2021-12-15 06:55:14 +03:00
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
2021-12-21 04:43:05 +03:00
|
|
|
"image"
|
|
|
|
"math"
|
2021-12-15 06:55:14 +03:00
|
|
|
|
|
|
|
"gocv.io/x/gocv"
|
|
|
|
)
|
|
|
|
|
2021-12-21 04:43:05 +03:00
|
|
|
// TURBIDITY SENSOR
|
|
|
|
type TurbiditySensor struct {
|
|
|
|
template, standard gocv.Mat
|
|
|
|
k1, k2 int //block size
|
|
|
|
alpha, scale float64
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given a slice of test images of size n, return the sharpness and contrast scores
|
|
|
|
func (ts TurbiditySensor) Evaluate(n int, images []gocv.Mat) (Results, error) {
|
|
|
|
|
|
|
|
var result Results
|
|
|
|
result.New(n)
|
|
|
|
|
|
|
|
for i := range images {
|
|
|
|
|
|
|
|
// Transform image
|
|
|
|
marker, err := ts.Transform(images[i])
|
|
|
|
|
|
|
|
if err != nil {
|
|
|
|
return result, fmt.Errorf("Image %v: %v", i, err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Apply sobel filter
|
|
|
|
edge := ts.Sobel(marker, ts.scale)
|
|
|
|
|
|
|
|
// Evaluate
|
|
|
|
out, err := ts.EvaluateImage(marker, edge, ts.k1, ts.k2, ts.alpha)
|
|
|
|
|
|
|
|
if err != nil {
|
|
|
|
return result, err
|
|
|
|
}
|
|
|
|
|
|
|
|
result.Append(out[0], out[1], float64((i+1)*10), i)
|
|
|
|
}
|
|
|
|
|
|
|
|
return result, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Evaluate image sharpness and contrast using blocks of size k1 by k2. Return a slice of the respective scores
|
|
|
|
func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat, k1, k2 int, alpha float64) ([]float64, error) {
|
2021-12-15 06:55:14 +03:00
|
|
|
|
2021-12-21 04:43:05 +03:00
|
|
|
// Slice to store results
|
|
|
|
result := make([]float64, 2) // [0.0, 0.0]
|
2021-12-15 06:55:14 +03:00
|
|
|
|
2021-12-21 04:43:05 +03:00
|
|
|
if img.Rows()%k1 != 0 || img.Cols()%k2 != 0 {
|
|
|
|
return result, fmt.Errorf("Dimensions not compatible (%v, %v)", k1, k2)
|
|
|
|
}
|
|
|
|
|
|
|
|
l_step := int(img.Rows() / k1)
|
|
|
|
k_step := int(img.Cols() / k2)
|
|
|
|
|
|
|
|
for l := 0; l < img.Rows(); l = l + l_step {
|
|
|
|
for k := 0; k < img.Cols(); k = k + k_step {
|
|
|
|
|
|
|
|
//EME
|
|
|
|
err := ts.EvaluateBlock(edge, l, k, l+l_step, k+k_step, result, "EME", alpha)
|
2021-12-15 06:55:14 +03:00
|
|
|
|
2021-12-21 04:43:05 +03:00
|
|
|
if err != nil {
|
|
|
|
return result, err
|
|
|
|
}
|
|
|
|
|
|
|
|
//AMEE
|
|
|
|
err = ts.EvaluateBlock(img, l, k, l+l_step, k+k_step, result, "AMEE", alpha)
|
|
|
|
|
|
|
|
if err != nil {
|
|
|
|
return result, err
|
|
|
|
}
|
|
|
|
}
|
2021-12-15 06:55:14 +03:00
|
|
|
}
|
2021-12-21 04:43:05 +03:00
|
|
|
|
|
|
|
// EME
|
|
|
|
result[0] = 2.0 / (float64(k1) * float64(k1)) * result[0]
|
|
|
|
|
|
|
|
// AMEE
|
|
|
|
result[1] = -1.0 / (float64(k1) * float64(k1)) * result[1]
|
|
|
|
|
|
|
|
return result, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Evaluate a block within and image and add to to the result slice
|
|
|
|
func (ts TurbiditySensor) EvaluateBlock(img gocv.Mat, l1, k1, l2, k2 int, result []float64, operation string, alpha float64) error {
|
|
|
|
|
|
|
|
max := -1e10
|
|
|
|
min := 1e10
|
|
|
|
|
|
|
|
for i := l1; i < l2; i++ {
|
|
|
|
for j := k1; j < k2; j++ {
|
|
|
|
|
|
|
|
value := float64(img.GetUCharAt(i, j))
|
|
|
|
|
|
|
|
// Check max/min conditions, zero values are ignored
|
|
|
|
if value > max && value != 0.0 {
|
|
|
|
max = value
|
|
|
|
}
|
|
|
|
if value < min && value != 0.0 {
|
|
|
|
min = value
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Blocks which have no information are ignored
|
|
|
|
if max != -1e10 && min != 1e10 && max != min {
|
|
|
|
if operation == "EME" {
|
|
|
|
|
|
|
|
result[0] += math.Log(max / min)
|
|
|
|
|
|
|
|
} else if operation == "AMEE" {
|
|
|
|
|
|
|
|
contrast := (max + min) / (max - min)
|
|
|
|
result[1] += math.Pow(alpha*(contrast), alpha) * math.Log(contrast)
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return fmt.Errorf("Invalid operation: %v", operation)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Search image for matching template. Returns the transformed image which best match the template
|
|
|
|
func (ts TurbiditySensor) Transform(img gocv.Mat) (gocv.Mat, error) {
|
|
|
|
|
|
|
|
out := gocv.NewMat()
|
|
|
|
mask := gocv.NewMat()
|
|
|
|
|
|
|
|
corners_img := gocv.NewMat()
|
|
|
|
corners_template := gocv.NewMat()
|
|
|
|
|
|
|
|
// Find corners in image
|
|
|
|
if !gocv.FindChessboardCorners(img, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
|
|
|
|
|
|
|
|
// Apply default if transformation fails
|
|
|
|
// fmt.Println("Corner detection failed applying standard transformation")
|
|
|
|
|
|
|
|
if !gocv.FindChessboardCorners(ts.standard, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
|
|
|
|
return out, fmt.Errorf("Could not find corners in default image")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find corners in template
|
|
|
|
if !gocv.FindChessboardCorners(ts.template, image.Pt(3, 3), &corners_template, gocv.CalibCBNormalizeImage) {
|
|
|
|
return out, fmt.Errorf("Could not find corners in template")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find and apply transformation
|
|
|
|
H := gocv.FindHomography(corners_img, &corners_template, gocv.HomograpyMethodRANSAC, 3.0, &mask, 2000, 0.995)
|
|
|
|
gocv.WarpPerspective(img, &out, H, image.Pt(ts.template.Rows(), ts.template.Cols()))
|
|
|
|
|
|
|
|
return out, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Apply sobel filter to an image with a given scale and return the result
|
|
|
|
func (ts TurbiditySensor) Sobel(img gocv.Mat, scale float64) gocv.Mat {
|
|
|
|
|
|
|
|
dx := gocv.NewMat()
|
|
|
|
dy := gocv.NewMat()
|
|
|
|
sobel := gocv.NewMat()
|
|
|
|
|
|
|
|
// Apply filter
|
|
|
|
gocv.Sobel(img, &dx, gocv.MatTypeCV64F, 0, 1, 3, scale, 0.0, gocv.BorderConstant)
|
|
|
|
gocv.Sobel(img, &dy, gocv.MatTypeCV64F, 1, 0, 3, scale, 0.0, gocv.BorderConstant)
|
|
|
|
|
|
|
|
// Convert to unsigned
|
|
|
|
gocv.ConvertScaleAbs(dx, &dx, 1.0, 0.0)
|
|
|
|
gocv.ConvertScaleAbs(dy, &dy, 1.0, 0.0)
|
|
|
|
|
|
|
|
// Add x and y components
|
|
|
|
gocv.AddWeighted(dx, 0.5, dy, 0.5, 0, &sobel)
|
|
|
|
|
|
|
|
return sobel
|
2021-12-15 06:55:14 +03:00
|
|
|
}
|