2019-09-14 16:05:37 +03:00
|
|
|
/*
|
|
|
|
NAME
|
|
|
|
adpcm.js
|
|
|
|
|
|
|
|
AUTHOR
|
|
|
|
Trek Hopton <trek@ausocean.org>
|
|
|
|
|
|
|
|
LICENSE
|
|
|
|
This file is Copyright (C) 2018 the Australian Ocean Lab (AusOcean)
|
|
|
|
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
|
|
under the terms of the GNU General Public License as published by the
|
|
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
|
|
option) any later version.
|
|
|
|
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License in gpl.txt.
|
|
|
|
If not, see [GNU licenses](http://www.gnu.org/licenses).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf).
|
|
|
|
Reference algorithms for ADPCM compression and decompression are in part 6.
|
|
|
|
*/
|
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
|
|
|
|
class Decoder {
|
|
|
|
constructor() {
|
|
|
|
this.est = 0; // Estimation of sample based on quantised ADPCM nibble.
|
|
|
|
this.idx = 0; // Index to step used for estimation.
|
|
|
|
this.step = 0;
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
// Table of index changes (see spec).
|
|
|
|
static get indexTable() {
|
|
|
|
return [
|
|
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
|
|
-1, -1, -1, -1, 2, 4, 6, 8
|
|
|
|
];
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
// Quantize step size table (see spec).
|
|
|
|
static get stepTable() {
|
|
|
|
return [
|
|
|
|
7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
|
16, 17, 19, 21, 23, 25, 28, 31,
|
|
|
|
34, 37, 41, 45, 50, 55, 60, 66,
|
|
|
|
73, 80, 88, 97, 107, 118, 130, 143,
|
|
|
|
157, 173, 190, 209, 230, 253, 279, 307,
|
|
|
|
337, 371, 408, 449, 494, 544, 598, 658,
|
|
|
|
724, 796, 876, 963, 1060, 1166, 1282, 1411,
|
|
|
|
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
|
|
|
|
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
|
|
|
|
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
|
|
|
|
32767
|
|
|
|
];
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
|
|
|
|
2019-09-30 12:13:55 +03:00
|
|
|
static get byteDepth() { return 2; } // We are working with 16-bit samples.
|
2019-09-27 12:29:08 +03:00
|
|
|
static get headSize() { return 8; } // Number of bytes in the header of ADPCM.
|
|
|
|
static get chunkLenSize() { return 4; } // Length in bytes of the chunk length field in header.
|
|
|
|
static get compFact() { return 4; } // In general ADPCM compresses by a factor of 4.
|
2019-09-27 09:06:25 +03:00
|
|
|
|
|
|
|
// decodeSample takes 4 bits which represents a single ADPCM nibble, and returns a 16 bit decoded PCM sample.
|
|
|
|
decodeSample(nibble) {
|
|
|
|
let diff = 0;
|
|
|
|
if ((nibble & 4) != 0) {
|
|
|
|
diff += this.step;
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
2019-09-27 09:06:25 +03:00
|
|
|
if ((nibble & 2) != 0) {
|
|
|
|
diff += this.step >> 1;
|
|
|
|
}
|
|
|
|
if ((nibble & 1) != 0) {
|
|
|
|
diff += this.step >> 2;
|
|
|
|
}
|
|
|
|
diff += this.step >> 3;
|
2019-09-24 10:45:58 +03:00
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
if ((nibble & 8) != 0) {
|
|
|
|
diff = -diff;
|
|
|
|
}
|
|
|
|
this.est += diff;
|
|
|
|
this.idx += Decoder.indexTable[nibble];
|
2019-09-24 10:45:58 +03:00
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
if (this.idx < 0) {
|
|
|
|
this.idx = 0;
|
|
|
|
} else if (this.idx > Decoder.stepTable.length - 1) {
|
|
|
|
this.idx = Decoder.stepTable.length - 1;
|
|
|
|
}
|
2019-09-24 10:45:58 +03:00
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
this.step = Decoder.stepTable[this.idx];
|
2019-09-24 10:45:58 +03:00
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
return this.est;
|
|
|
|
}
|
2019-09-24 10:45:58 +03:00
|
|
|
|
2019-09-27 09:06:25 +03:00
|
|
|
// decode takes an array of bytes of arbitrary length representing adpcm and decodes it into pcm.
|
|
|
|
decode(b) {
|
2019-09-30 12:13:55 +03:00
|
|
|
let result = new Uint16Array(Decoder.decBytes(b)/Decoder.byteDepth);
|
|
|
|
let resultOff = 0;
|
2019-09-27 09:06:25 +03:00
|
|
|
// Iterate over each chunk and decode it.
|
|
|
|
let chunkLen;
|
|
|
|
for (let off = 0; off + Decoder.headSize <= b.length; off += chunkLen) {
|
|
|
|
// Read length of chunk and check if whole chunk exists.
|
|
|
|
chunkLen = Decoder.bytesToInt32(b.slice(off, off + Decoder.chunkLenSize))
|
|
|
|
if (off + chunkLen > b.length) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-09-30 12:13:55 +03:00
|
|
|
// Initialize Decoder.
|
2019-09-27 09:06:25 +03:00
|
|
|
this.est = Decoder.bytesToInt16(b.slice(off + Decoder.chunkLenSize, off + Decoder.chunkLenSize + Decoder.byteDepth));
|
|
|
|
this.idx = b[off + Decoder.chunkLenSize + Decoder.byteDepth];
|
|
|
|
this.step = Decoder.stepTable[this.idx];
|
|
|
|
|
2019-09-30 12:13:55 +03:00
|
|
|
result[resultOff] = Decoder.bytesToInt16(b.slice(off + Decoder.chunkLenSize, off + Decoder.chunkLenSize + Decoder.byteDepth));
|
|
|
|
resultOff++;
|
2019-09-27 09:06:25 +03:00
|
|
|
|
|
|
|
for (let i = off + Decoder.headSize; i < off + chunkLen - b[off + Decoder.chunkLenSize + 3]; i++) {
|
|
|
|
let twoNibs = b[i];
|
|
|
|
let nib2 = twoNibs >> 4;
|
|
|
|
let nib1 = (nib2 << 4) ^ twoNibs;
|
|
|
|
|
2019-09-30 12:13:55 +03:00
|
|
|
let sample1 = this.decodeSample(nib1);
|
|
|
|
result[resultOff] = sample1;
|
|
|
|
resultOff++;
|
|
|
|
|
|
|
|
let sample2 = this.decodeSample(nib2);
|
|
|
|
result[resultOff] = sample2;
|
|
|
|
resultOff++;
|
2019-09-27 09:06:25 +03:00
|
|
|
}
|
|
|
|
if (b[off + Decoder.chunkLenSize + 3] == 1) {
|
|
|
|
let padNib = b[off + chunkLen - 1];
|
2019-09-30 12:13:55 +03:00
|
|
|
let sample = this.decodeSample(padNib);
|
|
|
|
result[resultOff] = sample;
|
|
|
|
resultOff++;
|
2019-09-27 09:06:25 +03:00
|
|
|
}
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
2019-09-27 09:06:25 +03:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// bytesToInt16 takes an array of bytes (assumed to be values between 0 and 255), interprates them as little endian and converts it to an int16.
|
|
|
|
static bytesToInt16(b) {
|
|
|
|
return (b[0] | (b[1] << 8));
|
|
|
|
}
|
|
|
|
|
|
|
|
// bytesToInt32 takes an array of bytes (assumed to be values between 0 and 255), interprates them as little endian and converts it to an int32.
|
|
|
|
static bytesToInt32(b) {
|
|
|
|
return (b[0] |
|
|
|
|
(b[1] << 8) |
|
|
|
|
(b[2] << 16) |
|
|
|
|
(b[3] << 24));
|
2019-09-24 10:45:58 +03:00
|
|
|
}
|
2019-09-27 12:29:08 +03:00
|
|
|
|
|
|
|
// decBytes takes a parameter that is assumed to be a byte array containing one or more adpcm chunks.
|
|
|
|
// It reads the chunk lengths from the chunk headers to calculate and return the number of pcm bytes that are expected to be decoded from the adpcm.
|
|
|
|
static decBytes(b){
|
|
|
|
let chunkLen;
|
|
|
|
let n = 0;
|
|
|
|
for (let off = 0; off + Decoder.headSize <= b.length; off += chunkLen) {
|
|
|
|
chunkLen = Decoder.bytesToInt32(b.slice(off, off + Decoder.chunkLenSize))
|
|
|
|
if (off + chunkLen > b.length) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Account for uncompressed sample in header.
|
|
|
|
n += Decoder.byteDepth;
|
|
|
|
// Account for PCM bytes that will result from decoding ADPCM.
|
|
|
|
n += (chunkLen - Decoder.headSize)*Decoder.compFact;
|
|
|
|
// Account for padding.
|
|
|
|
if(b[off+Decoder.chunkLenSize+3] == 0x01){
|
|
|
|
n -= Decoder.byteDepth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return n;
|
|
|
|
}
|
2019-09-14 16:05:37 +03:00
|
|
|
}
|