/* NAME audio-input.go AUTHOR Trek Hopton LICENSE audio-input.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ package revid import ( "errors" "fmt" "io" "sync" "time" "github.com/yobert/alsa" "bitbucket.org/ausocean/av/codec/pcm" "bitbucket.org/ausocean/iot/pi/smartlogger" "bitbucket.org/ausocean/utils/logger" "bitbucket.org/ausocean/utils/ring" ) const ( logPath = "/var/log/netsender" rbDuration = 300 // seconds rbTimeout = 100 * time.Millisecond rbNextTimeout = 100 * time.Millisecond ) const ( running = iota paused stopped ) var log *logger.Logger // audioDevice holds everything we need to know about the audio input stream. // Note: At 44100 Hz sample rate, 2 channels and 16-bit samples, a period of 5 seconds // results in PCM data chunks of 882000 bytes. A longer period exceeds datastore's 1MB blob limit. type audioDevice struct { mu sync.Mutex source string // Name of audio source, or empty for the default source. mode uint8 // Operating mode, either running, paused, or stopped. dev *alsa.Device // Audio input device. ab alsa.Buffer // ALSA's buffer. rb *ring.Buffer // Our buffer. chunkSize int // This is the number of bytes that will be stored at a time. *AudioConfig } // AudioConfig provides parameters used by audioDevice. type AudioConfig struct { SampleRate int Channels int BitDepth int RecPeriod int Codec uint8 } // NewAudioDevice initializes and returns an audioDevice struct which can be started, read from, and stopped. func NewAudioDevice(cfg *AudioConfig) *audioDevice { // Initialize logger. logLevel := int(logger.Debug) validLogLevel := true if logLevel < int(logger.Debug) || logLevel > int(logger.Fatal) { logLevel = int(logger.Info) validLogLevel = false } logSender := smartlogger.New(logPath) log = logger.New(int8(logLevel), &logSender.LogRoller) log.Log(logger.Info, "log-netsender: Logger Initialized") if !validLogLevel { log.Log(logger.Error, "Invalid log level was defaulted to Info") } a := &audioDevice{} a.AudioConfig = cfg // Open the requested audio device. err := a.open() if err != nil { log.Log(logger.Fatal, "alsa.open failed", "error", err.Error()) } // Setup ring buffer to capture audio in periods of a.RecPeriod seconds, and buffer rbDuration seconds in total. a.ab = a.dev.NewBufferDuration(time.Second * time.Duration(a.RecPeriod)) a.chunkSize = (((len(a.ab.Data) / a.dev.BufferFormat().Channels) * a.Channels) / a.dev.BufferFormat().Rate) * a.SampleRate rbLen := rbDuration / a.RecPeriod a.rb = ring.NewBuffer(rbLen, a.chunkSize, rbTimeout) a.mode = paused return a } // Start will start recording audio and writing to the output. func (a *audioDevice) Start() { a.mu.Lock() mode := a.mode a.mu.Unlock() switch mode { case paused: // Start Recording go a.input() mode = running case stopped: // Open the audio device and start recording. err := a.open() if err != nil { log.Log(logger.Fatal, "alsa.open failed", "error", err.Error()) } go a.input() mode = running case running: return } a.mu.Lock() a.mode = mode a.mu.Unlock() } // Stop will stop recording audio and close func (a *audioDevice) Stop() { a.mu.Lock() a.mode = stopped a.mu.Unlock() if a.dev != nil { log.Log(logger.Debug, "Closing", "source", a.source) a.dev.Close() a.dev = nil } } // ChunkSize returns the audioDevice's chunkSize, ie. the number of bytes of audio written to output at a time. func (a *audioDevice) ChunkSize() int { return a.chunkSize } // open or re-open the recording device with the given name and prepare it to record. // If name is empty, the first recording device is used. func (a *audioDevice) open() error { if a.dev != nil { log.Log(logger.Debug, "Closing", "source", a.source) a.dev.Close() a.dev = nil } log.Log(logger.Debug, "Opening", "source", a.source) cards, err := alsa.OpenCards() if err != nil { return err } defer alsa.CloseCards(cards) for _, card := range cards { devices, err := card.Devices() if err != nil { return err } for _, dev := range devices { if dev.Type != alsa.PCM || !dev.Record { continue } if dev.Title == a.source || a.source == "" { a.dev = dev break } } } if a.dev == nil { return errors.New("No audio source found") } log.Log(logger.Debug, "Found audio source", "source", a.dev.Title) // ToDo: time out if Open takes too long. err = a.dev.Open() if err != nil { return err } log.Log(logger.Debug, "Opened audio source") // 2 channels is what most devices need to record in. If mono is requested, // the recording will be converted in formatBuffer(). _, err = a.dev.NegotiateChannels(2) if err != nil { return err } // Try to negotiate a rate to record in that is divisible by the wanted rate // so that it can be easily downsampled to the wanted rate. // Note: if a card thinks it can record at a rate but can't actually, this can cause a failure. Eg. // the audioinjector is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue, // to fix this 8000 and 16000 must be removed from this slice. rates := [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000} foundRate := false for i := 0; i < len(rates) && !foundRate; i++ { if rates[i] < a.SampleRate { continue } if rates[i]%a.SampleRate == 0 { _, err = a.dev.NegotiateRate(rates[i]) if err == nil { foundRate = true log.Log(logger.Debug, "Sample rate set", "rate", rates[i]) } } } // If no easily divisible rate is found, then use the default rate. if !foundRate { log.Log(logger.Warning, "Unable to sample at requested rate, default used.", "rateRequested", a.SampleRate) _, err = a.dev.NegotiateRate(defaultSampleRate) if err != nil { return err } log.Log(logger.Debug, "Sample rate set", "rate", defaultSampleRate) } var aFmt alsa.FormatType switch a.BitDepth { case 16: aFmt = alsa.S16_LE case 32: aFmt = alsa.S32_LE default: return fmt.Errorf("unsupported sample bits %v", a.BitDepth) } _, err = a.dev.NegotiateFormat(aFmt) if err != nil { return err } // Either 8192 or 16384 bytes is a reasonable ALSA buffer size. _, err = a.dev.NegotiateBufferSize(8192, 16384) if err != nil { return err } if err = a.dev.Prepare(); err != nil { return err } log.Log(logger.Debug, "Successfully negotiated ALSA params") return nil } // input continously records audio and writes it to the ringbuffer. // Re-opens the device and tries again if ASLA returns an error. func (a *audioDevice) input() { for { a.mu.Lock() mode := a.mode a.mu.Unlock() switch mode { case paused: time.Sleep(time.Duration(a.RecPeriod) * time.Second) continue case stopped: break } log.Log(logger.Debug, "Recording audio for period", "seconds", a.RecPeriod) a.mu.Lock() err := a.dev.Read(a.ab.Data) a.mu.Unlock() if err != nil { log.Log(logger.Debug, "Device.Read failed", "error", err.Error()) a.mu.Lock() err = a.open() // re-open if err != nil { log.Log(logger.Fatal, "alsa.open failed", "error", err.Error()) } a.mu.Unlock() continue } toWrite := a.formatBuffer() log.Log(logger.Debug, "Audio format conversion has been performed where needed") var n int n, err = a.rb.Write(toWrite.Data) switch err { case nil: log.Log(logger.Debug, "Wrote audio to ringbuffer", "length", n) case ring.ErrDropped: log.Log(logger.Warning, "Dropped audio") default: log.Log(logger.Error, "Unexpected ringbuffer error", "error", err.Error()) return } } } // Read reads a full PCM chunk from the ringbuffer, returning the number of bytes read upon success. // Any errors returned are unexpected and should be considered fatal. func (a *audioDevice) Read(p []byte) (n int, err error) { chunk, err := a.rb.Next(rbNextTimeout) switch err { case nil: // Do nothing. case ring.ErrTimeout: return 0, nil case io.EOF: log.Log(logger.Error, "Unexpected EOF from ring.Next") return 0, io.ErrUnexpectedEOF default: log.Log(logger.Error, "Unexpected error from ring.Next", "error", err.Error()) return 0, err } n, err = io.ReadFull(a.rb, p[:chunk.Len()]) if err != nil { log.Log(logger.Error, "Unexpected error from ring.Read", "error", err.Error()) return n, err } log.Log(logger.Debug, "Read audio from ringbuffer", "length", n) return n, nil } // formatBuffer returns an ALSA buffer that has the recording data from the ac's original ALSA buffer but stored // in the desired format specified by the ac's parameters. func (a *audioDevice) formatBuffer() alsa.Buffer { var err error a.mu.Lock() wantChannels := a.Channels wantRate := a.SampleRate a.mu.Unlock() // If nothing needs to be changed, return the original. if a.ab.Format.Channels == wantChannels && a.ab.Format.Rate == wantRate { return a.ab } formatted := alsa.Buffer{Format: a.ab.Format} bufCopied := false if a.ab.Format.Channels != wantChannels { // Convert channels. if a.ab.Format.Channels == 2 && wantChannels == 1 { if formatted.Data, err = pcm.StereoToMono(a.ab); err != nil { log.Log(logger.Warning, "Channel conversion failed, audio has remained stereo", "error", err.Error()) } else { formatted.Format.Channels = 1 } bufCopied = true } } if a.ab.Format.Rate != wantRate { // Convert rate. if bufCopied { formatted.Data, err = pcm.Resample(formatted, wantRate) } else { formatted.Data, err = pcm.Resample(a.ab, wantRate) } if err != nil { log.Log(logger.Warning, "Rate conversion failed, audio has remained original rate", "error", err.Error()) } else { formatted.Format.Rate = wantRate } } return formatted }