mirror of https://github.com/tidwall/tile38.git
5.1 KiB
5.1 KiB
btree
An efficient B-tree implementation in Go.
Installing
To start using btree, install Go and run go get
:
$ go get -u github.com/tidwall/btree
Usage
package main
import (
"fmt"
"github.com/tidwall/btree"
)
type Item struct {
Key, Val string
}
// byKeys is a comparison function that compares item keys and returns true
// when a is less than b.
func byKeys(a, b interface{}) bool {
i1, i2 := a.(*Item), b.(*Item)
return i1.Key < i2.Key
}
// byVals is a comparison function that compares item values and returns true
// when a is less than b.
func byVals(a, b interface{}) bool {
i1, i2 := a.(*Item), b.(*Item)
if i1.Val < i2.Val {
return true
}
if i1.Val > i2.Val {
return false
}
// Both vals are equal so we should fall though
// and let the key comparison take over.
return byKeys(a, b)
}
func main() {
// Create a tree for keys and a tree for values.
// The "keys" tree will be sorted on the Keys field.
// The "values" tree will be sorted on the Values field.
keys := btree.New(byKeys)
vals := btree.New(byVals)
// Create some items.
users := []*Item{
&Item{Key: "user:1", Val: "Jane"},
&Item{Key: "user:2", Val: "Andy"},
&Item{Key: "user:3", Val: "Steve"},
&Item{Key: "user:4", Val: "Andrea"},
&Item{Key: "user:5", Val: "Janet"},
&Item{Key: "user:6", Val: "Andy"},
}
// Insert each user into both trees
for _, user := range users {
keys.Set(user)
vals.Set(user)
}
// Iterate over each user in the key tree
keys.Ascend(nil, func(item interface{}) bool {
kvi := item.(*Item)
fmt.Printf("%s %s\n", kvi.Key, kvi.Val)
return true
})
fmt.Printf("\n")
// Iterate over each user in the val tree
vals.Ascend(nil, func(item interface{}) bool {
kvi := item.(*Item)
fmt.Printf("%s %s\n", kvi.Key, kvi.Val)
return true
})
// Output:
// user:1 Jane
// user:2 Andy
// user:3 Steve
// user:4 Andrea
// user:5 Janet
// user:6 Andy
//
// user:4 Andrea
// user:2 Andy
// user:6 Andy
// user:1 Jane
// user:5 Janet
// user:3 Steve
}
Operations
Basic
Len() # return the number of items in the btree
Set(item) # insert or replace an existing item
Get(item) # get an existing item
Delete(item) # delete an item
Iteration
Ascend(pivot, iter) # scan items in ascending order starting at pivot.
Descend(pivot, iter) # scan items in descending order starting at pivot.
Queues
Min() # return the first item in the btree
Max() # return the last item in the btree
PopMin() # remove and return the first item in the btree
PopMax() # remove and return the last item in the btree
Bulk loading
Load(item) # load presorted items into tree
Path hints
SetHint(item, *hint) # insert or replace an existing item
GetHint(item, *hint) # get an existing item
DeleteHint(item, *hint) # delete an item
Performance
This implementation was designed with performance in mind.
The following benchmarks were run on my 2019 Macbook Pro (2.4 GHz 8-Core Intel Core i9) using Go 1.15.3. The items are simple 8-byte ints.
tidwall
: The tidwall/btree packagegoogle
: The google/btree packagego-arr
: Just a simple Go array
** sequential set **
tidwall: set-seq 1,000,000 ops in 143ms, 6,996,275/sec, 142 ns/op, 30.9 MB, 32 bytes/op
tidwall: set-seq-hint 1,000,000 ops in 65ms, 15,441,082/sec, 64 ns/op, 30.9 MB, 32 bytes/op
tidwall: load-seq 1,000,000 ops in 19ms, 53,242,398/sec, 18 ns/op, 30.9 MB, 32 bytes/op
google: set-seq 1,000,000 ops in 175ms, 5,700,922/sec, 175 ns/op, 33.1 MB, 34 bytes/op
go-arr: append 1,000,000 ops in 52ms, 19,153,714/sec, 52 ns/op, 41.3 MB, 43 bytes/op
** random set **
tidwall: set-rand 1,000,000 ops in 589ms, 1,697,471/sec, 589 ns/op, 22.5 MB, 23 bytes/op
tidwall: set-rand-hint 1,000,000 ops in 592ms, 1,688,184/sec, 592 ns/op, 22.2 MB, 23 bytes/op
tidwall: load-rand 1,000,000 ops in 578ms, 1,728,932/sec, 578 ns/op, 22.3 MB, 23 bytes/op
google: set-rand 1,000,000 ops in 662ms, 1,509,924/sec, 662 ns/op, 32.1 MB, 33 bytes/op
** sequential get **
tidwall: get-seq 1,000,000 ops in 111ms, 8,995,090/sec, 111 ns/op
tidwall: get-seq-hint 1,000,000 ops in 56ms, 18,017,397/sec, 55 ns/op
google: get-seq 1,000,000 ops in 135ms, 7,414,046/sec, 134 ns/op
** random get **
tidwall: get-rand 1,000,000 ops in 139ms, 7,214,017/sec, 138 ns/op
tidwall: get-rand-hint 1,000,000 ops in 191ms, 5,243,833/sec, 190 ns/op
google: get-rand 1,000,000 ops in 161ms, 6,199,818/sec, 161 ns/op
You can find the benchmark utility at tidwall/btree-benchmark
Contact
Josh Baker @tidwall
License
Source code is available under the MIT License.