
}
} else {
if o.ID() <= end {
return false
}
}
keepon = iterator(o)
return keepon
}
pstart := object.New(start, nil, 0, field.List{})
if desc {
c.items.Descend(pstart, iter)
} else {
c.items.Ascend(pstart, iter)
}
return keepon
}
// SearchValues iterates though the collection values.
func (c *Collection) SearchValues(
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(o *object.Object) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
keepon = iterator(o)
return keepon
}
if desc {
c.values.Reverse(iter)
} else {
c.values.Scan(iter)
}
return keepon
}
// SearchValuesRange iterates though the collection values.
func (c *Collection) SearchValuesRange(start, end string, desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(o *object.Object) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
keepon = iterator(o)
return keepon
}
pstart := object.New("", String(start), 0, field.List{})
pend := object.New("", String(end), 0, field.List{})
if desc {
// descend range
c.values.Descend(pstart, func(item *object.Object) bool {
return bGT(c.values, item, pend) && iter(item)
})
} else {
c.values.Ascend(pstart, func(item *object.Object) bool {
return bLT(c.values, item, pend) && iter(item)
})
}
return keepon
}
func bLT(tr *btree.BTreeG[*object.Object], a, b *object.Object) bool { return tr.Less(a, b) }
func bGT(tr *btree.BTreeG[*object.Object], a, b *object.Object) bool { return tr.Less(b, a) }
// ScanGreaterOrEqual iterates though the collection starting with specified id.
func (c *Collection) ScanGreaterOrEqual(id string, desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(o *object.Object) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
keepon = iterator(o)
return keepon
}
pstart := object.New(id, nil, 0, field.List{})
if desc {
c.items.Descend(pstart, iter)
} else {
c.items.Ascend(pstart, iter)
}
return keepon
}
func (c *Collection) geoSearch(
rect geometry.Rect,
iter func(o *object.Object) bool,
) bool {
alive := true
min, max := rtreeRect(rect)
c.spatial.Search(
min, max,
func(_, _ [2]float32, o *object.Object) bool {
alive = iter(o)
return alive
},
)
return alive
}
func (c *Collection) geoSparse(
obj geojson.Object, sparse uint8,
iter func(o *object.Object) (match, ok bool),
) bool {
matches := make(map[string]bool)
alive := true
c.geoSparseInner(obj.Rect(), sparse, func(o *object.Object) (match, ok bool) {
ok = true
if !matches[o.ID()] {
match, ok = iter(o)
if match {
matches[o.ID()] = true
}
}
return match, ok
})
return alive
}
func (c *Collection) geoSparseInner(
rect geometry.Rect, sparse uint8,
iter func(o *object.Object) (match, ok bool),
) bool {
if sparse > 0 {
w := rect.Max.X - rect.Min.X
h := rect.Max.Y - rect.Min.Y
quads := [4]geometry.Rect{
{
Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y + h/2},
Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Max.Y},
},
{
Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2},
Max: geometry.Point{X: rect.Max.X, Y: rect.Max.Y},
},
{
Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y},
Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2},
},
{
Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y},
Max: geometry.Point{X: rect.Max.X, Y: rect.Min.Y + h/2},
},
}
for _, quad := range quads {
if !c.geoSparseInner(quad, sparse-1, iter) {
return false
}
}
return true
}
alive := true
c.geoSearch(rect, func(o *object.Object) bool {
match, ok := iter(o)
if !ok {
alive = false
return false
}
return !match
})
return alive
}
// Within returns all object that are fully contained within an object or
// bounding box. Set obj to nil in order to use the bounding box.
func (c *Collection) Within(
obj geojson.Object,
sparse uint8,
cursor Cursor,
deadline *deadline.Deadline,
iter func(o *object.Object) bool,
) bool {
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
if sparse > 0 {
return c.geoSparse(obj, sparse, func(o *object.Object) (match, ok bool) {
count++
if count <= offset {
return false, true
}
nextStep(count, cursor, deadline)
if match = o.Geo().Within(obj); match {
ok = iter(o)
}
return match, ok
})
}
return c.geoSearch(obj.Rect(), func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if o.Geo().Within(obj) {
return iter(o)
}
return true
})
}
// Intersects returns all object that are intersect an object or bounding box.
// Set obj to nil in order to use the bounding box.
func (c *Collection) Intersects(
gobj geojson.Object,
sparse uint8,
cursor Cursor,
deadline *deadline.Deadline,
iter func(o *object.Object) bool,
) bool {
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
if sparse > 0 {
return c.geoSparse(gobj, sparse, func(o *object.Object) (match, ok bool) {
count++
if count <= offset {
return false, true
}
nextStep(count, cursor, deadline)
if match = o.Geo().Intersects(gobj); match {
ok = iter(o)
}
return match, ok
})
}
return c.geoSearch(gobj.Rect(), func(o *object.Object) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if o.Geo().Intersects(gobj) {
return iter(o)
}
return true
},
)
}
// Nearby returns the nearest neighbors
func (c *Collection) Nearby(
target geojson.Object,
cursor Cursor,
deadline *deadline.Deadline,
iter func(o *object.Object, dist float64) bool,
) bool {
alive := true
center := target.Center()
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
distFn := geodeticDistAlgo([2]float64{center.X, center.Y})
c.spatial.Nearby(
func(min, max [2]float32, data *object.Object, item bool) float64 {
return distFn(
[2]float64{float64(min[0]), float64(min[1])},
[2]float64{float64(max[0]), float64(max[1])},
data, item,
)
},
func(_, _ [2]float32, o *object.Object, dist float64) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
alive = iter(o, dist)
return alive
},
)
return alive
}
func nextStep(step uint64, cursor Cursor, deadline *deadline.Deadline) {
if step&(yieldStep-1) == (yieldStep - 1) {
runtime.Gosched()
deadline.Check()
}
if cursor != nil {
cursor.Step(1)
}
}
// ScanExpires returns a list of all objects that have expired.
func (c *Collection) ScanExpires(iter func(o *object.Object) bool) {
c.expires.Scan(iter)
}