/* NAME pcm.go DESCRIPTION pcm.go contains functions for processing pcm. AUTHOR Trek Hopton LICENSE pcm.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ // Package pcm provides functions for processing and converting pcm audio. package pcm import ( "encoding/binary" "fmt" "github.com/yobert/alsa" ) // Resample takes alsa.Buffer b and resamples the pcm audio data to 'rate' Hz and returns an alsa.Buffer with the resampled data. // Notes: // - Currently only downsampling is implemented and b's rate must be divisible by 'rate' or an error will occur. // - If the number of bytes in b.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will // not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000. func Resample(b alsa.Buffer, rate int) (alsa.Buffer, error) { var newBuf alsa.Buffer if b.Format.Rate == rate { return newBuf, nil } if b.Format.Rate < 0 { return newBuf, fmt.Errorf("Unable to convert from: %v Hz", b.Format.Rate) } if rate < 0 { return newBuf, fmt.Errorf("Unable to convert to: %v Hz", rate) } // The number of bytes in a sample. var sampleLen int switch b.Format.SampleFormat { case alsa.S32_LE: sampleLen = 4 * b.Format.Channels case alsa.S16_LE: sampleLen = 2 * b.Format.Channels default: return newBuf, fmt.Errorf("Unhandled ALSA format: %v", b.Format.SampleFormat) } inPcmLen := len(b.Data) // Calculate sample rate ratio ratioFrom:ratioTo. rateGcd := gcd(rate, b.Format.Rate) ratioFrom := b.Format.Rate / rateGcd ratioTo := rate / rateGcd // ratioTo = 1 is the only number that will result in an even sampling. if ratioTo != 1 { return newBuf, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo) } newLen := inPcmLen / ratioFrom resampled := make([]byte, 0, newLen) // For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'b.Data' to add them // up and average them. The result is the new sample. bAvg := make([]byte, sampleLen) for i := 0; i < newLen/sampleLen; i++ { var sum int for j := 0; j < ratioFrom; j++ { switch b.Format.SampleFormat { case alsa.S32_LE: sum += int(int32(binary.LittleEndian.Uint32(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) case alsa.S16_LE: sum += int(int16(binary.LittleEndian.Uint16(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)]))) } } avg := sum / ratioFrom switch b.Format.SampleFormat { case alsa.S32_LE: binary.LittleEndian.PutUint32(bAvg, uint32(avg)) case alsa.S16_LE: binary.LittleEndian.PutUint16(bAvg, uint16(avg)) } resampled = append(resampled, bAvg...) } // Create new alsa.Buffer with resampled data. newBuf = alsa.Buffer{ Format: alsa.BufferFormat{ Channels: b.Format.Channels, SampleFormat: b.Format.SampleFormat, Rate: rate, }, Data: resampled, } return newBuf, nil } // StereoToMono returns raw mono audio data generated from only the left channel from // the given stereo recording (ALSA buffer) func StereoToMono(b alsa.Buffer) (alsa.Buffer, error) { var newBuf alsa.Buffer if b.Format.Channels == 1 { return b, nil } if b.Format.Channels != 2 { return newBuf, fmt.Errorf("Audio is not stereo or mono, it has %v channels", b.Format.Channels) } var stereoSampleBytes int switch b.Format.SampleFormat { case alsa.S32_LE: stereoSampleBytes = 8 case alsa.S16_LE: stereoSampleBytes = 4 default: return newBuf, fmt.Errorf("Unhandled ALSA format %v", b.Format.SampleFormat) } recLength := len(b.Data) mono := make([]byte, recLength/2) // Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample // (left channel), add it to the new mono audio data. var inc int for i := 0; i < recLength; i++ { if i%stereoSampleBytes < stereoSampleBytes/2 { mono[inc] = b.Data[i] inc++ } } // Create new alsa.Buffer with resampled data. newBuf = alsa.Buffer{ Format: alsa.BufferFormat{ Channels: 1, SampleFormat: b.Format.SampleFormat, Rate: b.Format.Rate, }, Data: mono, } return newBuf, nil } // gcd is used for calculating the greatest common divisor of two positive integers, a and b. // assumes given a and b are positive. func gcd(a, b int) int { for b != 0 { a, b = b, a%b } return a }