av/revid/audio-input.go

388 lines
10 KiB
Go

/*
NAME
audio-input.go
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
audio-input.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
package revid
import (
"errors"
"fmt"
"io"
"sync"
"time"
"github.com/yobert/alsa"
"bitbucket.org/ausocean/av/codec/pcm"
"bitbucket.org/ausocean/iot/pi/smartlogger"
"bitbucket.org/ausocean/utils/logger"
"bitbucket.org/ausocean/utils/ring"
)
const (
logPath = "/var/log/netsender"
rbDuration = 300 // seconds
rbTimeout = 100 * time.Millisecond
rbNextTimeout = 100 * time.Millisecond
)
const (
running = iota
paused
stopped
)
var log *logger.Logger
// audioDevice holds everything we need to know about the audio input stream.
// Note: At 44100 Hz sample rate, 2 channels and 16-bit samples, a period of 5 seconds
// results in PCM data chunks of 882000 bytes. A longer period exceeds datastore's 1MB blob limit.
type audioDevice struct {
mu sync.Mutex
source string // Name of audio source, or empty for the default source.
mode uint8 // Operating mode, either running, paused, or stopped.
dev *alsa.Device // Audio input device.
ab alsa.Buffer // ALSA's buffer.
rb *ring.Buffer // Our buffer.
chunkSize int // This is the number of bytes that will be stored at a time.
*AudioConfig
}
// AudioConfig provides parameters used by audioDevice.
type AudioConfig struct {
SampleRate int
Channels int
BitDepth int
RecPeriod int
Codec uint8
}
// NewAudioDevice initializes and returns an audioDevice struct which can be started, read from, and stopped.
func NewAudioDevice(cfg *AudioConfig) *audioDevice {
// Initialize logger.
logLevel := int(logger.Debug)
validLogLevel := true
if logLevel < int(logger.Debug) || logLevel > int(logger.Fatal) {
logLevel = int(logger.Info)
validLogLevel = false
}
logSender := smartlogger.New(logPath)
log = logger.New(int8(logLevel), &logSender.LogRoller)
log.Log(logger.Info, "log-netsender: Logger Initialized")
if !validLogLevel {
log.Log(logger.Error, "Invalid log level was defaulted to Info")
}
a := &audioDevice{}
a.AudioConfig = cfg
// Open the requested audio device.
err := a.open()
if err != nil {
log.Log(logger.Fatal, "alsa.open failed", "error", err.Error())
}
// Setup ring buffer to capture audio in periods of a.RecPeriod seconds, and buffer rbDuration seconds in total.
a.ab = a.dev.NewBufferDuration(time.Second * time.Duration(a.RecPeriod))
a.chunkSize = (((len(a.ab.Data) / a.dev.BufferFormat().Channels) * a.Channels) / a.dev.BufferFormat().Rate) * a.SampleRate
rbLen := rbDuration / a.RecPeriod
a.rb = ring.NewBuffer(rbLen, a.chunkSize, rbTimeout)
a.mode = paused
return a
}
// Start will start recording audio and writing to the output.
func (a *audioDevice) Start() {
a.mu.Lock()
mode := a.mode
a.mu.Unlock()
switch mode {
case paused:
// Start Recording
go a.input()
mode = running
case stopped:
// Open the audio device and start recording.
err := a.open()
if err != nil {
log.Log(logger.Fatal, "alsa.open failed", "error", err.Error())
}
go a.input()
mode = running
case running:
return
}
a.mu.Lock()
a.mode = mode
a.mu.Unlock()
}
// Stop will stop recording audio and close
func (a *audioDevice) Stop() {
a.mu.Lock()
a.mode = stopped
a.mu.Unlock()
if a.dev != nil {
log.Log(logger.Debug, "Closing", "source", a.source)
a.dev.Close()
a.dev = nil
}
}
// ChunkSize returns the audioDevice's chunkSize, ie. the number of bytes of audio written to output at a time.
func (a *audioDevice) ChunkSize() int {
return a.chunkSize
}
// open or re-open the recording device with the given name and prepare it to record.
// If name is empty, the first recording device is used.
func (a *audioDevice) open() error {
if a.dev != nil {
log.Log(logger.Debug, "Closing", "source", a.source)
a.dev.Close()
a.dev = nil
}
log.Log(logger.Debug, "Opening", "source", a.source)
cards, err := alsa.OpenCards()
if err != nil {
return err
}
defer alsa.CloseCards(cards)
for _, card := range cards {
devices, err := card.Devices()
if err != nil {
return err
}
for _, dev := range devices {
if dev.Type != alsa.PCM || !dev.Record {
continue
}
if dev.Title == a.source || a.source == "" {
a.dev = dev
break
}
}
}
if a.dev == nil {
return errors.New("No audio source found")
}
log.Log(logger.Debug, "Found audio source", "source", a.dev.Title)
// ToDo: time out if Open takes too long.
err = a.dev.Open()
if err != nil {
return err
}
log.Log(logger.Debug, "Opened audio source")
// 2 channels is what most devices need to record in. If mono is requested,
// the recording will be converted in formatBuffer().
_, err = a.dev.NegotiateChannels(2)
if err != nil {
return err
}
// Try to negotiate a rate to record in that is divisible by the wanted rate
// so that it can be easily downsampled to the wanted rate.
// Note: if a card thinks it can record at a rate but can't actually, this can cause a failure. Eg.
// the audioinjector is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue,
// to fix this 8000 and 16000 must be removed from this slice.
rates := [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000}
foundRate := false
for i := 0; i < len(rates) && !foundRate; i++ {
if rates[i] < a.SampleRate {
continue
}
if rates[i]%a.SampleRate == 0 {
_, err = a.dev.NegotiateRate(rates[i])
if err == nil {
foundRate = true
log.Log(logger.Debug, "Sample rate set", "rate", rates[i])
}
}
}
// If no easily divisible rate is found, then use the default rate.
if !foundRate {
log.Log(logger.Warning, "Unable to sample at requested rate, default used.", "rateRequested", a.SampleRate)
_, err = a.dev.NegotiateRate(defaultSampleRate)
if err != nil {
return err
}
log.Log(logger.Debug, "Sample rate set", "rate", defaultSampleRate)
}
var aFmt alsa.FormatType
switch a.BitDepth {
case 16:
aFmt = alsa.S16_LE
case 32:
aFmt = alsa.S32_LE
default:
return fmt.Errorf("unsupported sample bits %v", a.BitDepth)
}
_, err = a.dev.NegotiateFormat(aFmt)
if err != nil {
return err
}
// Either 8192 or 16384 bytes is a reasonable ALSA buffer size.
_, err = a.dev.NegotiateBufferSize(8192, 16384)
if err != nil {
return err
}
if err = a.dev.Prepare(); err != nil {
return err
}
log.Log(logger.Debug, "Successfully negotiated ALSA params")
return nil
}
// input continously records audio and writes it to the ringbuffer.
// Re-opens the device and tries again if ASLA returns an error.
func (a *audioDevice) input() {
for {
a.mu.Lock()
mode := a.mode
a.mu.Unlock()
switch mode {
case paused:
time.Sleep(time.Duration(a.RecPeriod) * time.Second)
continue
case stopped:
break
}
log.Log(logger.Debug, "Recording audio for period", "seconds", a.RecPeriod)
a.mu.Lock()
err := a.dev.Read(a.ab.Data)
a.mu.Unlock()
if err != nil {
log.Log(logger.Debug, "Device.Read failed", "error", err.Error())
a.mu.Lock()
err = a.open() // re-open
if err != nil {
log.Log(logger.Fatal, "alsa.open failed", "error", err.Error())
}
a.mu.Unlock()
continue
}
toWrite := a.formatBuffer()
log.Log(logger.Debug, "Audio format conversion has been performed where needed")
var n int
n, err = a.rb.Write(toWrite.Data)
switch err {
case nil:
log.Log(logger.Debug, "Wrote audio to ringbuffer", "length", n)
case ring.ErrDropped:
log.Log(logger.Warning, "Dropped audio")
default:
log.Log(logger.Error, "Unexpected ringbuffer error", "error", err.Error())
return
}
}
}
// Read reads a full PCM chunk from the ringbuffer, returning the number of bytes read upon success.
// Any errors returned are unexpected and should be considered fatal.
func (a *audioDevice) Read(p []byte) (n int, err error) {
chunk, err := a.rb.Next(rbNextTimeout)
switch err {
case nil:
// Do nothing.
case ring.ErrTimeout:
return 0, nil
case io.EOF:
log.Log(logger.Error, "Unexpected EOF from ring.Next")
return 0, io.ErrUnexpectedEOF
default:
log.Log(logger.Error, "Unexpected error from ring.Next", "error", err.Error())
return 0, err
}
n, err = io.ReadFull(a.rb, p[:chunk.Len()])
if err != nil {
log.Log(logger.Error, "Unexpected error from ring.Read", "error", err.Error())
return n, err
}
log.Log(logger.Debug, "Read audio from ringbuffer", "length", n)
return n, nil
}
// formatBuffer returns an ALSA buffer that has the recording data from the ac's original ALSA buffer but stored
// in the desired format specified by the ac's parameters.
func (a *audioDevice) formatBuffer() alsa.Buffer {
var err error
a.mu.Lock()
wantChannels := a.Channels
wantRate := a.SampleRate
a.mu.Unlock()
// If nothing needs to be changed, return the original.
if a.ab.Format.Channels == wantChannels && a.ab.Format.Rate == wantRate {
return a.ab
}
formatted := alsa.Buffer{Format: a.ab.Format}
bufCopied := false
if a.ab.Format.Channels != wantChannels {
// Convert channels.
if a.ab.Format.Channels == 2 && wantChannels == 1 {
if formatted.Data, err = pcm.StereoToMono(a.ab); err != nil {
log.Log(logger.Warning, "Channel conversion failed, audio has remained stereo", "error", err.Error())
} else {
formatted.Format.Channels = 1
}
bufCopied = true
}
}
if a.ab.Format.Rate != wantRate {
// Convert rate.
if bufCopied {
formatted.Data, err = pcm.Resample(formatted, wantRate)
} else {
formatted.Data, err = pcm.Resample(a.ab, wantRate)
}
if err != nil {
log.Log(logger.Warning, "Rate conversion failed, audio has remained original rate", "error", err.Error())
} else {
formatted.Format.Rate = wantRate
}
}
return formatted
}