package redis import ( "errors" "fmt" "math/rand" "strconv" "sync" "sync/atomic" "time" "gopkg.in/redis.v4/internal" "gopkg.in/redis.v4/internal/consistenthash" "gopkg.in/redis.v4/internal/hashtag" "gopkg.in/redis.v4/internal/pool" ) var errRingShardsDown = errors.New("redis: all ring shards are down") // RingOptions are used to configure a ring client and should be // passed to NewRing. type RingOptions struct { // Map of name => host:port addresses of ring shards. Addrs map[string]string // Frequency of PING commands sent to check shards availability. // Shard is considered down after 3 subsequent failed checks. HeartbeatFrequency time.Duration // Following options are copied from Options struct. DB int Password string MaxRetries int DialTimeout time.Duration ReadTimeout time.Duration WriteTimeout time.Duration PoolSize int PoolTimeout time.Duration IdleTimeout time.Duration IdleCheckFrequency time.Duration } func (opt *RingOptions) init() { if opt.HeartbeatFrequency == 0 { opt.HeartbeatFrequency = 500 * time.Millisecond } } func (opt *RingOptions) clientOptions() *Options { return &Options{ DB: opt.DB, Password: opt.Password, DialTimeout: opt.DialTimeout, ReadTimeout: opt.ReadTimeout, WriteTimeout: opt.WriteTimeout, PoolSize: opt.PoolSize, PoolTimeout: opt.PoolTimeout, IdleTimeout: opt.IdleTimeout, IdleCheckFrequency: opt.IdleCheckFrequency, } } type ringShard struct { Client *Client down int32 } func (shard *ringShard) String() string { var state string if shard.IsUp() { state = "up" } else { state = "down" } return fmt.Sprintf("%s is %s", shard.Client, state) } func (shard *ringShard) IsDown() bool { const threshold = 3 return atomic.LoadInt32(&shard.down) >= threshold } func (shard *ringShard) IsUp() bool { return !shard.IsDown() } // Vote votes to set shard state and returns true if state was changed. func (shard *ringShard) Vote(up bool) bool { if up { changed := shard.IsDown() atomic.StoreInt32(&shard.down, 0) return changed } if shard.IsDown() { return false } atomic.AddInt32(&shard.down, 1) return shard.IsDown() } // Ring is a Redis client that uses constistent hashing to distribute // keys across multiple Redis servers (shards). It's safe for // concurrent use by multiple goroutines. // // Ring monitors the state of each shard and removes dead shards from // the ring. When shard comes online it is added back to the ring. This // gives you maximum availability and partition tolerance, but no // consistency between different shards or even clients. Each client // uses shards that are available to the client and does not do any // coordination when shard state is changed. // // Ring should be used when you need multiple Redis servers for caching // and can tolerate losing data when one of the servers dies. // Otherwise you should use Redis Cluster. type Ring struct { cmdable opt *RingOptions nreplicas int mu sync.RWMutex hash *consistenthash.Map shards map[string]*ringShard cmdsInfoOnce *sync.Once cmdsInfo map[string]*CommandInfo closed bool } var _ Cmdable = (*Ring)(nil) func NewRing(opt *RingOptions) *Ring { const nreplicas = 100 opt.init() ring := &Ring{ opt: opt, nreplicas: nreplicas, hash: consistenthash.New(nreplicas, nil), shards: make(map[string]*ringShard), cmdsInfoOnce: new(sync.Once), } ring.cmdable.process = ring.Process for name, addr := range opt.Addrs { clopt := opt.clientOptions() clopt.Addr = addr ring.addClient(name, NewClient(clopt)) } go ring.heartbeat() return ring } // PoolStats returns accumulated connection pool stats. func (c *Ring) PoolStats() *PoolStats { var acc PoolStats for _, shard := range c.shards { s := shard.Client.connPool.Stats() acc.Requests += s.Requests acc.Hits += s.Hits acc.Timeouts += s.Timeouts acc.TotalConns += s.TotalConns acc.FreeConns += s.FreeConns } return &acc } // ForEachShard concurrently calls the fn on each live shard in the ring. // It returns the first error if any. func (c *Ring) ForEachShard(fn func(client *Client) error) error { var wg sync.WaitGroup errCh := make(chan error, 1) for _, shard := range c.shards { if shard.IsDown() { continue } wg.Add(1) go func(shard *ringShard) { defer wg.Done() err := fn(shard.Client) if err != nil { select { case errCh <- err: default: } } }(shard) } wg.Wait() select { case err := <-errCh: return err default: return nil } } func (c *Ring) cmdInfo(name string) *CommandInfo { c.cmdsInfoOnce.Do(func() { for _, shard := range c.shards { cmdsInfo, err := shard.Client.Command().Result() if err == nil { c.cmdsInfo = cmdsInfo return } } c.cmdsInfoOnce = &sync.Once{} }) if c.cmdsInfo == nil { return nil } return c.cmdsInfo[name] } func (c *Ring) addClient(name string, cl *Client) { c.mu.Lock() c.hash.Add(name) c.shards[name] = &ringShard{Client: cl} c.mu.Unlock() } func (c *Ring) shardByKey(key string) (*Client, error) { key = hashtag.Key(key) c.mu.RLock() if c.closed { c.mu.RUnlock() return nil, pool.ErrClosed } name := c.hash.Get(key) if name == "" { c.mu.RUnlock() return nil, errRingShardsDown } cl := c.shards[name].Client c.mu.RUnlock() return cl, nil } func (c *Ring) randomShard() (*Client, error) { return c.shardByKey(strconv.Itoa(rand.Int())) } func (c *Ring) shardByName(name string) (*Client, error) { if name == "" { return c.randomShard() } c.mu.RLock() cl := c.shards[name].Client c.mu.RUnlock() return cl, nil } func (c *Ring) cmdShard(cmd Cmder) (*Client, error) { cmdInfo := c.cmdInfo(cmd.arg(0)) firstKey := cmd.arg(cmdFirstKeyPos(cmd, cmdInfo)) if firstKey == "" { return c.randomShard() } return c.shardByKey(firstKey) } func (c *Ring) Process(cmd Cmder) error { cl, err := c.cmdShard(cmd) if err != nil { cmd.setErr(err) return err } return cl.baseClient.Process(cmd) } // rebalance removes dead shards from the Ring. func (c *Ring) rebalance() { hash := consistenthash.New(c.nreplicas, nil) for name, shard := range c.shards { if shard.IsUp() { hash.Add(name) } } c.mu.Lock() c.hash = hash c.mu.Unlock() } // heartbeat monitors state of each shard in the ring. func (c *Ring) heartbeat() { ticker := time.NewTicker(c.opt.HeartbeatFrequency) defer ticker.Stop() for _ = range ticker.C { var rebalance bool c.mu.RLock() if c.closed { c.mu.RUnlock() break } for _, shard := range c.shards { err := shard.Client.Ping().Err() if shard.Vote(err == nil || err == pool.ErrPoolTimeout) { internal.Logf("ring shard state changed: %s", shard) rebalance = true } } c.mu.RUnlock() if rebalance { c.rebalance() } } } // Close closes the ring client, releasing any open resources. // // It is rare to Close a Ring, as the Ring is meant to be long-lived // and shared between many goroutines. func (c *Ring) Close() (retErr error) { defer c.mu.Unlock() c.mu.Lock() if c.closed { return nil } c.closed = true for _, shard := range c.shards { if err := shard.Client.Close(); err != nil { retErr = err } } c.hash = nil c.shards = nil return retErr } func (c *Ring) Pipeline() *Pipeline { pipe := Pipeline{ exec: c.pipelineExec, } pipe.cmdable.process = pipe.Process pipe.statefulCmdable.process = pipe.Process return &pipe } func (c *Ring) Pipelined(fn func(*Pipeline) error) ([]Cmder, error) { return c.Pipeline().pipelined(fn) } func (c *Ring) pipelineExec(cmds []Cmder) error { var retErr error cmdsMap := make(map[string][]Cmder) for _, cmd := range cmds { cmdInfo := c.cmdInfo(cmd.arg(0)) name := cmd.arg(cmdFirstKeyPos(cmd, cmdInfo)) if name != "" { name = c.hash.Get(hashtag.Key(name)) } cmdsMap[name] = append(cmdsMap[name], cmd) } for i := 0; i <= c.opt.MaxRetries; i++ { failedCmdsMap := make(map[string][]Cmder) for name, cmds := range cmdsMap { client, err := c.shardByName(name) if err != nil { setCmdsErr(cmds, err) if retErr == nil { retErr = err } continue } cn, _, err := client.conn() if err != nil { setCmdsErr(cmds, err) if retErr == nil { retErr = err } continue } if i > 0 { resetCmds(cmds) } failedCmds, err := execCmds(cn, cmds) client.putConn(cn, err, false) if err != nil && retErr == nil { retErr = err } if len(failedCmds) > 0 { failedCmdsMap[name] = failedCmds } } if len(failedCmdsMap) == 0 { break } cmdsMap = failedCmdsMap } return retErr }