forked from mirror/rtred
tests
This commit is contained in:
parent
4b59667297
commit
b107275c30
2
gen.sh
2
gen.sh
|
@ -21,7 +21,7 @@ gen(){
|
|||
}
|
||||
|
||||
for i in {1..4}; do
|
||||
gen $i true
|
||||
#gen $i true
|
||||
gen $i false
|
||||
done
|
||||
|
||||
|
|
|
@ -0,0 +1,226 @@
|
|||
package rtree
|
||||
|
||||
import (
|
||||
d1 "d1"
|
||||
d2 "d2"
|
||||
d3 "d3"
|
||||
d4 "d4"
|
||||
"math"
|
||||
)
|
||||
|
||||
type Iterator func(item Item) bool
|
||||
type Item interface {
|
||||
Rect() (min []float64, max []float64)
|
||||
}
|
||||
|
||||
type RTree struct {
|
||||
tr1 *d1.RTree
|
||||
tr2 *d2.RTree
|
||||
tr3 *d3.RTree
|
||||
tr4 *d4.RTree
|
||||
}
|
||||
|
||||
func New() *RTree {
|
||||
return &RTree{
|
||||
tr1: d1.NewRTree(),
|
||||
tr2: d2.NewRTree(),
|
||||
tr3: d3.NewRTree(),
|
||||
tr4: d4.NewRTree(),
|
||||
}
|
||||
}
|
||||
|
||||
func (tr *RTree) Insert(item Item) {
|
||||
if item == nil {
|
||||
panic("nil item being added to RTree")
|
||||
}
|
||||
min, max := item.Rect()
|
||||
if len(min) != len(max) {
|
||||
panic("invalid item rectangle")
|
||||
}
|
||||
switch len(min) {
|
||||
default:
|
||||
panic("invalid dimension")
|
||||
case 1:
|
||||
var amin, amax [1]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr1.Insert(amin, amax, item)
|
||||
case 2:
|
||||
var amin, amax [2]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr2.Insert(amin, amax, item)
|
||||
case 3:
|
||||
var amin, amax [3]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr3.Insert(amin, amax, item)
|
||||
case 4:
|
||||
var amin, amax [4]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr4.Insert(amin, amax, item)
|
||||
}
|
||||
}
|
||||
|
||||
func (tr *RTree) Remove(item Item) {
|
||||
if item == nil {
|
||||
panic("nil item being added to RTree")
|
||||
}
|
||||
min, max := item.Rect()
|
||||
if len(min) != len(max) {
|
||||
panic("invalid item rectangle")
|
||||
}
|
||||
switch len(min) {
|
||||
default:
|
||||
panic("invalid dimension")
|
||||
case 1:
|
||||
var amin, amax [1]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr1.Remove(amin, amax, item)
|
||||
case 2:
|
||||
var amin, amax [2]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr2.Remove(amin, amax, item)
|
||||
case 3:
|
||||
var amin, amax [3]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr3.Remove(amin, amax, item)
|
||||
case 4:
|
||||
var amin, amax [4]float64
|
||||
for i := 0; i < len(min); i++ {
|
||||
amin[i], amax[i] = min[i], max[i]
|
||||
}
|
||||
tr.tr4.Remove(amin, amax, item)
|
||||
}
|
||||
}
|
||||
func (tr *RTree) Reset() {
|
||||
tr.tr1 = d1.NewRTree()
|
||||
tr.tr2 = d2.NewRTree()
|
||||
tr.tr3 = d3.NewRTree()
|
||||
tr.tr4 = d4.NewRTree()
|
||||
}
|
||||
func (tr *RTree) Count() int {
|
||||
return tr.tr1.Count() + tr.tr2.Count() + tr.tr3.Count() + tr.tr4.Count()
|
||||
}
|
||||
func (tr *RTree) Search(bounds Item, iter Iterator) {
|
||||
if bounds == nil {
|
||||
panic("nil item being added to RTree")
|
||||
}
|
||||
min, max := bounds.Rect()
|
||||
if len(min) != len(max) {
|
||||
panic("invalid item rectangle")
|
||||
}
|
||||
switch len(min) {
|
||||
default:
|
||||
panic("invalid dimension")
|
||||
case 1, 2, 3, 4:
|
||||
}
|
||||
if !tr.search1(min, max, iter) {
|
||||
return
|
||||
}
|
||||
if !tr.search2(min, max, iter) {
|
||||
return
|
||||
}
|
||||
if !tr.search3(min, max, iter) {
|
||||
return
|
||||
}
|
||||
if !tr.search4(min, max, iter) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
func (tr *RTree) search1(min, max []float64, iter Iterator) bool {
|
||||
var amin, amax [1]float64
|
||||
for i := 0; i < 1; i++ {
|
||||
if i < len(min) {
|
||||
amin[i] = min[i]
|
||||
amax[i] = max[i]
|
||||
} else {
|
||||
amin[i] = math.Inf(-1)
|
||||
amax[i] = math.Inf(+1)
|
||||
}
|
||||
}
|
||||
ended := false
|
||||
tr.tr1.Search(amin, amax, func(dataID, context interface{}) bool {
|
||||
if !iter(dataID.(Item)) {
|
||||
ended = true
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}, nil)
|
||||
return !ended
|
||||
}
|
||||
func (tr *RTree) search2(min, max []float64, iter Iterator) bool {
|
||||
var amin, amax [2]float64
|
||||
for i := 0; i < 2; i++ {
|
||||
if i < len(min) {
|
||||
amin[i] = min[i]
|
||||
amax[i] = max[i]
|
||||
} else {
|
||||
amin[i] = math.Inf(-1)
|
||||
amax[i] = math.Inf(+1)
|
||||
}
|
||||
}
|
||||
ended := false
|
||||
tr.tr2.Search(amin, amax, func(dataID, context interface{}) bool {
|
||||
if !iter(dataID.(Item)) {
|
||||
ended = true
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}, nil)
|
||||
return !ended
|
||||
}
|
||||
func (tr *RTree) search3(min, max []float64, iter Iterator) bool {
|
||||
var amin, amax [3]float64
|
||||
for i := 0; i < 3; i++ {
|
||||
if i < len(min) {
|
||||
amin[i] = min[i]
|
||||
amax[i] = max[i]
|
||||
} else {
|
||||
amin[i] = math.Inf(-1)
|
||||
amax[i] = math.Inf(+1)
|
||||
}
|
||||
}
|
||||
ended := false
|
||||
tr.tr3.Search(amin, amax, func(dataID, context interface{}) bool {
|
||||
if !iter(dataID.(Item)) {
|
||||
ended = true
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}, nil)
|
||||
return !ended
|
||||
}
|
||||
func (tr *RTree) search4(min, max []float64, iter Iterator) bool {
|
||||
var amin, amax [4]float64
|
||||
for i := 0; i < 4; i++ {
|
||||
if i < len(min) {
|
||||
amin[i] = min[i]
|
||||
amax[i] = max[i]
|
||||
} else {
|
||||
amin[i] = math.Inf(-1)
|
||||
amax[i] = math.Inf(+1)
|
||||
}
|
||||
}
|
||||
ended := false
|
||||
tr.tr4.Search(amin, amax, func(dataID, context interface{}) bool {
|
||||
if !iter(dataID.(Item)) {
|
||||
ended = true
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}, nil)
|
||||
return !ended
|
||||
}
|
|
@ -56,7 +56,7 @@ const (
|
|||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
type ResultCallback func(dataID, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
package rtree
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
|
||||
type tRect []float64
|
||||
|
||||
func (r *tRect) Arr() []float64 {
|
||||
return []float64(*r)
|
||||
}
|
||||
func (r *tRect) Rect() (min, max []float64) {
|
||||
return r.Arr()[:len(r.Arr())/2], r.Arr()[len(r.Arr())/2:]
|
||||
}
|
||||
|
||||
func (r *tRect) String() string {
|
||||
min, max := r.Rect()
|
||||
return fmt.Sprintf("%v,%v", min, max)
|
||||
}
|
||||
func tRandRect(dims int) *tRect {
|
||||
if dims == -1 {
|
||||
dims = rand.Int()%4 + 1
|
||||
}
|
||||
r := tRect(make([]float64, dims*2))
|
||||
for j := 0; j < dims; j++ {
|
||||
minf := rand.Float64()*200 - 100
|
||||
maxf := rand.Float64()*200 - 100
|
||||
if minf > maxf {
|
||||
minf, maxf = maxf, minf
|
||||
}
|
||||
r[j] = minf
|
||||
r[dims+j] = maxf
|
||||
}
|
||||
return &r
|
||||
}
|
||||
func TestRTree(t *testing.T) {
|
||||
tr := New()
|
||||
|
||||
tr.Insert(&tRect{10, 10, 10, 10, 20, 20, 20, 20})
|
||||
tr.Insert(&tRect{10, 10, 10, 20, 20, 20})
|
||||
tr.Insert(&tRect{10, 10, 20, 20})
|
||||
tr.Insert(&tRect{10, 20})
|
||||
|
||||
if tr.Count() != 4 {
|
||||
t.Fatalf("expecting %v, got %v", 4, tr.Count())
|
||||
}
|
||||
|
||||
var count int
|
||||
tr.Search(&tRect{0, 0, 0, 100, 100, 5}, func(item Item) bool {
|
||||
count++
|
||||
return true
|
||||
})
|
||||
|
||||
if count != 2 {
|
||||
t.Fatalf("expecting %v, got %v", 2, count)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInsert(t *testing.T) {
|
||||
rand.Seed(time.Now().UnixNano())
|
||||
n := 50000
|
||||
tr := New()
|
||||
var r2arr []*tRect
|
||||
for i := 0; i < n; i++ {
|
||||
r := tRandRect(-1)
|
||||
if len(r.Arr()) == 4 {
|
||||
r2arr = append(r2arr, r)
|
||||
}
|
||||
tr.Insert(r)
|
||||
}
|
||||
if tr.Count() != n {
|
||||
t.Fatalf("expecting %v, got %v", n, tr.Count())
|
||||
}
|
||||
var count int
|
||||
tr.Search(&tRect{-100, -100, -100, -100, 100, 100, 100, 100}, func(item Item) bool {
|
||||
if len(item.(*tRect).Arr()) == 4 {
|
||||
count++
|
||||
}
|
||||
return true
|
||||
})
|
||||
p := float64(count) / float64(n)
|
||||
|
||||
if p < .23 || p > .27 {
|
||||
t.Fatalf("bad random range, expected between 0.24-0.26, got %v", p)
|
||||
}
|
||||
for _, r := range r2arr {
|
||||
tr.Remove(r)
|
||||
}
|
||||
total := tr.Count() + count
|
||||
if total != n {
|
||||
t.Fatalf("expected %v, got %v", n, total)
|
||||
}
|
||||
}
|
|
@ -56,7 +56,7 @@ const (
|
|||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
type ResultCallback func(dataID, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
|
|
|
@ -1,815 +0,0 @@
|
|||
//generated; DO NOT EDIT!
|
||||
|
||||
/*
|
||||
|
||||
TITLE
|
||||
|
||||
R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
A Go version of the RTree algorithm.
|
||||
For more information please read the comments in rtree.go
|
||||
|
||||
AUTHORS
|
||||
|
||||
* 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
|
||||
* 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
|
||||
* 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
|
||||
* 2004 Templated C++ port by Greg Douglas
|
||||
* 2016 Go port by Josh Baker
|
||||
|
||||
LICENSE:
|
||||
|
||||
Entirely free for all uses. Enjoy!
|
||||
|
||||
*/
|
||||
|
||||
// Implementation of RTree, a multidimensional bounding rectangle tree.
|
||||
package rtree
|
||||
|
||||
import "math"
|
||||
|
||||
func Min(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func ASSERT(condition bool) {
|
||||
if _DEBUG && !condition {
|
||||
panic("assertion failed")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
_DEBUG = true
|
||||
NUMDIMS = 1
|
||||
MAXNODES = 8
|
||||
MINNODES = MAXNODES / 2
|
||||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
func init() {
|
||||
// Precomputed volumes of the unit spheres for the first few dimensions
|
||||
unitSphereVolume = []float64{
|
||||
0.000000, 2.000000, 3.141593, // Dimension 0,1,2
|
||||
4.188790, 4.934802, 5.263789, // Dimension 3,4,5
|
||||
5.167713, 4.724766, 4.058712, // Dimension 6,7,8
|
||||
3.298509, 2.550164, 1.884104, // Dimension 9,10,11
|
||||
1.335263, 0.910629, 0.599265, // Dimension 12,13,14
|
||||
0.381443, 0.235331, 0.140981, // Dimension 15,16,17
|
||||
0.082146, 0.046622, 0.025807, // Dimension 18,19,20
|
||||
}[NUMDIMS]
|
||||
}
|
||||
|
||||
type RTree struct {
|
||||
root *Node ///< Root of tree
|
||||
unitSphereVolume float64 ///< Unit sphere constant for required number of dimensions
|
||||
}
|
||||
|
||||
/// Minimal bounding rectangle (n-dimensional)
|
||||
type Rect struct {
|
||||
min [NUMDIMS]float64 ///< Min dimensions of bounding box
|
||||
max [NUMDIMS]float64 ///< Max dimensions of bounding box
|
||||
}
|
||||
|
||||
/// May be data or may be another subtree
|
||||
/// The parents level determines this.
|
||||
/// If the parents level is 0, then this is data
|
||||
type Branch struct {
|
||||
rect Rect ///< Bounds
|
||||
child *Node ///< Child node
|
||||
data interface{} ///< Data Id or Ptr
|
||||
}
|
||||
|
||||
/// Node for each branch level
|
||||
type Node struct {
|
||||
count int ///< Count
|
||||
level int ///< Leaf is zero, others positive
|
||||
branch [MAXNODES]Branch ///< Branch
|
||||
}
|
||||
|
||||
func (node *Node) IsInternalNode() bool {
|
||||
return (node.level > 0) // Not a leaf, but a internal node
|
||||
}
|
||||
func (node *Node) IsLeaf() bool {
|
||||
return (node.level == 0) // A leaf, contains data
|
||||
}
|
||||
|
||||
/// A link list of nodes for reinsertion after a delete operation
|
||||
type ListNode struct {
|
||||
next *ListNode ///< Next in list
|
||||
node *Node ///< Node
|
||||
}
|
||||
|
||||
const NOT_TAKEN = -1 // indicates that position
|
||||
|
||||
/// Variables for finding a split partition
|
||||
type PartitionVars struct {
|
||||
partition [MAXNODES + 1]int
|
||||
total int
|
||||
minFill int
|
||||
count [2]int
|
||||
cover [2]Rect
|
||||
area [2]float64
|
||||
|
||||
branchBuf [MAXNODES + 1]Branch
|
||||
branchCount int
|
||||
coverSplit Rect
|
||||
coverSplitArea float64
|
||||
}
|
||||
|
||||
func NewRTree() *RTree {
|
||||
ASSERT(MAXNODES > MINNODES)
|
||||
ASSERT(MINNODES > 0)
|
||||
|
||||
// We only support machine word size simple data type eg. integer index or object pointer.
|
||||
// Since we are storing as union with non data branch
|
||||
//ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
|
||||
|
||||
return &RTree{
|
||||
root: &Node{},
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Insert(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var branch Branch
|
||||
branch.data = dataId
|
||||
branch.child = nil
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
branch.rect.min[axis] = min[axis]
|
||||
branch.rect.max[axis] = max[axis]
|
||||
}
|
||||
InsertRect(&branch, &tr.root, 0)
|
||||
}
|
||||
|
||||
/// Remove entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Remove(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
RemoveRect(&rect, dataId, &tr.root)
|
||||
}
|
||||
|
||||
/// Find all within search rectangle
|
||||
/// \param a_min Min of search bounding rect
|
||||
/// \param a_max Max of search bounding rect
|
||||
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
|
||||
/// \param a_context User context to pass as parameter to a_resultCallback
|
||||
/// \return Returns the number of entries found
|
||||
func (tr *RTree) Search(min, max [NUMDIMS]float64, resultCallback ResultCallback, context interface{}) int {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
|
||||
|
||||
foundCount := 0
|
||||
Search(tr.root, &rect, &foundCount, resultCallback, context)
|
||||
return foundCount
|
||||
}
|
||||
|
||||
/// Count the data elements in this container. This is slow as no internal counter is maintained.
|
||||
func (tr *RTree) Count() int {
|
||||
var count int
|
||||
CountRec(tr.root, &count)
|
||||
return count
|
||||
}
|
||||
|
||||
func CountRec(node *Node, count *int) {
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
CountRec(node.branch[index].child, count)
|
||||
}
|
||||
} else { // A leaf node
|
||||
*count += node.count
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove all entries from tree
|
||||
func (tr *RTree) RemoveAll() {
|
||||
// Delete all existing nodes
|
||||
tr.root = &Node{}
|
||||
}
|
||||
|
||||
func InitNode(node *Node) {
|
||||
node.count = 0
|
||||
node.level = -1
|
||||
}
|
||||
|
||||
func InitRect(rect *Rect) {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
rect.min[index] = 0
|
||||
rect.max[index] = 0
|
||||
}
|
||||
}
|
||||
|
||||
// Inserts a new data rectangle into the index structure.
|
||||
// Recursively descends tree, propagates splits back up.
|
||||
// Returns 0 if node was not split. Old node updated.
|
||||
// If node was split, returns 1 and sets the pointer pointed to by
|
||||
// new_node to point to the new node. Old node updated to become one of two.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
func InsertRectRec(branch *Branch, node *Node, newNode **Node, level int) bool {
|
||||
ASSERT(node != nil && newNode != nil)
|
||||
ASSERT(level >= 0 && level <= node.level)
|
||||
|
||||
// recurse until we reach the correct level for the new record. data records
|
||||
// will always be called with a_level == 0 (leaf)
|
||||
if node.level > level {
|
||||
// Still above level for insertion, go down tree recursively
|
||||
var otherNode *Node
|
||||
//var newBranch Branch
|
||||
|
||||
// find the optimal branch for this record
|
||||
index := PickBranch(&branch.rect, node)
|
||||
|
||||
// recursively insert this record into the picked branch
|
||||
childWasSplit := InsertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
|
||||
if !childWasSplit {
|
||||
// Child was not split. Merge the bounding box of the new record with the
|
||||
// existing bounding box
|
||||
node.branch[index].rect = CombineRect(&branch.rect, &(node.branch[index].rect))
|
||||
return false
|
||||
} else {
|
||||
// Child was split. The old branches are now re-partitioned to two nodes
|
||||
// so we have to re-calculate the bounding boxes of each node
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
var newBranch Branch
|
||||
newBranch.child = otherNode
|
||||
newBranch.rect = NodeCover(otherNode)
|
||||
|
||||
// The old node is already a child of a_node. Now add the newly-created
|
||||
// node to a_node as well. a_node might be split because of that.
|
||||
return AddBranch(&newBranch, node, newNode)
|
||||
}
|
||||
} else if node.level == level {
|
||||
// We have reached level for insertion. Add rect, split if necessary
|
||||
return AddBranch(branch, node, newNode)
|
||||
} else {
|
||||
// Should never occur
|
||||
ASSERT(false)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// Insert a data rectangle into an index structure.
|
||||
// InsertRect provides for splitting the root;
|
||||
// returns 1 if root was split, 0 if it was not.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
// InsertRect2 does the recursion.
|
||||
//
|
||||
func InsertRect(branch *Branch, root **Node, level int) bool {
|
||||
ASSERT(root != nil)
|
||||
ASSERT(level >= 0 && level <= (*root).level)
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(branch.rect.min[index] <= branch.rect.max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
|
||||
var newNode *Node
|
||||
|
||||
if InsertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
|
||||
// Grow tree taller and new root
|
||||
newRoot := &Node{}
|
||||
newRoot.level = (*root).level + 1
|
||||
|
||||
var newBranch Branch
|
||||
|
||||
// add old root node as a child of the new root
|
||||
newBranch.rect = NodeCover(*root)
|
||||
newBranch.child = *root
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// add the split node as a child of the new root
|
||||
newBranch.rect = NodeCover(newNode)
|
||||
newBranch.child = newNode
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// set the new root as the root node
|
||||
*root = newRoot
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
// Find the smallest rectangle that includes all rectangles in branches of a node.
|
||||
func NodeCover(node *Node) Rect {
|
||||
ASSERT(node != nil)
|
||||
|
||||
rect := node.branch[0].rect
|
||||
for index := 1; index < node.count; index++ {
|
||||
rect = CombineRect(&rect, &(node.branch[index].rect))
|
||||
}
|
||||
|
||||
return rect
|
||||
}
|
||||
|
||||
// Add a branch to a node. Split the node if necessary.
|
||||
// Returns 0 if node not split. Old node updated.
|
||||
// Returns 1 if node split, sets *new_node to address of new node.
|
||||
// Old node updated, becomes one of two.
|
||||
func AddBranch(branch *Branch, node *Node, newNode **Node) bool {
|
||||
ASSERT(branch != nil)
|
||||
ASSERT(node != nil)
|
||||
|
||||
if node.count < MAXNODES { // Split won't be necessary
|
||||
|
||||
node.branch[node.count] = *branch
|
||||
node.count++
|
||||
|
||||
return false
|
||||
} else {
|
||||
ASSERT(newNode != nil)
|
||||
|
||||
SplitNode(node, branch, newNode)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Disconnect a dependent node.
|
||||
// Caller must return (or stop using iteration index) after this as count has changed
|
||||
func DisconnectBranch(node *Node, index int) {
|
||||
ASSERT(node != nil && (index >= 0) && (index < MAXNODES))
|
||||
ASSERT(node.count > 0)
|
||||
|
||||
// Remove element by swapping with the last element to prevent gaps in array
|
||||
node.branch[index] = node.branch[node.count-1]
|
||||
|
||||
node.count--
|
||||
}
|
||||
|
||||
// Pick a branch. Pick the one that will need the smallest increase
|
||||
// in area to accomodate the new rectangle. This will result in the
|
||||
// least total area for the covering rectangles in the current node.
|
||||
// In case of a tie, pick the one which was smaller before, to get
|
||||
// the best resolution when searching.
|
||||
func PickBranch(rect *Rect, node *Node) int {
|
||||
ASSERT(rect != nil && node != nil)
|
||||
|
||||
var firstTime bool = true
|
||||
var increase float64
|
||||
var bestIncr float64 = -1
|
||||
var area float64
|
||||
var bestArea float64
|
||||
var best int
|
||||
var tempRect Rect
|
||||
|
||||
for index := 0; index < node.count; index++ {
|
||||
curRect := &node.branch[index].rect
|
||||
area = CalcRectVolume(curRect)
|
||||
tempRect = CombineRect(rect, curRect)
|
||||
increase = CalcRectVolume(&tempRect) - area
|
||||
if (increase < bestIncr) || firstTime {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
firstTime = false
|
||||
} else if (increase == bestIncr) && (area < bestArea) {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
// Combine two rectangles into larger one containing both
|
||||
func CombineRect(rectA, rectB *Rect) Rect {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
var newRect Rect
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
newRect.min[index] = Min(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = Max(rectA.max[index], rectB.max[index])
|
||||
}
|
||||
|
||||
return newRect
|
||||
}
|
||||
|
||||
// Split a node.
|
||||
// Divides the nodes branches and the extra one between two nodes.
|
||||
// Old node is one of the new ones, and one really new one is created.
|
||||
// Tries more than one method for choosing a partition, uses best result.
|
||||
func SplitNode(node *Node, branch *Branch, newNode **Node) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
// Could just use local here, but member or external is faster since it is reused
|
||||
var localVars PartitionVars
|
||||
parVars := &localVars
|
||||
|
||||
// Load all the branches into a buffer, initialize old node
|
||||
GetBranches(node, branch, parVars)
|
||||
|
||||
// Find partition
|
||||
ChoosePartition(parVars, MINNODES)
|
||||
|
||||
// Create a new node to hold (about) half of the branches
|
||||
*newNode = &Node{}
|
||||
(*newNode).level = node.level
|
||||
|
||||
// Put branches from buffer into 2 nodes according to the chosen partition
|
||||
node.count = 0
|
||||
LoadNodes(node, *newNode, parVars)
|
||||
|
||||
ASSERT((node.count + (*newNode).count) == parVars.total)
|
||||
}
|
||||
|
||||
// Calculate the n-dimensional volume of a rectangle
|
||||
func RectVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var volume float64 = 1
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
volume *= rect.max[index] - rect.min[index]
|
||||
}
|
||||
|
||||
ASSERT(volume >= 0)
|
||||
|
||||
return volume
|
||||
}
|
||||
|
||||
// The exact volume of the bounding sphere for the given Rect
|
||||
func RectSphericalVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var sumOfSquares float64 = 0
|
||||
var radius float64
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
halfExtent := (rect.max[index] - rect.min[index]) * 0.5
|
||||
sumOfSquares += halfExtent * halfExtent
|
||||
}
|
||||
|
||||
radius = math.Sqrt(sumOfSquares)
|
||||
|
||||
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
|
||||
if NUMDIMS == 4 {
|
||||
return (radius * radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 3 {
|
||||
return (radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 2 {
|
||||
return (radius * radius * unitSphereVolume)
|
||||
} else {
|
||||
return (math.Pow(radius, NUMDIMS) * unitSphereVolume)
|
||||
}
|
||||
}
|
||||
|
||||
// Use one of the methods to calculate retangle volume
|
||||
func CalcRectVolume(rect *Rect) float64 {
|
||||
if USE_SPHERICAL_VOLUME {
|
||||
return RectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
} else { // RTREE_USE_SPHERICAL_VOLUME
|
||||
return RectVolume(rect) // Faster but can cause poor merges
|
||||
} // RTREE_USE_SPHERICAL_VOLUME
|
||||
}
|
||||
|
||||
// Load branch buffer with branches from full node plus the extra branch.
|
||||
func GetBranches(node *Node, branch *Branch, parVars *PartitionVars) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
ASSERT(node.count == MAXNODES)
|
||||
|
||||
// Load the branch buffer
|
||||
for index := 0; index < MAXNODES; index++ {
|
||||
parVars.branchBuf[index] = node.branch[index]
|
||||
}
|
||||
parVars.branchBuf[MAXNODES] = *branch
|
||||
parVars.branchCount = MAXNODES + 1
|
||||
|
||||
// Calculate rect containing all in the set
|
||||
parVars.coverSplit = parVars.branchBuf[0].rect
|
||||
for index := 1; index < MAXNODES+1; index++ {
|
||||
parVars.coverSplit = CombineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
}
|
||||
parVars.coverSplitArea = CalcRectVolume(&parVars.coverSplit)
|
||||
}
|
||||
|
||||
// Method #0 for choosing a partition:
|
||||
// As the seeds for the two groups, pick the two rects that would waste the
|
||||
// most area if covered by a single rectangle, i.e. evidently the worst pair
|
||||
// to have in the same group.
|
||||
// Of the remaining, one at a time is chosen to be put in one of the two groups.
|
||||
// The one chosen is the one with the greatest difference in area expansion
|
||||
// depending on which group - the rect most strongly attracted to one group
|
||||
// and repelled from the other.
|
||||
// If one group gets too full (more would force other group to violate min
|
||||
// fill requirement) then other group gets the rest.
|
||||
// These last are the ones that can go in either group most easily.
|
||||
func ChoosePartition(parVars *PartitionVars, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
var biggestDiff float64
|
||||
var group, chosen, betterGroup int
|
||||
|
||||
InitParVars(parVars, parVars.branchCount, minFill)
|
||||
PickSeeds(parVars)
|
||||
|
||||
for ((parVars.count[0] + parVars.count[1]) < parVars.total) &&
|
||||
(parVars.count[0] < (parVars.total - parVars.minFill)) &&
|
||||
(parVars.count[1] < (parVars.total - parVars.minFill)) {
|
||||
biggestDiff = -1
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
curRect := &parVars.branchBuf[index].rect
|
||||
rect0 := CombineRect(curRect, &parVars.cover[0])
|
||||
rect1 := CombineRect(curRect, &parVars.cover[1])
|
||||
growth0 := CalcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := CalcRectVolume(&rect1) - parVars.area[1]
|
||||
diff := growth1 - growth0
|
||||
if diff >= 0 {
|
||||
group = 0
|
||||
} else {
|
||||
group = 1
|
||||
diff = -diff
|
||||
}
|
||||
|
||||
if diff > biggestDiff {
|
||||
biggestDiff = diff
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
} else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) {
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
}
|
||||
}
|
||||
}
|
||||
Classify(chosen, betterGroup, parVars)
|
||||
}
|
||||
|
||||
// If one group too full, put remaining rects in the other
|
||||
if (parVars.count[0] + parVars.count[1]) < parVars.total {
|
||||
if parVars.count[0] >= parVars.total-parVars.minFill {
|
||||
group = 1
|
||||
} else {
|
||||
group = 0
|
||||
}
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
Classify(index, group, parVars)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT((parVars.count[0] + parVars.count[1]) == parVars.total)
|
||||
ASSERT((parVars.count[0] >= parVars.minFill) &&
|
||||
(parVars.count[1] >= parVars.minFill))
|
||||
}
|
||||
|
||||
// Copy branches from the buffer into two nodes according to the partition.
|
||||
func LoadNodes(nodeA, nodeB *Node, parVars *PartitionVars) {
|
||||
ASSERT(nodeA != nil)
|
||||
ASSERT(nodeB != nil)
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
ASSERT(parVars.partition[index] == 0 || parVars.partition[index] == 1)
|
||||
|
||||
targetNodeIndex := parVars.partition[index]
|
||||
targetNodes := []*Node{nodeA, nodeB}
|
||||
|
||||
// It is assured that AddBranch here will not cause a node split.
|
||||
nodeWasSplit := AddBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
ASSERT(!nodeWasSplit)
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize a PartitionVars structure.
|
||||
func InitParVars(parVars *PartitionVars, maxRects, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
parVars.count[0] = 0
|
||||
parVars.count[1] = 0
|
||||
parVars.area[0] = 0
|
||||
parVars.area[1] = 0
|
||||
parVars.total = maxRects
|
||||
parVars.minFill = minFill
|
||||
for index := 0; index < maxRects; index++ {
|
||||
parVars.partition[index] = NOT_TAKEN
|
||||
}
|
||||
}
|
||||
|
||||
func PickSeeds(parVars *PartitionVars) {
|
||||
var seed0, seed1 int
|
||||
var worst, waste float64
|
||||
var area [MAXNODES + 1]float64
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
area[index] = CalcRectVolume(&parVars.branchBuf[index].rect)
|
||||
}
|
||||
|
||||
worst = -parVars.coverSplitArea - 1
|
||||
for indexA := 0; indexA < parVars.total-1; indexA++ {
|
||||
for indexB := indexA + 1; indexB < parVars.total; indexB++ {
|
||||
oneRect := CombineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
if waste > worst {
|
||||
worst = waste
|
||||
seed0 = indexA
|
||||
seed1 = indexB
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Classify(seed0, 0, parVars)
|
||||
Classify(seed1, 1, parVars)
|
||||
}
|
||||
|
||||
// Put a branch in one of the groups.
|
||||
func Classify(index, group int, parVars *PartitionVars) {
|
||||
ASSERT(parVars != nil)
|
||||
ASSERT(NOT_TAKEN == parVars.partition[index])
|
||||
|
||||
parVars.partition[index] = group
|
||||
|
||||
// Calculate combined rect
|
||||
if parVars.count[group] == 0 {
|
||||
parVars.cover[group] = parVars.branchBuf[index].rect
|
||||
} else {
|
||||
parVars.cover[group] = CombineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
}
|
||||
|
||||
// Calculate volume of combined rect
|
||||
parVars.area[group] = CalcRectVolume(&parVars.cover[group])
|
||||
|
||||
parVars.count[group]++
|
||||
}
|
||||
|
||||
// Delete a data rectangle from an index structure.
|
||||
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
// RemoveRect provides for eliminating the root.
|
||||
func RemoveRect(rect *Rect, id interface{}, root **Node) bool {
|
||||
ASSERT(rect != nil && root != nil)
|
||||
ASSERT(*root != nil)
|
||||
|
||||
var reInsertList *ListNode
|
||||
|
||||
if !RemoveRectRec(rect, id, *root, &reInsertList) {
|
||||
// Found and deleted a data item
|
||||
// Reinsert any branches from eliminated nodes
|
||||
for reInsertList != nil {
|
||||
tempNode := reInsertList.node
|
||||
|
||||
for index := 0; index < tempNode.count; index++ {
|
||||
// TODO go over this code. should I use (tempNode->m_level - 1)?
|
||||
InsertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
}
|
||||
reInsertList = reInsertList.next
|
||||
}
|
||||
|
||||
// Check for redundant root (not leaf, 1 child) and eliminate TODO replace
|
||||
// if with while? In case there is a whole branch of redundant roots...
|
||||
if (*root).count == 1 && (*root).IsInternalNode() {
|
||||
tempNode := (*root).branch[0].child
|
||||
|
||||
ASSERT(tempNode != nil)
|
||||
*root = tempNode
|
||||
}
|
||||
return false
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Delete a rectangle from non-root part of an index structure.
|
||||
// Called by RemoveRect. Descends tree recursively,
|
||||
// merges branches on the way back up.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
func RemoveRectRec(rect *Rect, id interface{}, node *Node, listNode **ListNode) bool {
|
||||
ASSERT(rect != nil && node != nil && listNode != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &(node.branch[index].rect)) {
|
||||
if !RemoveRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= MINNODES {
|
||||
// child removed, just resize parent rect
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
} else {
|
||||
// child removed, not enough entries in node, eliminate node
|
||||
ReInsert(node.branch[index].child, listNode)
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
}
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
} else { // A leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if node.branch[index].data == id {
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Decide whether two rectangles overlap.
|
||||
func Overlap(rectA, rectB *Rect) bool {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
if rectA.min[index] > rectB.max[index] ||
|
||||
rectB.min[index] > rectA.max[index] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Add a node to the reinsertion list. All its branches will later
|
||||
// be reinserted into the index structure.
|
||||
func ReInsert(node *Node, listNode **ListNode) {
|
||||
newListNode := &ListNode{}
|
||||
newListNode.node = node
|
||||
newListNode.next = *listNode
|
||||
*listNode = newListNode
|
||||
}
|
||||
|
||||
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
|
||||
func Search(node *Node, rect *Rect, foundCount *int, resultCallback ResultCallback, context interface{}) bool {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
ASSERT(rect != nil)
|
||||
|
||||
if node.IsInternalNode() {
|
||||
// This is an internal node in the tree
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
if !Search(node.branch[index].child, rect, foundCount, resultCallback, context) {
|
||||
// The callback indicated to stop searching
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// This is a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
id := node.branch[index].data
|
||||
|
||||
// NOTE: There are different ways to return results. Here's where to modify
|
||||
|
||||
*foundCount++
|
||||
if !resultCallback(id, context) {
|
||||
return false // Don't continue searching
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true // Continue searching
|
||||
}
|
|
@ -56,7 +56,7 @@ const (
|
|||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
type ResultCallback func(dataID, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
|
|
|
@ -1,815 +0,0 @@
|
|||
//generated; DO NOT EDIT!
|
||||
|
||||
/*
|
||||
|
||||
TITLE
|
||||
|
||||
R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
A Go version of the RTree algorithm.
|
||||
For more information please read the comments in rtree.go
|
||||
|
||||
AUTHORS
|
||||
|
||||
* 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
|
||||
* 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
|
||||
* 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
|
||||
* 2004 Templated C++ port by Greg Douglas
|
||||
* 2016 Go port by Josh Baker
|
||||
|
||||
LICENSE:
|
||||
|
||||
Entirely free for all uses. Enjoy!
|
||||
|
||||
*/
|
||||
|
||||
// Implementation of RTree, a multidimensional bounding rectangle tree.
|
||||
package rtree
|
||||
|
||||
import "math"
|
||||
|
||||
func Min(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func ASSERT(condition bool) {
|
||||
if _DEBUG && !condition {
|
||||
panic("assertion failed")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
_DEBUG = true
|
||||
NUMDIMS = 2
|
||||
MAXNODES = 8
|
||||
MINNODES = MAXNODES / 2
|
||||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
func init() {
|
||||
// Precomputed volumes of the unit spheres for the first few dimensions
|
||||
unitSphereVolume = []float64{
|
||||
0.000000, 2.000000, 3.141593, // Dimension 0,1,2
|
||||
4.188790, 4.934802, 5.263789, // Dimension 3,4,5
|
||||
5.167713, 4.724766, 4.058712, // Dimension 6,7,8
|
||||
3.298509, 2.550164, 1.884104, // Dimension 9,10,11
|
||||
1.335263, 0.910629, 0.599265, // Dimension 12,13,14
|
||||
0.381443, 0.235331, 0.140981, // Dimension 15,16,17
|
||||
0.082146, 0.046622, 0.025807, // Dimension 18,19,20
|
||||
}[NUMDIMS]
|
||||
}
|
||||
|
||||
type RTree struct {
|
||||
root *Node ///< Root of tree
|
||||
unitSphereVolume float64 ///< Unit sphere constant for required number of dimensions
|
||||
}
|
||||
|
||||
/// Minimal bounding rectangle (n-dimensional)
|
||||
type Rect struct {
|
||||
min [NUMDIMS]float64 ///< Min dimensions of bounding box
|
||||
max [NUMDIMS]float64 ///< Max dimensions of bounding box
|
||||
}
|
||||
|
||||
/// May be data or may be another subtree
|
||||
/// The parents level determines this.
|
||||
/// If the parents level is 0, then this is data
|
||||
type Branch struct {
|
||||
rect Rect ///< Bounds
|
||||
child *Node ///< Child node
|
||||
data interface{} ///< Data Id or Ptr
|
||||
}
|
||||
|
||||
/// Node for each branch level
|
||||
type Node struct {
|
||||
count int ///< Count
|
||||
level int ///< Leaf is zero, others positive
|
||||
branch [MAXNODES]Branch ///< Branch
|
||||
}
|
||||
|
||||
func (node *Node) IsInternalNode() bool {
|
||||
return (node.level > 0) // Not a leaf, but a internal node
|
||||
}
|
||||
func (node *Node) IsLeaf() bool {
|
||||
return (node.level == 0) // A leaf, contains data
|
||||
}
|
||||
|
||||
/// A link list of nodes for reinsertion after a delete operation
|
||||
type ListNode struct {
|
||||
next *ListNode ///< Next in list
|
||||
node *Node ///< Node
|
||||
}
|
||||
|
||||
const NOT_TAKEN = -1 // indicates that position
|
||||
|
||||
/// Variables for finding a split partition
|
||||
type PartitionVars struct {
|
||||
partition [MAXNODES + 1]int
|
||||
total int
|
||||
minFill int
|
||||
count [2]int
|
||||
cover [2]Rect
|
||||
area [2]float64
|
||||
|
||||
branchBuf [MAXNODES + 1]Branch
|
||||
branchCount int
|
||||
coverSplit Rect
|
||||
coverSplitArea float64
|
||||
}
|
||||
|
||||
func NewRTree() *RTree {
|
||||
ASSERT(MAXNODES > MINNODES)
|
||||
ASSERT(MINNODES > 0)
|
||||
|
||||
// We only support machine word size simple data type eg. integer index or object pointer.
|
||||
// Since we are storing as union with non data branch
|
||||
//ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
|
||||
|
||||
return &RTree{
|
||||
root: &Node{},
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Insert(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var branch Branch
|
||||
branch.data = dataId
|
||||
branch.child = nil
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
branch.rect.min[axis] = min[axis]
|
||||
branch.rect.max[axis] = max[axis]
|
||||
}
|
||||
InsertRect(&branch, &tr.root, 0)
|
||||
}
|
||||
|
||||
/// Remove entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Remove(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
RemoveRect(&rect, dataId, &tr.root)
|
||||
}
|
||||
|
||||
/// Find all within search rectangle
|
||||
/// \param a_min Min of search bounding rect
|
||||
/// \param a_max Max of search bounding rect
|
||||
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
|
||||
/// \param a_context User context to pass as parameter to a_resultCallback
|
||||
/// \return Returns the number of entries found
|
||||
func (tr *RTree) Search(min, max [NUMDIMS]float64, resultCallback ResultCallback, context interface{}) int {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
|
||||
|
||||
foundCount := 0
|
||||
Search(tr.root, &rect, &foundCount, resultCallback, context)
|
||||
return foundCount
|
||||
}
|
||||
|
||||
/// Count the data elements in this container. This is slow as no internal counter is maintained.
|
||||
func (tr *RTree) Count() int {
|
||||
var count int
|
||||
CountRec(tr.root, &count)
|
||||
return count
|
||||
}
|
||||
|
||||
func CountRec(node *Node, count *int) {
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
CountRec(node.branch[index].child, count)
|
||||
}
|
||||
} else { // A leaf node
|
||||
*count += node.count
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove all entries from tree
|
||||
func (tr *RTree) RemoveAll() {
|
||||
// Delete all existing nodes
|
||||
tr.root = &Node{}
|
||||
}
|
||||
|
||||
func InitNode(node *Node) {
|
||||
node.count = 0
|
||||
node.level = -1
|
||||
}
|
||||
|
||||
func InitRect(rect *Rect) {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
rect.min[index] = 0
|
||||
rect.max[index] = 0
|
||||
}
|
||||
}
|
||||
|
||||
// Inserts a new data rectangle into the index structure.
|
||||
// Recursively descends tree, propagates splits back up.
|
||||
// Returns 0 if node was not split. Old node updated.
|
||||
// If node was split, returns 1 and sets the pointer pointed to by
|
||||
// new_node to point to the new node. Old node updated to become one of two.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
func InsertRectRec(branch *Branch, node *Node, newNode **Node, level int) bool {
|
||||
ASSERT(node != nil && newNode != nil)
|
||||
ASSERT(level >= 0 && level <= node.level)
|
||||
|
||||
// recurse until we reach the correct level for the new record. data records
|
||||
// will always be called with a_level == 0 (leaf)
|
||||
if node.level > level {
|
||||
// Still above level for insertion, go down tree recursively
|
||||
var otherNode *Node
|
||||
//var newBranch Branch
|
||||
|
||||
// find the optimal branch for this record
|
||||
index := PickBranch(&branch.rect, node)
|
||||
|
||||
// recursively insert this record into the picked branch
|
||||
childWasSplit := InsertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
|
||||
if !childWasSplit {
|
||||
// Child was not split. Merge the bounding box of the new record with the
|
||||
// existing bounding box
|
||||
node.branch[index].rect = CombineRect(&branch.rect, &(node.branch[index].rect))
|
||||
return false
|
||||
} else {
|
||||
// Child was split. The old branches are now re-partitioned to two nodes
|
||||
// so we have to re-calculate the bounding boxes of each node
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
var newBranch Branch
|
||||
newBranch.child = otherNode
|
||||
newBranch.rect = NodeCover(otherNode)
|
||||
|
||||
// The old node is already a child of a_node. Now add the newly-created
|
||||
// node to a_node as well. a_node might be split because of that.
|
||||
return AddBranch(&newBranch, node, newNode)
|
||||
}
|
||||
} else if node.level == level {
|
||||
// We have reached level for insertion. Add rect, split if necessary
|
||||
return AddBranch(branch, node, newNode)
|
||||
} else {
|
||||
// Should never occur
|
||||
ASSERT(false)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// Insert a data rectangle into an index structure.
|
||||
// InsertRect provides for splitting the root;
|
||||
// returns 1 if root was split, 0 if it was not.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
// InsertRect2 does the recursion.
|
||||
//
|
||||
func InsertRect(branch *Branch, root **Node, level int) bool {
|
||||
ASSERT(root != nil)
|
||||
ASSERT(level >= 0 && level <= (*root).level)
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(branch.rect.min[index] <= branch.rect.max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
|
||||
var newNode *Node
|
||||
|
||||
if InsertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
|
||||
// Grow tree taller and new root
|
||||
newRoot := &Node{}
|
||||
newRoot.level = (*root).level + 1
|
||||
|
||||
var newBranch Branch
|
||||
|
||||
// add old root node as a child of the new root
|
||||
newBranch.rect = NodeCover(*root)
|
||||
newBranch.child = *root
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// add the split node as a child of the new root
|
||||
newBranch.rect = NodeCover(newNode)
|
||||
newBranch.child = newNode
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// set the new root as the root node
|
||||
*root = newRoot
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
// Find the smallest rectangle that includes all rectangles in branches of a node.
|
||||
func NodeCover(node *Node) Rect {
|
||||
ASSERT(node != nil)
|
||||
|
||||
rect := node.branch[0].rect
|
||||
for index := 1; index < node.count; index++ {
|
||||
rect = CombineRect(&rect, &(node.branch[index].rect))
|
||||
}
|
||||
|
||||
return rect
|
||||
}
|
||||
|
||||
// Add a branch to a node. Split the node if necessary.
|
||||
// Returns 0 if node not split. Old node updated.
|
||||
// Returns 1 if node split, sets *new_node to address of new node.
|
||||
// Old node updated, becomes one of two.
|
||||
func AddBranch(branch *Branch, node *Node, newNode **Node) bool {
|
||||
ASSERT(branch != nil)
|
||||
ASSERT(node != nil)
|
||||
|
||||
if node.count < MAXNODES { // Split won't be necessary
|
||||
|
||||
node.branch[node.count] = *branch
|
||||
node.count++
|
||||
|
||||
return false
|
||||
} else {
|
||||
ASSERT(newNode != nil)
|
||||
|
||||
SplitNode(node, branch, newNode)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Disconnect a dependent node.
|
||||
// Caller must return (or stop using iteration index) after this as count has changed
|
||||
func DisconnectBranch(node *Node, index int) {
|
||||
ASSERT(node != nil && (index >= 0) && (index < MAXNODES))
|
||||
ASSERT(node.count > 0)
|
||||
|
||||
// Remove element by swapping with the last element to prevent gaps in array
|
||||
node.branch[index] = node.branch[node.count-1]
|
||||
|
||||
node.count--
|
||||
}
|
||||
|
||||
// Pick a branch. Pick the one that will need the smallest increase
|
||||
// in area to accomodate the new rectangle. This will result in the
|
||||
// least total area for the covering rectangles in the current node.
|
||||
// In case of a tie, pick the one which was smaller before, to get
|
||||
// the best resolution when searching.
|
||||
func PickBranch(rect *Rect, node *Node) int {
|
||||
ASSERT(rect != nil && node != nil)
|
||||
|
||||
var firstTime bool = true
|
||||
var increase float64
|
||||
var bestIncr float64 = -1
|
||||
var area float64
|
||||
var bestArea float64
|
||||
var best int
|
||||
var tempRect Rect
|
||||
|
||||
for index := 0; index < node.count; index++ {
|
||||
curRect := &node.branch[index].rect
|
||||
area = CalcRectVolume(curRect)
|
||||
tempRect = CombineRect(rect, curRect)
|
||||
increase = CalcRectVolume(&tempRect) - area
|
||||
if (increase < bestIncr) || firstTime {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
firstTime = false
|
||||
} else if (increase == bestIncr) && (area < bestArea) {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
// Combine two rectangles into larger one containing both
|
||||
func CombineRect(rectA, rectB *Rect) Rect {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
var newRect Rect
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
newRect.min[index] = Min(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = Max(rectA.max[index], rectB.max[index])
|
||||
}
|
||||
|
||||
return newRect
|
||||
}
|
||||
|
||||
// Split a node.
|
||||
// Divides the nodes branches and the extra one between two nodes.
|
||||
// Old node is one of the new ones, and one really new one is created.
|
||||
// Tries more than one method for choosing a partition, uses best result.
|
||||
func SplitNode(node *Node, branch *Branch, newNode **Node) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
// Could just use local here, but member or external is faster since it is reused
|
||||
var localVars PartitionVars
|
||||
parVars := &localVars
|
||||
|
||||
// Load all the branches into a buffer, initialize old node
|
||||
GetBranches(node, branch, parVars)
|
||||
|
||||
// Find partition
|
||||
ChoosePartition(parVars, MINNODES)
|
||||
|
||||
// Create a new node to hold (about) half of the branches
|
||||
*newNode = &Node{}
|
||||
(*newNode).level = node.level
|
||||
|
||||
// Put branches from buffer into 2 nodes according to the chosen partition
|
||||
node.count = 0
|
||||
LoadNodes(node, *newNode, parVars)
|
||||
|
||||
ASSERT((node.count + (*newNode).count) == parVars.total)
|
||||
}
|
||||
|
||||
// Calculate the n-dimensional volume of a rectangle
|
||||
func RectVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var volume float64 = 1
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
volume *= rect.max[index] - rect.min[index]
|
||||
}
|
||||
|
||||
ASSERT(volume >= 0)
|
||||
|
||||
return volume
|
||||
}
|
||||
|
||||
// The exact volume of the bounding sphere for the given Rect
|
||||
func RectSphericalVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var sumOfSquares float64 = 0
|
||||
var radius float64
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
halfExtent := (rect.max[index] - rect.min[index]) * 0.5
|
||||
sumOfSquares += halfExtent * halfExtent
|
||||
}
|
||||
|
||||
radius = math.Sqrt(sumOfSquares)
|
||||
|
||||
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
|
||||
if NUMDIMS == 4 {
|
||||
return (radius * radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 3 {
|
||||
return (radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 2 {
|
||||
return (radius * radius * unitSphereVolume)
|
||||
} else {
|
||||
return (math.Pow(radius, NUMDIMS) * unitSphereVolume)
|
||||
}
|
||||
}
|
||||
|
||||
// Use one of the methods to calculate retangle volume
|
||||
func CalcRectVolume(rect *Rect) float64 {
|
||||
if USE_SPHERICAL_VOLUME {
|
||||
return RectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
} else { // RTREE_USE_SPHERICAL_VOLUME
|
||||
return RectVolume(rect) // Faster but can cause poor merges
|
||||
} // RTREE_USE_SPHERICAL_VOLUME
|
||||
}
|
||||
|
||||
// Load branch buffer with branches from full node plus the extra branch.
|
||||
func GetBranches(node *Node, branch *Branch, parVars *PartitionVars) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
ASSERT(node.count == MAXNODES)
|
||||
|
||||
// Load the branch buffer
|
||||
for index := 0; index < MAXNODES; index++ {
|
||||
parVars.branchBuf[index] = node.branch[index]
|
||||
}
|
||||
parVars.branchBuf[MAXNODES] = *branch
|
||||
parVars.branchCount = MAXNODES + 1
|
||||
|
||||
// Calculate rect containing all in the set
|
||||
parVars.coverSplit = parVars.branchBuf[0].rect
|
||||
for index := 1; index < MAXNODES+1; index++ {
|
||||
parVars.coverSplit = CombineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
}
|
||||
parVars.coverSplitArea = CalcRectVolume(&parVars.coverSplit)
|
||||
}
|
||||
|
||||
// Method #0 for choosing a partition:
|
||||
// As the seeds for the two groups, pick the two rects that would waste the
|
||||
// most area if covered by a single rectangle, i.e. evidently the worst pair
|
||||
// to have in the same group.
|
||||
// Of the remaining, one at a time is chosen to be put in one of the two groups.
|
||||
// The one chosen is the one with the greatest difference in area expansion
|
||||
// depending on which group - the rect most strongly attracted to one group
|
||||
// and repelled from the other.
|
||||
// If one group gets too full (more would force other group to violate min
|
||||
// fill requirement) then other group gets the rest.
|
||||
// These last are the ones that can go in either group most easily.
|
||||
func ChoosePartition(parVars *PartitionVars, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
var biggestDiff float64
|
||||
var group, chosen, betterGroup int
|
||||
|
||||
InitParVars(parVars, parVars.branchCount, minFill)
|
||||
PickSeeds(parVars)
|
||||
|
||||
for ((parVars.count[0] + parVars.count[1]) < parVars.total) &&
|
||||
(parVars.count[0] < (parVars.total - parVars.minFill)) &&
|
||||
(parVars.count[1] < (parVars.total - parVars.minFill)) {
|
||||
biggestDiff = -1
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
curRect := &parVars.branchBuf[index].rect
|
||||
rect0 := CombineRect(curRect, &parVars.cover[0])
|
||||
rect1 := CombineRect(curRect, &parVars.cover[1])
|
||||
growth0 := CalcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := CalcRectVolume(&rect1) - parVars.area[1]
|
||||
diff := growth1 - growth0
|
||||
if diff >= 0 {
|
||||
group = 0
|
||||
} else {
|
||||
group = 1
|
||||
diff = -diff
|
||||
}
|
||||
|
||||
if diff > biggestDiff {
|
||||
biggestDiff = diff
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
} else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) {
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
}
|
||||
}
|
||||
}
|
||||
Classify(chosen, betterGroup, parVars)
|
||||
}
|
||||
|
||||
// If one group too full, put remaining rects in the other
|
||||
if (parVars.count[0] + parVars.count[1]) < parVars.total {
|
||||
if parVars.count[0] >= parVars.total-parVars.minFill {
|
||||
group = 1
|
||||
} else {
|
||||
group = 0
|
||||
}
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
Classify(index, group, parVars)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT((parVars.count[0] + parVars.count[1]) == parVars.total)
|
||||
ASSERT((parVars.count[0] >= parVars.minFill) &&
|
||||
(parVars.count[1] >= parVars.minFill))
|
||||
}
|
||||
|
||||
// Copy branches from the buffer into two nodes according to the partition.
|
||||
func LoadNodes(nodeA, nodeB *Node, parVars *PartitionVars) {
|
||||
ASSERT(nodeA != nil)
|
||||
ASSERT(nodeB != nil)
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
ASSERT(parVars.partition[index] == 0 || parVars.partition[index] == 1)
|
||||
|
||||
targetNodeIndex := parVars.partition[index]
|
||||
targetNodes := []*Node{nodeA, nodeB}
|
||||
|
||||
// It is assured that AddBranch here will not cause a node split.
|
||||
nodeWasSplit := AddBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
ASSERT(!nodeWasSplit)
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize a PartitionVars structure.
|
||||
func InitParVars(parVars *PartitionVars, maxRects, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
parVars.count[0] = 0
|
||||
parVars.count[1] = 0
|
||||
parVars.area[0] = 0
|
||||
parVars.area[1] = 0
|
||||
parVars.total = maxRects
|
||||
parVars.minFill = minFill
|
||||
for index := 0; index < maxRects; index++ {
|
||||
parVars.partition[index] = NOT_TAKEN
|
||||
}
|
||||
}
|
||||
|
||||
func PickSeeds(parVars *PartitionVars) {
|
||||
var seed0, seed1 int
|
||||
var worst, waste float64
|
||||
var area [MAXNODES + 1]float64
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
area[index] = CalcRectVolume(&parVars.branchBuf[index].rect)
|
||||
}
|
||||
|
||||
worst = -parVars.coverSplitArea - 1
|
||||
for indexA := 0; indexA < parVars.total-1; indexA++ {
|
||||
for indexB := indexA + 1; indexB < parVars.total; indexB++ {
|
||||
oneRect := CombineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
if waste > worst {
|
||||
worst = waste
|
||||
seed0 = indexA
|
||||
seed1 = indexB
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Classify(seed0, 0, parVars)
|
||||
Classify(seed1, 1, parVars)
|
||||
}
|
||||
|
||||
// Put a branch in one of the groups.
|
||||
func Classify(index, group int, parVars *PartitionVars) {
|
||||
ASSERT(parVars != nil)
|
||||
ASSERT(NOT_TAKEN == parVars.partition[index])
|
||||
|
||||
parVars.partition[index] = group
|
||||
|
||||
// Calculate combined rect
|
||||
if parVars.count[group] == 0 {
|
||||
parVars.cover[group] = parVars.branchBuf[index].rect
|
||||
} else {
|
||||
parVars.cover[group] = CombineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
}
|
||||
|
||||
// Calculate volume of combined rect
|
||||
parVars.area[group] = CalcRectVolume(&parVars.cover[group])
|
||||
|
||||
parVars.count[group]++
|
||||
}
|
||||
|
||||
// Delete a data rectangle from an index structure.
|
||||
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
// RemoveRect provides for eliminating the root.
|
||||
func RemoveRect(rect *Rect, id interface{}, root **Node) bool {
|
||||
ASSERT(rect != nil && root != nil)
|
||||
ASSERT(*root != nil)
|
||||
|
||||
var reInsertList *ListNode
|
||||
|
||||
if !RemoveRectRec(rect, id, *root, &reInsertList) {
|
||||
// Found and deleted a data item
|
||||
// Reinsert any branches from eliminated nodes
|
||||
for reInsertList != nil {
|
||||
tempNode := reInsertList.node
|
||||
|
||||
for index := 0; index < tempNode.count; index++ {
|
||||
// TODO go over this code. should I use (tempNode->m_level - 1)?
|
||||
InsertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
}
|
||||
reInsertList = reInsertList.next
|
||||
}
|
||||
|
||||
// Check for redundant root (not leaf, 1 child) and eliminate TODO replace
|
||||
// if with while? In case there is a whole branch of redundant roots...
|
||||
if (*root).count == 1 && (*root).IsInternalNode() {
|
||||
tempNode := (*root).branch[0].child
|
||||
|
||||
ASSERT(tempNode != nil)
|
||||
*root = tempNode
|
||||
}
|
||||
return false
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Delete a rectangle from non-root part of an index structure.
|
||||
// Called by RemoveRect. Descends tree recursively,
|
||||
// merges branches on the way back up.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
func RemoveRectRec(rect *Rect, id interface{}, node *Node, listNode **ListNode) bool {
|
||||
ASSERT(rect != nil && node != nil && listNode != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &(node.branch[index].rect)) {
|
||||
if !RemoveRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= MINNODES {
|
||||
// child removed, just resize parent rect
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
} else {
|
||||
// child removed, not enough entries in node, eliminate node
|
||||
ReInsert(node.branch[index].child, listNode)
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
}
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
} else { // A leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if node.branch[index].data == id {
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Decide whether two rectangles overlap.
|
||||
func Overlap(rectA, rectB *Rect) bool {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
if rectA.min[index] > rectB.max[index] ||
|
||||
rectB.min[index] > rectA.max[index] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Add a node to the reinsertion list. All its branches will later
|
||||
// be reinserted into the index structure.
|
||||
func ReInsert(node *Node, listNode **ListNode) {
|
||||
newListNode := &ListNode{}
|
||||
newListNode.node = node
|
||||
newListNode.next = *listNode
|
||||
*listNode = newListNode
|
||||
}
|
||||
|
||||
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
|
||||
func Search(node *Node, rect *Rect, foundCount *int, resultCallback ResultCallback, context interface{}) bool {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
ASSERT(rect != nil)
|
||||
|
||||
if node.IsInternalNode() {
|
||||
// This is an internal node in the tree
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
if !Search(node.branch[index].child, rect, foundCount, resultCallback, context) {
|
||||
// The callback indicated to stop searching
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// This is a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
id := node.branch[index].data
|
||||
|
||||
// NOTE: There are different ways to return results. Here's where to modify
|
||||
|
||||
*foundCount++
|
||||
if !resultCallback(id, context) {
|
||||
return false // Don't continue searching
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true // Continue searching
|
||||
}
|
|
@ -56,7 +56,7 @@ const (
|
|||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
type ResultCallback func(dataID, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
|
|
|
@ -1,815 +0,0 @@
|
|||
//generated; DO NOT EDIT!
|
||||
|
||||
/*
|
||||
|
||||
TITLE
|
||||
|
||||
R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
A Go version of the RTree algorithm.
|
||||
For more information please read the comments in rtree.go
|
||||
|
||||
AUTHORS
|
||||
|
||||
* 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
|
||||
* 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
|
||||
* 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
|
||||
* 2004 Templated C++ port by Greg Douglas
|
||||
* 2016 Go port by Josh Baker
|
||||
|
||||
LICENSE:
|
||||
|
||||
Entirely free for all uses. Enjoy!
|
||||
|
||||
*/
|
||||
|
||||
// Implementation of RTree, a multidimensional bounding rectangle tree.
|
||||
package rtree
|
||||
|
||||
import "math"
|
||||
|
||||
func Min(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func ASSERT(condition bool) {
|
||||
if _DEBUG && !condition {
|
||||
panic("assertion failed")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
_DEBUG = true
|
||||
NUMDIMS = 3
|
||||
MAXNODES = 8
|
||||
MINNODES = MAXNODES / 2
|
||||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
func init() {
|
||||
// Precomputed volumes of the unit spheres for the first few dimensions
|
||||
unitSphereVolume = []float64{
|
||||
0.000000, 2.000000, 3.141593, // Dimension 0,1,2
|
||||
4.188790, 4.934802, 5.263789, // Dimension 3,4,5
|
||||
5.167713, 4.724766, 4.058712, // Dimension 6,7,8
|
||||
3.298509, 2.550164, 1.884104, // Dimension 9,10,11
|
||||
1.335263, 0.910629, 0.599265, // Dimension 12,13,14
|
||||
0.381443, 0.235331, 0.140981, // Dimension 15,16,17
|
||||
0.082146, 0.046622, 0.025807, // Dimension 18,19,20
|
||||
}[NUMDIMS]
|
||||
}
|
||||
|
||||
type RTree struct {
|
||||
root *Node ///< Root of tree
|
||||
unitSphereVolume float64 ///< Unit sphere constant for required number of dimensions
|
||||
}
|
||||
|
||||
/// Minimal bounding rectangle (n-dimensional)
|
||||
type Rect struct {
|
||||
min [NUMDIMS]float64 ///< Min dimensions of bounding box
|
||||
max [NUMDIMS]float64 ///< Max dimensions of bounding box
|
||||
}
|
||||
|
||||
/// May be data or may be another subtree
|
||||
/// The parents level determines this.
|
||||
/// If the parents level is 0, then this is data
|
||||
type Branch struct {
|
||||
rect Rect ///< Bounds
|
||||
child *Node ///< Child node
|
||||
data interface{} ///< Data Id or Ptr
|
||||
}
|
||||
|
||||
/// Node for each branch level
|
||||
type Node struct {
|
||||
count int ///< Count
|
||||
level int ///< Leaf is zero, others positive
|
||||
branch [MAXNODES]Branch ///< Branch
|
||||
}
|
||||
|
||||
func (node *Node) IsInternalNode() bool {
|
||||
return (node.level > 0) // Not a leaf, but a internal node
|
||||
}
|
||||
func (node *Node) IsLeaf() bool {
|
||||
return (node.level == 0) // A leaf, contains data
|
||||
}
|
||||
|
||||
/// A link list of nodes for reinsertion after a delete operation
|
||||
type ListNode struct {
|
||||
next *ListNode ///< Next in list
|
||||
node *Node ///< Node
|
||||
}
|
||||
|
||||
const NOT_TAKEN = -1 // indicates that position
|
||||
|
||||
/// Variables for finding a split partition
|
||||
type PartitionVars struct {
|
||||
partition [MAXNODES + 1]int
|
||||
total int
|
||||
minFill int
|
||||
count [2]int
|
||||
cover [2]Rect
|
||||
area [2]float64
|
||||
|
||||
branchBuf [MAXNODES + 1]Branch
|
||||
branchCount int
|
||||
coverSplit Rect
|
||||
coverSplitArea float64
|
||||
}
|
||||
|
||||
func NewRTree() *RTree {
|
||||
ASSERT(MAXNODES > MINNODES)
|
||||
ASSERT(MINNODES > 0)
|
||||
|
||||
// We only support machine word size simple data type eg. integer index or object pointer.
|
||||
// Since we are storing as union with non data branch
|
||||
//ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
|
||||
|
||||
return &RTree{
|
||||
root: &Node{},
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Insert(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var branch Branch
|
||||
branch.data = dataId
|
||||
branch.child = nil
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
branch.rect.min[axis] = min[axis]
|
||||
branch.rect.max[axis] = max[axis]
|
||||
}
|
||||
InsertRect(&branch, &tr.root, 0)
|
||||
}
|
||||
|
||||
/// Remove entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Remove(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
RemoveRect(&rect, dataId, &tr.root)
|
||||
}
|
||||
|
||||
/// Find all within search rectangle
|
||||
/// \param a_min Min of search bounding rect
|
||||
/// \param a_max Max of search bounding rect
|
||||
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
|
||||
/// \param a_context User context to pass as parameter to a_resultCallback
|
||||
/// \return Returns the number of entries found
|
||||
func (tr *RTree) Search(min, max [NUMDIMS]float64, resultCallback ResultCallback, context interface{}) int {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
|
||||
|
||||
foundCount := 0
|
||||
Search(tr.root, &rect, &foundCount, resultCallback, context)
|
||||
return foundCount
|
||||
}
|
||||
|
||||
/// Count the data elements in this container. This is slow as no internal counter is maintained.
|
||||
func (tr *RTree) Count() int {
|
||||
var count int
|
||||
CountRec(tr.root, &count)
|
||||
return count
|
||||
}
|
||||
|
||||
func CountRec(node *Node, count *int) {
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
CountRec(node.branch[index].child, count)
|
||||
}
|
||||
} else { // A leaf node
|
||||
*count += node.count
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove all entries from tree
|
||||
func (tr *RTree) RemoveAll() {
|
||||
// Delete all existing nodes
|
||||
tr.root = &Node{}
|
||||
}
|
||||
|
||||
func InitNode(node *Node) {
|
||||
node.count = 0
|
||||
node.level = -1
|
||||
}
|
||||
|
||||
func InitRect(rect *Rect) {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
rect.min[index] = 0
|
||||
rect.max[index] = 0
|
||||
}
|
||||
}
|
||||
|
||||
// Inserts a new data rectangle into the index structure.
|
||||
// Recursively descends tree, propagates splits back up.
|
||||
// Returns 0 if node was not split. Old node updated.
|
||||
// If node was split, returns 1 and sets the pointer pointed to by
|
||||
// new_node to point to the new node. Old node updated to become one of two.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
func InsertRectRec(branch *Branch, node *Node, newNode **Node, level int) bool {
|
||||
ASSERT(node != nil && newNode != nil)
|
||||
ASSERT(level >= 0 && level <= node.level)
|
||||
|
||||
// recurse until we reach the correct level for the new record. data records
|
||||
// will always be called with a_level == 0 (leaf)
|
||||
if node.level > level {
|
||||
// Still above level for insertion, go down tree recursively
|
||||
var otherNode *Node
|
||||
//var newBranch Branch
|
||||
|
||||
// find the optimal branch for this record
|
||||
index := PickBranch(&branch.rect, node)
|
||||
|
||||
// recursively insert this record into the picked branch
|
||||
childWasSplit := InsertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
|
||||
if !childWasSplit {
|
||||
// Child was not split. Merge the bounding box of the new record with the
|
||||
// existing bounding box
|
||||
node.branch[index].rect = CombineRect(&branch.rect, &(node.branch[index].rect))
|
||||
return false
|
||||
} else {
|
||||
// Child was split. The old branches are now re-partitioned to two nodes
|
||||
// so we have to re-calculate the bounding boxes of each node
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
var newBranch Branch
|
||||
newBranch.child = otherNode
|
||||
newBranch.rect = NodeCover(otherNode)
|
||||
|
||||
// The old node is already a child of a_node. Now add the newly-created
|
||||
// node to a_node as well. a_node might be split because of that.
|
||||
return AddBranch(&newBranch, node, newNode)
|
||||
}
|
||||
} else if node.level == level {
|
||||
// We have reached level for insertion. Add rect, split if necessary
|
||||
return AddBranch(branch, node, newNode)
|
||||
} else {
|
||||
// Should never occur
|
||||
ASSERT(false)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// Insert a data rectangle into an index structure.
|
||||
// InsertRect provides for splitting the root;
|
||||
// returns 1 if root was split, 0 if it was not.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
// InsertRect2 does the recursion.
|
||||
//
|
||||
func InsertRect(branch *Branch, root **Node, level int) bool {
|
||||
ASSERT(root != nil)
|
||||
ASSERT(level >= 0 && level <= (*root).level)
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(branch.rect.min[index] <= branch.rect.max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
|
||||
var newNode *Node
|
||||
|
||||
if InsertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
|
||||
// Grow tree taller and new root
|
||||
newRoot := &Node{}
|
||||
newRoot.level = (*root).level + 1
|
||||
|
||||
var newBranch Branch
|
||||
|
||||
// add old root node as a child of the new root
|
||||
newBranch.rect = NodeCover(*root)
|
||||
newBranch.child = *root
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// add the split node as a child of the new root
|
||||
newBranch.rect = NodeCover(newNode)
|
||||
newBranch.child = newNode
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// set the new root as the root node
|
||||
*root = newRoot
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
// Find the smallest rectangle that includes all rectangles in branches of a node.
|
||||
func NodeCover(node *Node) Rect {
|
||||
ASSERT(node != nil)
|
||||
|
||||
rect := node.branch[0].rect
|
||||
for index := 1; index < node.count; index++ {
|
||||
rect = CombineRect(&rect, &(node.branch[index].rect))
|
||||
}
|
||||
|
||||
return rect
|
||||
}
|
||||
|
||||
// Add a branch to a node. Split the node if necessary.
|
||||
// Returns 0 if node not split. Old node updated.
|
||||
// Returns 1 if node split, sets *new_node to address of new node.
|
||||
// Old node updated, becomes one of two.
|
||||
func AddBranch(branch *Branch, node *Node, newNode **Node) bool {
|
||||
ASSERT(branch != nil)
|
||||
ASSERT(node != nil)
|
||||
|
||||
if node.count < MAXNODES { // Split won't be necessary
|
||||
|
||||
node.branch[node.count] = *branch
|
||||
node.count++
|
||||
|
||||
return false
|
||||
} else {
|
||||
ASSERT(newNode != nil)
|
||||
|
||||
SplitNode(node, branch, newNode)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Disconnect a dependent node.
|
||||
// Caller must return (or stop using iteration index) after this as count has changed
|
||||
func DisconnectBranch(node *Node, index int) {
|
||||
ASSERT(node != nil && (index >= 0) && (index < MAXNODES))
|
||||
ASSERT(node.count > 0)
|
||||
|
||||
// Remove element by swapping with the last element to prevent gaps in array
|
||||
node.branch[index] = node.branch[node.count-1]
|
||||
|
||||
node.count--
|
||||
}
|
||||
|
||||
// Pick a branch. Pick the one that will need the smallest increase
|
||||
// in area to accomodate the new rectangle. This will result in the
|
||||
// least total area for the covering rectangles in the current node.
|
||||
// In case of a tie, pick the one which was smaller before, to get
|
||||
// the best resolution when searching.
|
||||
func PickBranch(rect *Rect, node *Node) int {
|
||||
ASSERT(rect != nil && node != nil)
|
||||
|
||||
var firstTime bool = true
|
||||
var increase float64
|
||||
var bestIncr float64 = -1
|
||||
var area float64
|
||||
var bestArea float64
|
||||
var best int
|
||||
var tempRect Rect
|
||||
|
||||
for index := 0; index < node.count; index++ {
|
||||
curRect := &node.branch[index].rect
|
||||
area = CalcRectVolume(curRect)
|
||||
tempRect = CombineRect(rect, curRect)
|
||||
increase = CalcRectVolume(&tempRect) - area
|
||||
if (increase < bestIncr) || firstTime {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
firstTime = false
|
||||
} else if (increase == bestIncr) && (area < bestArea) {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
// Combine two rectangles into larger one containing both
|
||||
func CombineRect(rectA, rectB *Rect) Rect {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
var newRect Rect
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
newRect.min[index] = Min(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = Max(rectA.max[index], rectB.max[index])
|
||||
}
|
||||
|
||||
return newRect
|
||||
}
|
||||
|
||||
// Split a node.
|
||||
// Divides the nodes branches and the extra one between two nodes.
|
||||
// Old node is one of the new ones, and one really new one is created.
|
||||
// Tries more than one method for choosing a partition, uses best result.
|
||||
func SplitNode(node *Node, branch *Branch, newNode **Node) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
// Could just use local here, but member or external is faster since it is reused
|
||||
var localVars PartitionVars
|
||||
parVars := &localVars
|
||||
|
||||
// Load all the branches into a buffer, initialize old node
|
||||
GetBranches(node, branch, parVars)
|
||||
|
||||
// Find partition
|
||||
ChoosePartition(parVars, MINNODES)
|
||||
|
||||
// Create a new node to hold (about) half of the branches
|
||||
*newNode = &Node{}
|
||||
(*newNode).level = node.level
|
||||
|
||||
// Put branches from buffer into 2 nodes according to the chosen partition
|
||||
node.count = 0
|
||||
LoadNodes(node, *newNode, parVars)
|
||||
|
||||
ASSERT((node.count + (*newNode).count) == parVars.total)
|
||||
}
|
||||
|
||||
// Calculate the n-dimensional volume of a rectangle
|
||||
func RectVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var volume float64 = 1
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
volume *= rect.max[index] - rect.min[index]
|
||||
}
|
||||
|
||||
ASSERT(volume >= 0)
|
||||
|
||||
return volume
|
||||
}
|
||||
|
||||
// The exact volume of the bounding sphere for the given Rect
|
||||
func RectSphericalVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var sumOfSquares float64 = 0
|
||||
var radius float64
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
halfExtent := (rect.max[index] - rect.min[index]) * 0.5
|
||||
sumOfSquares += halfExtent * halfExtent
|
||||
}
|
||||
|
||||
radius = math.Sqrt(sumOfSquares)
|
||||
|
||||
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
|
||||
if NUMDIMS == 4 {
|
||||
return (radius * radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 3 {
|
||||
return (radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 2 {
|
||||
return (radius * radius * unitSphereVolume)
|
||||
} else {
|
||||
return (math.Pow(radius, NUMDIMS) * unitSphereVolume)
|
||||
}
|
||||
}
|
||||
|
||||
// Use one of the methods to calculate retangle volume
|
||||
func CalcRectVolume(rect *Rect) float64 {
|
||||
if USE_SPHERICAL_VOLUME {
|
||||
return RectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
} else { // RTREE_USE_SPHERICAL_VOLUME
|
||||
return RectVolume(rect) // Faster but can cause poor merges
|
||||
} // RTREE_USE_SPHERICAL_VOLUME
|
||||
}
|
||||
|
||||
// Load branch buffer with branches from full node plus the extra branch.
|
||||
func GetBranches(node *Node, branch *Branch, parVars *PartitionVars) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
ASSERT(node.count == MAXNODES)
|
||||
|
||||
// Load the branch buffer
|
||||
for index := 0; index < MAXNODES; index++ {
|
||||
parVars.branchBuf[index] = node.branch[index]
|
||||
}
|
||||
parVars.branchBuf[MAXNODES] = *branch
|
||||
parVars.branchCount = MAXNODES + 1
|
||||
|
||||
// Calculate rect containing all in the set
|
||||
parVars.coverSplit = parVars.branchBuf[0].rect
|
||||
for index := 1; index < MAXNODES+1; index++ {
|
||||
parVars.coverSplit = CombineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
}
|
||||
parVars.coverSplitArea = CalcRectVolume(&parVars.coverSplit)
|
||||
}
|
||||
|
||||
// Method #0 for choosing a partition:
|
||||
// As the seeds for the two groups, pick the two rects that would waste the
|
||||
// most area if covered by a single rectangle, i.e. evidently the worst pair
|
||||
// to have in the same group.
|
||||
// Of the remaining, one at a time is chosen to be put in one of the two groups.
|
||||
// The one chosen is the one with the greatest difference in area expansion
|
||||
// depending on which group - the rect most strongly attracted to one group
|
||||
// and repelled from the other.
|
||||
// If one group gets too full (more would force other group to violate min
|
||||
// fill requirement) then other group gets the rest.
|
||||
// These last are the ones that can go in either group most easily.
|
||||
func ChoosePartition(parVars *PartitionVars, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
var biggestDiff float64
|
||||
var group, chosen, betterGroup int
|
||||
|
||||
InitParVars(parVars, parVars.branchCount, minFill)
|
||||
PickSeeds(parVars)
|
||||
|
||||
for ((parVars.count[0] + parVars.count[1]) < parVars.total) &&
|
||||
(parVars.count[0] < (parVars.total - parVars.minFill)) &&
|
||||
(parVars.count[1] < (parVars.total - parVars.minFill)) {
|
||||
biggestDiff = -1
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
curRect := &parVars.branchBuf[index].rect
|
||||
rect0 := CombineRect(curRect, &parVars.cover[0])
|
||||
rect1 := CombineRect(curRect, &parVars.cover[1])
|
||||
growth0 := CalcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := CalcRectVolume(&rect1) - parVars.area[1]
|
||||
diff := growth1 - growth0
|
||||
if diff >= 0 {
|
||||
group = 0
|
||||
} else {
|
||||
group = 1
|
||||
diff = -diff
|
||||
}
|
||||
|
||||
if diff > biggestDiff {
|
||||
biggestDiff = diff
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
} else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) {
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
}
|
||||
}
|
||||
}
|
||||
Classify(chosen, betterGroup, parVars)
|
||||
}
|
||||
|
||||
// If one group too full, put remaining rects in the other
|
||||
if (parVars.count[0] + parVars.count[1]) < parVars.total {
|
||||
if parVars.count[0] >= parVars.total-parVars.minFill {
|
||||
group = 1
|
||||
} else {
|
||||
group = 0
|
||||
}
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
Classify(index, group, parVars)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT((parVars.count[0] + parVars.count[1]) == parVars.total)
|
||||
ASSERT((parVars.count[0] >= parVars.minFill) &&
|
||||
(parVars.count[1] >= parVars.minFill))
|
||||
}
|
||||
|
||||
// Copy branches from the buffer into two nodes according to the partition.
|
||||
func LoadNodes(nodeA, nodeB *Node, parVars *PartitionVars) {
|
||||
ASSERT(nodeA != nil)
|
||||
ASSERT(nodeB != nil)
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
ASSERT(parVars.partition[index] == 0 || parVars.partition[index] == 1)
|
||||
|
||||
targetNodeIndex := parVars.partition[index]
|
||||
targetNodes := []*Node{nodeA, nodeB}
|
||||
|
||||
// It is assured that AddBranch here will not cause a node split.
|
||||
nodeWasSplit := AddBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
ASSERT(!nodeWasSplit)
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize a PartitionVars structure.
|
||||
func InitParVars(parVars *PartitionVars, maxRects, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
parVars.count[0] = 0
|
||||
parVars.count[1] = 0
|
||||
parVars.area[0] = 0
|
||||
parVars.area[1] = 0
|
||||
parVars.total = maxRects
|
||||
parVars.minFill = minFill
|
||||
for index := 0; index < maxRects; index++ {
|
||||
parVars.partition[index] = NOT_TAKEN
|
||||
}
|
||||
}
|
||||
|
||||
func PickSeeds(parVars *PartitionVars) {
|
||||
var seed0, seed1 int
|
||||
var worst, waste float64
|
||||
var area [MAXNODES + 1]float64
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
area[index] = CalcRectVolume(&parVars.branchBuf[index].rect)
|
||||
}
|
||||
|
||||
worst = -parVars.coverSplitArea - 1
|
||||
for indexA := 0; indexA < parVars.total-1; indexA++ {
|
||||
for indexB := indexA + 1; indexB < parVars.total; indexB++ {
|
||||
oneRect := CombineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
if waste > worst {
|
||||
worst = waste
|
||||
seed0 = indexA
|
||||
seed1 = indexB
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Classify(seed0, 0, parVars)
|
||||
Classify(seed1, 1, parVars)
|
||||
}
|
||||
|
||||
// Put a branch in one of the groups.
|
||||
func Classify(index, group int, parVars *PartitionVars) {
|
||||
ASSERT(parVars != nil)
|
||||
ASSERT(NOT_TAKEN == parVars.partition[index])
|
||||
|
||||
parVars.partition[index] = group
|
||||
|
||||
// Calculate combined rect
|
||||
if parVars.count[group] == 0 {
|
||||
parVars.cover[group] = parVars.branchBuf[index].rect
|
||||
} else {
|
||||
parVars.cover[group] = CombineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
}
|
||||
|
||||
// Calculate volume of combined rect
|
||||
parVars.area[group] = CalcRectVolume(&parVars.cover[group])
|
||||
|
||||
parVars.count[group]++
|
||||
}
|
||||
|
||||
// Delete a data rectangle from an index structure.
|
||||
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
// RemoveRect provides for eliminating the root.
|
||||
func RemoveRect(rect *Rect, id interface{}, root **Node) bool {
|
||||
ASSERT(rect != nil && root != nil)
|
||||
ASSERT(*root != nil)
|
||||
|
||||
var reInsertList *ListNode
|
||||
|
||||
if !RemoveRectRec(rect, id, *root, &reInsertList) {
|
||||
// Found and deleted a data item
|
||||
// Reinsert any branches from eliminated nodes
|
||||
for reInsertList != nil {
|
||||
tempNode := reInsertList.node
|
||||
|
||||
for index := 0; index < tempNode.count; index++ {
|
||||
// TODO go over this code. should I use (tempNode->m_level - 1)?
|
||||
InsertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
}
|
||||
reInsertList = reInsertList.next
|
||||
}
|
||||
|
||||
// Check for redundant root (not leaf, 1 child) and eliminate TODO replace
|
||||
// if with while? In case there is a whole branch of redundant roots...
|
||||
if (*root).count == 1 && (*root).IsInternalNode() {
|
||||
tempNode := (*root).branch[0].child
|
||||
|
||||
ASSERT(tempNode != nil)
|
||||
*root = tempNode
|
||||
}
|
||||
return false
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Delete a rectangle from non-root part of an index structure.
|
||||
// Called by RemoveRect. Descends tree recursively,
|
||||
// merges branches on the way back up.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
func RemoveRectRec(rect *Rect, id interface{}, node *Node, listNode **ListNode) bool {
|
||||
ASSERT(rect != nil && node != nil && listNode != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &(node.branch[index].rect)) {
|
||||
if !RemoveRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= MINNODES {
|
||||
// child removed, just resize parent rect
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
} else {
|
||||
// child removed, not enough entries in node, eliminate node
|
||||
ReInsert(node.branch[index].child, listNode)
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
}
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
} else { // A leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if node.branch[index].data == id {
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Decide whether two rectangles overlap.
|
||||
func Overlap(rectA, rectB *Rect) bool {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
if rectA.min[index] > rectB.max[index] ||
|
||||
rectB.min[index] > rectA.max[index] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Add a node to the reinsertion list. All its branches will later
|
||||
// be reinserted into the index structure.
|
||||
func ReInsert(node *Node, listNode **ListNode) {
|
||||
newListNode := &ListNode{}
|
||||
newListNode.node = node
|
||||
newListNode.next = *listNode
|
||||
*listNode = newListNode
|
||||
}
|
||||
|
||||
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
|
||||
func Search(node *Node, rect *Rect, foundCount *int, resultCallback ResultCallback, context interface{}) bool {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
ASSERT(rect != nil)
|
||||
|
||||
if node.IsInternalNode() {
|
||||
// This is an internal node in the tree
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
if !Search(node.branch[index].child, rect, foundCount, resultCallback, context) {
|
||||
// The callback indicated to stop searching
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// This is a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
id := node.branch[index].data
|
||||
|
||||
// NOTE: There are different ways to return results. Here's where to modify
|
||||
|
||||
*foundCount++
|
||||
if !resultCallback(id, context) {
|
||||
return false // Don't continue searching
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true // Continue searching
|
||||
}
|
|
@ -56,7 +56,7 @@ const (
|
|||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
type ResultCallback func(dataID, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
|
|
|
@ -1,815 +0,0 @@
|
|||
//generated; DO NOT EDIT!
|
||||
|
||||
/*
|
||||
|
||||
TITLE
|
||||
|
||||
R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
A Go version of the RTree algorithm.
|
||||
For more information please read the comments in rtree.go
|
||||
|
||||
AUTHORS
|
||||
|
||||
* 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
|
||||
* 1994 ANCI C ported from original test code by Melinda Green - melinda@superliminal.com
|
||||
* 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
|
||||
* 2004 Templated C++ port by Greg Douglas
|
||||
* 2016 Go port by Josh Baker
|
||||
|
||||
LICENSE:
|
||||
|
||||
Entirely free for all uses. Enjoy!
|
||||
|
||||
*/
|
||||
|
||||
// Implementation of RTree, a multidimensional bounding rectangle tree.
|
||||
package rtree
|
||||
|
||||
import "math"
|
||||
|
||||
func Min(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func ASSERT(condition bool) {
|
||||
if _DEBUG && !condition {
|
||||
panic("assertion failed")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
_DEBUG = true
|
||||
NUMDIMS = 4
|
||||
MAXNODES = 8
|
||||
MINNODES = MAXNODES / 2
|
||||
USE_SPHERICAL_VOLUME = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
type ResultCallback func(dataID interface{}, context interface{}) bool
|
||||
|
||||
var unitSphereVolume float64
|
||||
|
||||
func init() {
|
||||
// Precomputed volumes of the unit spheres for the first few dimensions
|
||||
unitSphereVolume = []float64{
|
||||
0.000000, 2.000000, 3.141593, // Dimension 0,1,2
|
||||
4.188790, 4.934802, 5.263789, // Dimension 3,4,5
|
||||
5.167713, 4.724766, 4.058712, // Dimension 6,7,8
|
||||
3.298509, 2.550164, 1.884104, // Dimension 9,10,11
|
||||
1.335263, 0.910629, 0.599265, // Dimension 12,13,14
|
||||
0.381443, 0.235331, 0.140981, // Dimension 15,16,17
|
||||
0.082146, 0.046622, 0.025807, // Dimension 18,19,20
|
||||
}[NUMDIMS]
|
||||
}
|
||||
|
||||
type RTree struct {
|
||||
root *Node ///< Root of tree
|
||||
unitSphereVolume float64 ///< Unit sphere constant for required number of dimensions
|
||||
}
|
||||
|
||||
/// Minimal bounding rectangle (n-dimensional)
|
||||
type Rect struct {
|
||||
min [NUMDIMS]float64 ///< Min dimensions of bounding box
|
||||
max [NUMDIMS]float64 ///< Max dimensions of bounding box
|
||||
}
|
||||
|
||||
/// May be data or may be another subtree
|
||||
/// The parents level determines this.
|
||||
/// If the parents level is 0, then this is data
|
||||
type Branch struct {
|
||||
rect Rect ///< Bounds
|
||||
child *Node ///< Child node
|
||||
data interface{} ///< Data Id or Ptr
|
||||
}
|
||||
|
||||
/// Node for each branch level
|
||||
type Node struct {
|
||||
count int ///< Count
|
||||
level int ///< Leaf is zero, others positive
|
||||
branch [MAXNODES]Branch ///< Branch
|
||||
}
|
||||
|
||||
func (node *Node) IsInternalNode() bool {
|
||||
return (node.level > 0) // Not a leaf, but a internal node
|
||||
}
|
||||
func (node *Node) IsLeaf() bool {
|
||||
return (node.level == 0) // A leaf, contains data
|
||||
}
|
||||
|
||||
/// A link list of nodes for reinsertion after a delete operation
|
||||
type ListNode struct {
|
||||
next *ListNode ///< Next in list
|
||||
node *Node ///< Node
|
||||
}
|
||||
|
||||
const NOT_TAKEN = -1 // indicates that position
|
||||
|
||||
/// Variables for finding a split partition
|
||||
type PartitionVars struct {
|
||||
partition [MAXNODES + 1]int
|
||||
total int
|
||||
minFill int
|
||||
count [2]int
|
||||
cover [2]Rect
|
||||
area [2]float64
|
||||
|
||||
branchBuf [MAXNODES + 1]Branch
|
||||
branchCount int
|
||||
coverSplit Rect
|
||||
coverSplitArea float64
|
||||
}
|
||||
|
||||
func NewRTree() *RTree {
|
||||
ASSERT(MAXNODES > MINNODES)
|
||||
ASSERT(MINNODES > 0)
|
||||
|
||||
// We only support machine word size simple data type eg. integer index or object pointer.
|
||||
// Since we are storing as union with non data branch
|
||||
//ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
|
||||
|
||||
return &RTree{
|
||||
root: &Node{},
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Insert(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var branch Branch
|
||||
branch.data = dataId
|
||||
branch.child = nil
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
branch.rect.min[axis] = min[axis]
|
||||
branch.rect.max[axis] = max[axis]
|
||||
}
|
||||
InsertRect(&branch, &tr.root, 0)
|
||||
}
|
||||
|
||||
/// Remove entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *RTree) Remove(min, max [NUMDIMS]float64, dataId interface{}) {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
RemoveRect(&rect, dataId, &tr.root)
|
||||
}
|
||||
|
||||
/// Find all within search rectangle
|
||||
/// \param a_min Min of search bounding rect
|
||||
/// \param a_max Max of search bounding rect
|
||||
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
|
||||
/// \param a_context User context to pass as parameter to a_resultCallback
|
||||
/// \return Returns the number of entries found
|
||||
func (tr *RTree) Search(min, max [NUMDIMS]float64, resultCallback ResultCallback, context interface{}) int {
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(min[index] <= max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
var rect Rect
|
||||
for axis := 0; axis < NUMDIMS; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
|
||||
|
||||
foundCount := 0
|
||||
Search(tr.root, &rect, &foundCount, resultCallback, context)
|
||||
return foundCount
|
||||
}
|
||||
|
||||
/// Count the data elements in this container. This is slow as no internal counter is maintained.
|
||||
func (tr *RTree) Count() int {
|
||||
var count int
|
||||
CountRec(tr.root, &count)
|
||||
return count
|
||||
}
|
||||
|
||||
func CountRec(node *Node, count *int) {
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
CountRec(node.branch[index].child, count)
|
||||
}
|
||||
} else { // A leaf node
|
||||
*count += node.count
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove all entries from tree
|
||||
func (tr *RTree) RemoveAll() {
|
||||
// Delete all existing nodes
|
||||
tr.root = &Node{}
|
||||
}
|
||||
|
||||
func InitNode(node *Node) {
|
||||
node.count = 0
|
||||
node.level = -1
|
||||
}
|
||||
|
||||
func InitRect(rect *Rect) {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
rect.min[index] = 0
|
||||
rect.max[index] = 0
|
||||
}
|
||||
}
|
||||
|
||||
// Inserts a new data rectangle into the index structure.
|
||||
// Recursively descends tree, propagates splits back up.
|
||||
// Returns 0 if node was not split. Old node updated.
|
||||
// If node was split, returns 1 and sets the pointer pointed to by
|
||||
// new_node to point to the new node. Old node updated to become one of two.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
func InsertRectRec(branch *Branch, node *Node, newNode **Node, level int) bool {
|
||||
ASSERT(node != nil && newNode != nil)
|
||||
ASSERT(level >= 0 && level <= node.level)
|
||||
|
||||
// recurse until we reach the correct level for the new record. data records
|
||||
// will always be called with a_level == 0 (leaf)
|
||||
if node.level > level {
|
||||
// Still above level for insertion, go down tree recursively
|
||||
var otherNode *Node
|
||||
//var newBranch Branch
|
||||
|
||||
// find the optimal branch for this record
|
||||
index := PickBranch(&branch.rect, node)
|
||||
|
||||
// recursively insert this record into the picked branch
|
||||
childWasSplit := InsertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
|
||||
if !childWasSplit {
|
||||
// Child was not split. Merge the bounding box of the new record with the
|
||||
// existing bounding box
|
||||
node.branch[index].rect = CombineRect(&branch.rect, &(node.branch[index].rect))
|
||||
return false
|
||||
} else {
|
||||
// Child was split. The old branches are now re-partitioned to two nodes
|
||||
// so we have to re-calculate the bounding boxes of each node
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
var newBranch Branch
|
||||
newBranch.child = otherNode
|
||||
newBranch.rect = NodeCover(otherNode)
|
||||
|
||||
// The old node is already a child of a_node. Now add the newly-created
|
||||
// node to a_node as well. a_node might be split because of that.
|
||||
return AddBranch(&newBranch, node, newNode)
|
||||
}
|
||||
} else if node.level == level {
|
||||
// We have reached level for insertion. Add rect, split if necessary
|
||||
return AddBranch(branch, node, newNode)
|
||||
} else {
|
||||
// Should never occur
|
||||
ASSERT(false)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// Insert a data rectangle into an index structure.
|
||||
// InsertRect provides for splitting the root;
|
||||
// returns 1 if root was split, 0 if it was not.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
// InsertRect2 does the recursion.
|
||||
//
|
||||
func InsertRect(branch *Branch, root **Node, level int) bool {
|
||||
ASSERT(root != nil)
|
||||
ASSERT(level >= 0 && level <= (*root).level)
|
||||
if _DEBUG {
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
ASSERT(branch.rect.min[index] <= branch.rect.max[index])
|
||||
}
|
||||
} //_DEBUG
|
||||
|
||||
var newNode *Node
|
||||
|
||||
if InsertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
|
||||
// Grow tree taller and new root
|
||||
newRoot := &Node{}
|
||||
newRoot.level = (*root).level + 1
|
||||
|
||||
var newBranch Branch
|
||||
|
||||
// add old root node as a child of the new root
|
||||
newBranch.rect = NodeCover(*root)
|
||||
newBranch.child = *root
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// add the split node as a child of the new root
|
||||
newBranch.rect = NodeCover(newNode)
|
||||
newBranch.child = newNode
|
||||
AddBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// set the new root as the root node
|
||||
*root = newRoot
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
// Find the smallest rectangle that includes all rectangles in branches of a node.
|
||||
func NodeCover(node *Node) Rect {
|
||||
ASSERT(node != nil)
|
||||
|
||||
rect := node.branch[0].rect
|
||||
for index := 1; index < node.count; index++ {
|
||||
rect = CombineRect(&rect, &(node.branch[index].rect))
|
||||
}
|
||||
|
||||
return rect
|
||||
}
|
||||
|
||||
// Add a branch to a node. Split the node if necessary.
|
||||
// Returns 0 if node not split. Old node updated.
|
||||
// Returns 1 if node split, sets *new_node to address of new node.
|
||||
// Old node updated, becomes one of two.
|
||||
func AddBranch(branch *Branch, node *Node, newNode **Node) bool {
|
||||
ASSERT(branch != nil)
|
||||
ASSERT(node != nil)
|
||||
|
||||
if node.count < MAXNODES { // Split won't be necessary
|
||||
|
||||
node.branch[node.count] = *branch
|
||||
node.count++
|
||||
|
||||
return false
|
||||
} else {
|
||||
ASSERT(newNode != nil)
|
||||
|
||||
SplitNode(node, branch, newNode)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Disconnect a dependent node.
|
||||
// Caller must return (or stop using iteration index) after this as count has changed
|
||||
func DisconnectBranch(node *Node, index int) {
|
||||
ASSERT(node != nil && (index >= 0) && (index < MAXNODES))
|
||||
ASSERT(node.count > 0)
|
||||
|
||||
// Remove element by swapping with the last element to prevent gaps in array
|
||||
node.branch[index] = node.branch[node.count-1]
|
||||
|
||||
node.count--
|
||||
}
|
||||
|
||||
// Pick a branch. Pick the one that will need the smallest increase
|
||||
// in area to accomodate the new rectangle. This will result in the
|
||||
// least total area for the covering rectangles in the current node.
|
||||
// In case of a tie, pick the one which was smaller before, to get
|
||||
// the best resolution when searching.
|
||||
func PickBranch(rect *Rect, node *Node) int {
|
||||
ASSERT(rect != nil && node != nil)
|
||||
|
||||
var firstTime bool = true
|
||||
var increase float64
|
||||
var bestIncr float64 = -1
|
||||
var area float64
|
||||
var bestArea float64
|
||||
var best int
|
||||
var tempRect Rect
|
||||
|
||||
for index := 0; index < node.count; index++ {
|
||||
curRect := &node.branch[index].rect
|
||||
area = CalcRectVolume(curRect)
|
||||
tempRect = CombineRect(rect, curRect)
|
||||
increase = CalcRectVolume(&tempRect) - area
|
||||
if (increase < bestIncr) || firstTime {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
firstTime = false
|
||||
} else if (increase == bestIncr) && (area < bestArea) {
|
||||
best = index
|
||||
bestArea = area
|
||||
bestIncr = increase
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
// Combine two rectangles into larger one containing both
|
||||
func CombineRect(rectA, rectB *Rect) Rect {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
var newRect Rect
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
newRect.min[index] = Min(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = Max(rectA.max[index], rectB.max[index])
|
||||
}
|
||||
|
||||
return newRect
|
||||
}
|
||||
|
||||
// Split a node.
|
||||
// Divides the nodes branches and the extra one between two nodes.
|
||||
// Old node is one of the new ones, and one really new one is created.
|
||||
// Tries more than one method for choosing a partition, uses best result.
|
||||
func SplitNode(node *Node, branch *Branch, newNode **Node) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
// Could just use local here, but member or external is faster since it is reused
|
||||
var localVars PartitionVars
|
||||
parVars := &localVars
|
||||
|
||||
// Load all the branches into a buffer, initialize old node
|
||||
GetBranches(node, branch, parVars)
|
||||
|
||||
// Find partition
|
||||
ChoosePartition(parVars, MINNODES)
|
||||
|
||||
// Create a new node to hold (about) half of the branches
|
||||
*newNode = &Node{}
|
||||
(*newNode).level = node.level
|
||||
|
||||
// Put branches from buffer into 2 nodes according to the chosen partition
|
||||
node.count = 0
|
||||
LoadNodes(node, *newNode, parVars)
|
||||
|
||||
ASSERT((node.count + (*newNode).count) == parVars.total)
|
||||
}
|
||||
|
||||
// Calculate the n-dimensional volume of a rectangle
|
||||
func RectVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var volume float64 = 1
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
volume *= rect.max[index] - rect.min[index]
|
||||
}
|
||||
|
||||
ASSERT(volume >= 0)
|
||||
|
||||
return volume
|
||||
}
|
||||
|
||||
// The exact volume of the bounding sphere for the given Rect
|
||||
func RectSphericalVolume(rect *Rect) float64 {
|
||||
ASSERT(rect != nil)
|
||||
|
||||
var sumOfSquares float64 = 0
|
||||
var radius float64
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
halfExtent := (rect.max[index] - rect.min[index]) * 0.5
|
||||
sumOfSquares += halfExtent * halfExtent
|
||||
}
|
||||
|
||||
radius = math.Sqrt(sumOfSquares)
|
||||
|
||||
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
|
||||
if NUMDIMS == 4 {
|
||||
return (radius * radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 3 {
|
||||
return (radius * radius * radius * unitSphereVolume)
|
||||
} else if NUMDIMS == 2 {
|
||||
return (radius * radius * unitSphereVolume)
|
||||
} else {
|
||||
return (math.Pow(radius, NUMDIMS) * unitSphereVolume)
|
||||
}
|
||||
}
|
||||
|
||||
// Use one of the methods to calculate retangle volume
|
||||
func CalcRectVolume(rect *Rect) float64 {
|
||||
if USE_SPHERICAL_VOLUME {
|
||||
return RectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
} else { // RTREE_USE_SPHERICAL_VOLUME
|
||||
return RectVolume(rect) // Faster but can cause poor merges
|
||||
} // RTREE_USE_SPHERICAL_VOLUME
|
||||
}
|
||||
|
||||
// Load branch buffer with branches from full node plus the extra branch.
|
||||
func GetBranches(node *Node, branch *Branch, parVars *PartitionVars) {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(branch != nil)
|
||||
|
||||
ASSERT(node.count == MAXNODES)
|
||||
|
||||
// Load the branch buffer
|
||||
for index := 0; index < MAXNODES; index++ {
|
||||
parVars.branchBuf[index] = node.branch[index]
|
||||
}
|
||||
parVars.branchBuf[MAXNODES] = *branch
|
||||
parVars.branchCount = MAXNODES + 1
|
||||
|
||||
// Calculate rect containing all in the set
|
||||
parVars.coverSplit = parVars.branchBuf[0].rect
|
||||
for index := 1; index < MAXNODES+1; index++ {
|
||||
parVars.coverSplit = CombineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
}
|
||||
parVars.coverSplitArea = CalcRectVolume(&parVars.coverSplit)
|
||||
}
|
||||
|
||||
// Method #0 for choosing a partition:
|
||||
// As the seeds for the two groups, pick the two rects that would waste the
|
||||
// most area if covered by a single rectangle, i.e. evidently the worst pair
|
||||
// to have in the same group.
|
||||
// Of the remaining, one at a time is chosen to be put in one of the two groups.
|
||||
// The one chosen is the one with the greatest difference in area expansion
|
||||
// depending on which group - the rect most strongly attracted to one group
|
||||
// and repelled from the other.
|
||||
// If one group gets too full (more would force other group to violate min
|
||||
// fill requirement) then other group gets the rest.
|
||||
// These last are the ones that can go in either group most easily.
|
||||
func ChoosePartition(parVars *PartitionVars, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
var biggestDiff float64
|
||||
var group, chosen, betterGroup int
|
||||
|
||||
InitParVars(parVars, parVars.branchCount, minFill)
|
||||
PickSeeds(parVars)
|
||||
|
||||
for ((parVars.count[0] + parVars.count[1]) < parVars.total) &&
|
||||
(parVars.count[0] < (parVars.total - parVars.minFill)) &&
|
||||
(parVars.count[1] < (parVars.total - parVars.minFill)) {
|
||||
biggestDiff = -1
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
curRect := &parVars.branchBuf[index].rect
|
||||
rect0 := CombineRect(curRect, &parVars.cover[0])
|
||||
rect1 := CombineRect(curRect, &parVars.cover[1])
|
||||
growth0 := CalcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := CalcRectVolume(&rect1) - parVars.area[1]
|
||||
diff := growth1 - growth0
|
||||
if diff >= 0 {
|
||||
group = 0
|
||||
} else {
|
||||
group = 1
|
||||
diff = -diff
|
||||
}
|
||||
|
||||
if diff > biggestDiff {
|
||||
biggestDiff = diff
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
} else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) {
|
||||
chosen = index
|
||||
betterGroup = group
|
||||
}
|
||||
}
|
||||
}
|
||||
Classify(chosen, betterGroup, parVars)
|
||||
}
|
||||
|
||||
// If one group too full, put remaining rects in the other
|
||||
if (parVars.count[0] + parVars.count[1]) < parVars.total {
|
||||
if parVars.count[0] >= parVars.total-parVars.minFill {
|
||||
group = 1
|
||||
} else {
|
||||
group = 0
|
||||
}
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if NOT_TAKEN == parVars.partition[index] {
|
||||
Classify(index, group, parVars)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT((parVars.count[0] + parVars.count[1]) == parVars.total)
|
||||
ASSERT((parVars.count[0] >= parVars.minFill) &&
|
||||
(parVars.count[1] >= parVars.minFill))
|
||||
}
|
||||
|
||||
// Copy branches from the buffer into two nodes according to the partition.
|
||||
func LoadNodes(nodeA, nodeB *Node, parVars *PartitionVars) {
|
||||
ASSERT(nodeA != nil)
|
||||
ASSERT(nodeB != nil)
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
ASSERT(parVars.partition[index] == 0 || parVars.partition[index] == 1)
|
||||
|
||||
targetNodeIndex := parVars.partition[index]
|
||||
targetNodes := []*Node{nodeA, nodeB}
|
||||
|
||||
// It is assured that AddBranch here will not cause a node split.
|
||||
nodeWasSplit := AddBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
ASSERT(!nodeWasSplit)
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize a PartitionVars structure.
|
||||
func InitParVars(parVars *PartitionVars, maxRects, minFill int) {
|
||||
ASSERT(parVars != nil)
|
||||
|
||||
parVars.count[0] = 0
|
||||
parVars.count[1] = 0
|
||||
parVars.area[0] = 0
|
||||
parVars.area[1] = 0
|
||||
parVars.total = maxRects
|
||||
parVars.minFill = minFill
|
||||
for index := 0; index < maxRects; index++ {
|
||||
parVars.partition[index] = NOT_TAKEN
|
||||
}
|
||||
}
|
||||
|
||||
func PickSeeds(parVars *PartitionVars) {
|
||||
var seed0, seed1 int
|
||||
var worst, waste float64
|
||||
var area [MAXNODES + 1]float64
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
area[index] = CalcRectVolume(&parVars.branchBuf[index].rect)
|
||||
}
|
||||
|
||||
worst = -parVars.coverSplitArea - 1
|
||||
for indexA := 0; indexA < parVars.total-1; indexA++ {
|
||||
for indexB := indexA + 1; indexB < parVars.total; indexB++ {
|
||||
oneRect := CombineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
if waste > worst {
|
||||
worst = waste
|
||||
seed0 = indexA
|
||||
seed1 = indexB
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Classify(seed0, 0, parVars)
|
||||
Classify(seed1, 1, parVars)
|
||||
}
|
||||
|
||||
// Put a branch in one of the groups.
|
||||
func Classify(index, group int, parVars *PartitionVars) {
|
||||
ASSERT(parVars != nil)
|
||||
ASSERT(NOT_TAKEN == parVars.partition[index])
|
||||
|
||||
parVars.partition[index] = group
|
||||
|
||||
// Calculate combined rect
|
||||
if parVars.count[group] == 0 {
|
||||
parVars.cover[group] = parVars.branchBuf[index].rect
|
||||
} else {
|
||||
parVars.cover[group] = CombineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
}
|
||||
|
||||
// Calculate volume of combined rect
|
||||
parVars.area[group] = CalcRectVolume(&parVars.cover[group])
|
||||
|
||||
parVars.count[group]++
|
||||
}
|
||||
|
||||
// Delete a data rectangle from an index structure.
|
||||
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
// RemoveRect provides for eliminating the root.
|
||||
func RemoveRect(rect *Rect, id interface{}, root **Node) bool {
|
||||
ASSERT(rect != nil && root != nil)
|
||||
ASSERT(*root != nil)
|
||||
|
||||
var reInsertList *ListNode
|
||||
|
||||
if !RemoveRectRec(rect, id, *root, &reInsertList) {
|
||||
// Found and deleted a data item
|
||||
// Reinsert any branches from eliminated nodes
|
||||
for reInsertList != nil {
|
||||
tempNode := reInsertList.node
|
||||
|
||||
for index := 0; index < tempNode.count; index++ {
|
||||
// TODO go over this code. should I use (tempNode->m_level - 1)?
|
||||
InsertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
}
|
||||
reInsertList = reInsertList.next
|
||||
}
|
||||
|
||||
// Check for redundant root (not leaf, 1 child) and eliminate TODO replace
|
||||
// if with while? In case there is a whole branch of redundant roots...
|
||||
if (*root).count == 1 && (*root).IsInternalNode() {
|
||||
tempNode := (*root).branch[0].child
|
||||
|
||||
ASSERT(tempNode != nil)
|
||||
*root = tempNode
|
||||
}
|
||||
return false
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Delete a rectangle from non-root part of an index structure.
|
||||
// Called by RemoveRect. Descends tree recursively,
|
||||
// merges branches on the way back up.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
func RemoveRectRec(rect *Rect, id interface{}, node *Node, listNode **ListNode) bool {
|
||||
ASSERT(rect != nil && node != nil && listNode != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
|
||||
if node.IsInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &(node.branch[index].rect)) {
|
||||
if !RemoveRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= MINNODES {
|
||||
// child removed, just resize parent rect
|
||||
node.branch[index].rect = NodeCover(node.branch[index].child)
|
||||
} else {
|
||||
// child removed, not enough entries in node, eliminate node
|
||||
ReInsert(node.branch[index].child, listNode)
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
}
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
} else { // A leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if node.branch[index].data == id {
|
||||
DisconnectBranch(node, index) // Must return after this call as count has changed
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Decide whether two rectangles overlap.
|
||||
func Overlap(rectA, rectB *Rect) bool {
|
||||
ASSERT(rectA != nil && rectB != nil)
|
||||
|
||||
for index := 0; index < NUMDIMS; index++ {
|
||||
if rectA.min[index] > rectB.max[index] ||
|
||||
rectB.min[index] > rectA.max[index] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Add a node to the reinsertion list. All its branches will later
|
||||
// be reinserted into the index structure.
|
||||
func ReInsert(node *Node, listNode **ListNode) {
|
||||
newListNode := &ListNode{}
|
||||
newListNode.node = node
|
||||
newListNode.next = *listNode
|
||||
*listNode = newListNode
|
||||
}
|
||||
|
||||
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
|
||||
func Search(node *Node, rect *Rect, foundCount *int, resultCallback ResultCallback, context interface{}) bool {
|
||||
ASSERT(node != nil)
|
||||
ASSERT(node.level >= 0)
|
||||
ASSERT(rect != nil)
|
||||
|
||||
if node.IsInternalNode() {
|
||||
// This is an internal node in the tree
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
if !Search(node.branch[index].child, rect, foundCount, resultCallback, context) {
|
||||
// The callback indicated to stop searching
|
||||
return false
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// This is a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if Overlap(rect, &node.branch[index].rect) {
|
||||
id := node.branch[index].data
|
||||
|
||||
// NOTE: There are different ways to return results. Here's where to modify
|
||||
|
||||
*foundCount++
|
||||
if !resultCallback(id, context) {
|
||||
return false // Don't continue searching
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true // Continue searching
|
||||
}
|
Loading…
Reference in New Issue