av/turbidity/turbidity.go

211 lines
7.1 KiB
Go
Raw Normal View History

2022-01-12 04:55:58 +03:00
//go:build !nocv
// +build !nocv
/*
DESCRIPTION
Holds the turbidity sensor struct. Can evaluate 4x4 chessboard markers in an
image to measure the sharpness and contrast. This implementation is based off
a master thesis from Aalborg University, Turbidity measurement based on computer vision.
The full paper is avaible at https://projekter.aau.dk/projekter/files/306657262/master.pdf
AUTHORS
2022-01-06 06:25:40 +03:00
Russell Stanley <russell@ausocean.org>
LICENSE
Copyright (C) 2021-2022 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
2022-01-05 05:46:08 +03:00
package turbidity
2021-12-15 06:55:14 +03:00
import (
"errors"
2021-12-15 06:55:14 +03:00
"fmt"
2021-12-21 04:43:05 +03:00
"image"
"math"
2022-02-04 06:16:55 +03:00
"time"
2021-12-15 06:55:14 +03:00
"bitbucket.org/ausocean/utils/logging"
2021-12-15 06:55:14 +03:00
"gocv.io/x/gocv"
)
// TurbiditySensor is a software based turbidity sensor that uses CV to determine sharpness and constrast level
2022-01-06 06:25:40 +03:00
// of a chessboard-like target submerged in water that can be correlated to turbidity/visibility values.
2021-12-21 04:43:05 +03:00
type TurbiditySensor struct {
template gocv.Mat // Holds the image of the target.
TransformMatrix gocv.Mat // The current perspective transformation matrix to extract the target from the frame.
k1, k2, sobelFilterSize int
scale, alpha float64
log logging.Logger
2021-12-21 04:43:05 +03:00
}
// NewTurbiditySensor returns a new TurbiditySensor.
func NewTurbiditySensor(template, transformMatrix gocv.Mat, k1, k2, sobelFilterSize int, scale, alpha float64, log logging.Logger) (*TurbiditySensor, error) {
2022-01-06 06:25:40 +03:00
ts := new(TurbiditySensor)
2021-12-21 04:43:05 +03:00
// Validate template image is not empty and has valid corners.
2022-01-06 06:25:40 +03:00
if template.Empty() {
return nil, errors.New("template image is empty")
2022-01-06 06:25:40 +03:00
}
ts.template = template
ts.TransformMatrix = transformMatrix
2022-01-06 06:25:40 +03:00
ts.k1, ts.k2, ts.sobelFilterSize = k1, k2, sobelFilterSize
ts.alpha, ts.scale = alpha, scale
ts.log = log
2022-01-06 06:25:40 +03:00
return ts, nil
}
// Evaluate, given a slice of images, return the sharpness and contrast scores.
func (ts TurbiditySensor) Evaluate(imgs []gocv.Mat) (*Results, error) {
result, err := NewResults(len(imgs))
if err != nil {
return nil, fmt.Errorf("could not create results: %w", err)
2022-01-06 06:25:40 +03:00
}
2021-12-21 04:43:05 +03:00
2022-01-06 06:25:40 +03:00
for i := range imgs {
2022-02-04 06:16:55 +03:00
timer := time.Now()
2022-01-06 06:25:40 +03:00
marker, err := ts.transform(imgs[i])
2021-12-21 04:43:05 +03:00
if err != nil {
return nil, fmt.Errorf("could not transform image: %d: %w", i, err)
2021-12-21 04:43:05 +03:00
}
2022-02-04 06:16:55 +03:00
2022-11-06 09:55:28 +03:00
ts.log.Debug("transform successful", "transform duration (sec)", time.Since(timer).Seconds())
2022-02-04 06:16:55 +03:00
timer = time.Now()
2022-01-06 06:25:40 +03:00
edge := ts.sobel(marker)
2022-11-06 09:55:28 +03:00
ts.log.Debug("sobel filter successful", "sobel duration", time.Since(timer).Seconds())
2021-12-23 09:10:35 +03:00
2022-02-04 06:16:55 +03:00
timer = time.Now()
2022-01-06 06:25:40 +03:00
sharpScore, contScore, err := ts.EvaluateImage(marker, edge)
2021-12-21 04:43:05 +03:00
if err != nil {
return result, err
}
2022-11-06 09:55:28 +03:00
ts.log.Debug("sharpness and contrast evaluation successful", "evaluation duration", time.Since(timer).Seconds())
2022-01-06 06:25:40 +03:00
result.Update(sharpScore, contScore, float64(i), i)
2021-12-21 04:43:05 +03:00
}
return result, nil
}
2022-01-06 06:25:40 +03:00
// EvaluateImage will evaluate image sharpness and contrast using blocks of size k1 by k2. Return the respective scores.
func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat) (float64, float64, error) {
var sharpness float64
var contrast float64
2021-12-15 06:55:14 +03:00
if img.Rows()%ts.k1 != 0 || img.Cols()%ts.k2 != 0 {
2022-01-06 06:25:40 +03:00
return math.NaN(), math.NaN(), fmt.Errorf("dimensions not compatible (%v, %v)", ts.k1, ts.k2)
2021-12-21 04:43:05 +03:00
}
2022-01-06 06:25:40 +03:00
lStep := img.Rows() / ts.k1
kStep := img.Cols() / ts.k2
2021-12-15 06:55:14 +03:00
2022-01-06 06:25:40 +03:00
for l := 0; l < img.Rows(); l += lStep {
for k := 0; k < img.Cols(); k += kStep {
// Enhancement Measure Estimation (EME), provides a measure of the sharpness.
sharpness += ts.evaluateBlockEME(edge, l, k, l+lStep, k+kStep)
2021-12-21 04:43:05 +03:00
// AMEE, provides a measure of the contrast.
contrast += ts.evaluateBlockAMEE(img, l, k, l+lStep, k+kStep)
2021-12-21 04:43:05 +03:00
}
2021-12-15 06:55:14 +03:00
}
2021-12-21 04:43:05 +03:00
2022-01-06 06:25:40 +03:00
// Scale EME based on block size.
sharpness = 2.0 / (float64(ts.k1 * ts.k2)) * sharpness
2021-12-21 04:43:05 +03:00
2022-01-06 06:25:40 +03:00
// Scale and flip AMEE based on block size.
contrast = -1.0 / (float64(ts.k1 * ts.k2)) * contrast
2021-12-21 04:43:05 +03:00
2022-01-06 06:25:40 +03:00
return sharpness, contrast, nil
2021-12-21 04:43:05 +03:00
}
// minMax returns the max and min pixel values of an image block.
2022-01-06 06:25:40 +03:00
func (ts TurbiditySensor) minMax(img gocv.Mat, xStart, yStart, xEnd, yEnd int) (float64, float64) {
max := -math.MaxFloat64
min := math.MaxFloat64
2021-12-21 04:43:05 +03:00
for i := xStart; i < xEnd; i++ {
for j := yStart; j < yEnd; j++ {
2021-12-21 04:43:05 +03:00
value := float64(img.GetUCharAt(i, j))
2022-01-10 02:38:54 +03:00
// Check max/min conditions, zero values are ignoredt to avoid divison by 0.
2021-12-21 04:43:05 +03:00
if value > max && value != 0.0 {
max = value
}
if value < min && value != 0.0 {
min = value
}
}
}
2022-01-06 06:25:40 +03:00
return max, min
}
// evaluateBlockEME will evaluate an image block and return the value to be added to the sharpness result.
2022-01-06 06:25:40 +03:00
func (ts TurbiditySensor) evaluateBlockEME(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 {
max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd)
2021-12-21 04:43:05 +03:00
// Blocks where all pixel values are equal are ignored to avoid division by 0.
if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min {
2022-01-06 06:25:40 +03:00
return math.Log(max / min)
}
return 0.0
}
// evaluateBlockAMEE will evaluate an image block and return the value to be added to the contrast result.
2022-01-06 06:25:40 +03:00
func (ts TurbiditySensor) evaluateBlockAMEE(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 {
max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd)
// Blocks where all pixel values are equal are ignored to avoid division by 0.
2022-01-06 06:25:40 +03:00
if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min {
contrast := (max + min) / (max - min)
return math.Pow(ts.alpha*(contrast), ts.alpha) * math.Log(contrast)
2021-12-21 04:43:05 +03:00
}
2022-01-06 06:25:40 +03:00
return 0.0
2021-12-21 04:43:05 +03:00
}
2022-01-06 06:25:40 +03:00
// transform will search img for matching template. Returns the transformed image which best match the template.
func (ts TurbiditySensor) transform(img gocv.Mat) (gocv.Mat, error) {
2021-12-21 04:43:05 +03:00
out := gocv.NewMat()
2022-01-06 06:25:40 +03:00
if img.Empty() {
return out, errors.New("image is empty, cannot transform")
}
// Check image for corners, if non can be found corners will be set to default value.
// if !gocv.FindChessboardCorners(img, image.Pt(3, 3), &imgCorners, gocv.CalibCBFastCheck) {}
2021-12-21 04:43:05 +03:00
// Find and apply transformation.
gocv.WarpPerspective(img, &out, ts.TransformMatrix, image.Pt(ts.template.Rows(), ts.template.Cols()))
gocv.CvtColor(out, &out, gocv.ColorRGBToGray)
2021-12-21 04:43:05 +03:00
return out, nil
}
2022-01-06 06:25:40 +03:00
// sobel will apply sobel filter to an image and return the result.
func (ts TurbiditySensor) sobel(img gocv.Mat) gocv.Mat {
2021-12-21 04:43:05 +03:00
dx := gocv.NewMat()
dy := gocv.NewMat()
sobel := gocv.NewMat()
// Apply filter.
gocv.Sobel(img, &dx, gocv.MatTypeCV64F, 0, 1, ts.sobelFilterSize, ts.scale, 0.0, gocv.BorderConstant)
gocv.Sobel(img, &dy, gocv.MatTypeCV64F, 1, 0, ts.sobelFilterSize, ts.scale, 0.0, gocv.BorderConstant)
2021-12-21 04:43:05 +03:00
// Convert to unsigned.
2021-12-21 04:43:05 +03:00
gocv.ConvertScaleAbs(dx, &dx, 1.0, 0.0)
gocv.ConvertScaleAbs(dy, &dy, 1.0, 0.0)
// Add x and y components.
2021-12-21 04:43:05 +03:00
gocv.AddWeighted(dx, 0.5, dy, 0.5, 0, &sobel)
return sobel
2021-12-15 06:55:14 +03:00
}