mirror of https://bitbucket.org/ausocean/av.git
171 lines
5.0 KiB
Go
171 lines
5.0 KiB
Go
/*
|
|
NAME
|
|
pcm.go
|
|
|
|
DESCRIPTION
|
|
pcm.go contains functions for processing pcm.
|
|
|
|
AUTHOR
|
|
Trek Hopton <trek@ausocean.org>
|
|
|
|
LICENSE
|
|
pcm.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License in gpl.txt.
|
|
If not, see [GNU licenses](http://www.gnu.org/licenses).
|
|
*/
|
|
|
|
// Package pcm provides functions for processing and converting pcm audio.
|
|
package pcm
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
|
|
"github.com/yobert/alsa"
|
|
)
|
|
|
|
// Resample takes alsa.Buffer b and resamples the pcm audio data to 'rate' Hz and returns an alsa.Buffer with the resampled data.
|
|
// Notes:
|
|
// - Currently only downsampling is implemented and b's rate must be divisible by 'rate' or an error will occur.
|
|
// - If the number of bytes in b.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
|
|
// not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000.
|
|
func Resample(b alsa.Buffer, rate int) (alsa.Buffer, error) {
|
|
var newBuf alsa.Buffer
|
|
if b.Format.Rate == rate {
|
|
return newBuf, nil
|
|
}
|
|
if b.Format.Rate < 0 {
|
|
return newBuf, fmt.Errorf("Unable to convert from: %v Hz", b.Format.Rate)
|
|
}
|
|
if rate < 0 {
|
|
return newBuf, fmt.Errorf("Unable to convert to: %v Hz", rate)
|
|
}
|
|
|
|
// The number of bytes in a sample.
|
|
var sampleLen int
|
|
switch b.Format.SampleFormat {
|
|
case alsa.S32_LE:
|
|
sampleLen = 4 * b.Format.Channels
|
|
case alsa.S16_LE:
|
|
sampleLen = 2 * b.Format.Channels
|
|
default:
|
|
return newBuf, fmt.Errorf("Unhandled ALSA format: %v", b.Format.SampleFormat)
|
|
}
|
|
inPcmLen := len(b.Data)
|
|
|
|
// Calculate sample rate ratio ratioFrom:ratioTo.
|
|
rateGcd := gcd(rate, b.Format.Rate)
|
|
ratioFrom := b.Format.Rate / rateGcd
|
|
ratioTo := rate / rateGcd
|
|
|
|
// ratioTo = 1 is the only number that will result in an even sampling.
|
|
if ratioTo != 1 {
|
|
return newBuf, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
|
|
}
|
|
|
|
newLen := inPcmLen / ratioFrom
|
|
resampled := make([]byte, 0, newLen)
|
|
|
|
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'b.Data' to add them
|
|
// up and average them. The result is the new sample.
|
|
bAvg := make([]byte, sampleLen)
|
|
for i := 0; i < newLen/sampleLen; i++ {
|
|
var sum int
|
|
for j := 0; j < ratioFrom; j++ {
|
|
switch b.Format.SampleFormat {
|
|
case alsa.S32_LE:
|
|
sum += int(int32(binary.LittleEndian.Uint32(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
|
case alsa.S16_LE:
|
|
sum += int(int16(binary.LittleEndian.Uint16(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
|
}
|
|
}
|
|
avg := sum / ratioFrom
|
|
switch b.Format.SampleFormat {
|
|
case alsa.S32_LE:
|
|
binary.LittleEndian.PutUint32(bAvg, uint32(avg))
|
|
case alsa.S16_LE:
|
|
binary.LittleEndian.PutUint16(bAvg, uint16(avg))
|
|
}
|
|
resampled = append(resampled, bAvg...)
|
|
}
|
|
|
|
// Create new alsa.Buffer with resampled data.
|
|
newBuf = alsa.Buffer{
|
|
Format: alsa.BufferFormat{
|
|
Channels: b.Format.Channels,
|
|
SampleFormat: b.Format.SampleFormat,
|
|
Rate: rate,
|
|
},
|
|
Data: resampled,
|
|
}
|
|
|
|
return newBuf, nil
|
|
}
|
|
|
|
// StereoToMono returns raw mono audio data generated from only the left channel from
|
|
// the given stereo recording (ALSA buffer)
|
|
func StereoToMono(b alsa.Buffer) (alsa.Buffer, error) {
|
|
var newBuf alsa.Buffer
|
|
if b.Format.Channels == 1 {
|
|
return b, nil
|
|
}
|
|
if b.Format.Channels != 2 {
|
|
return newBuf, fmt.Errorf("Audio is not stereo or mono, it has %v channels", b.Format.Channels)
|
|
}
|
|
|
|
var stereoSampleBytes int
|
|
switch b.Format.SampleFormat {
|
|
case alsa.S32_LE:
|
|
stereoSampleBytes = 8
|
|
case alsa.S16_LE:
|
|
stereoSampleBytes = 4
|
|
default:
|
|
return newBuf, fmt.Errorf("Unhandled ALSA format %v", b.Format.SampleFormat)
|
|
}
|
|
|
|
recLength := len(b.Data)
|
|
mono := make([]byte, recLength/2)
|
|
|
|
// Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample
|
|
// (left channel), add it to the new mono audio data.
|
|
var inc int
|
|
for i := 0; i < recLength; i++ {
|
|
if i%stereoSampleBytes < stereoSampleBytes/2 {
|
|
mono[inc] = b.Data[i]
|
|
inc++
|
|
}
|
|
}
|
|
|
|
// Create new alsa.Buffer with resampled data.
|
|
newBuf = alsa.Buffer{
|
|
Format: alsa.BufferFormat{
|
|
Channels: 1,
|
|
SampleFormat: b.Format.SampleFormat,
|
|
Rate: b.Format.Rate,
|
|
},
|
|
Data: mono,
|
|
}
|
|
|
|
return newBuf, nil
|
|
}
|
|
|
|
// gcd is used for calculating the greatest common divisor of two positive integers, a and b.
|
|
// assumes given a and b are positive.
|
|
func gcd(a, b int) int {
|
|
for b != 0 {
|
|
a, b = b, a%b
|
|
}
|
|
return a
|
|
}
|