ledisdb/vendor/github.com/ugorji/go/codec/helper.go

1911 lines
51 KiB
Go

// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
// Contains code shared by both encode and decode.
// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// During encode, we use a high-level condition to determine how to iterate through
// the container. That decision is based on whether the container is text-based (with
// separators) or binary (without separators). If binary, we do not even call the
// encoding of separators.
//
// During decode, we use a different high-level condition to determine how to iterate
// through the containers. That decision is based on whether the stream contained
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
// it has to be binary, and we do not even try to read separators.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
// - If struct, update fields from stream into fields of struct.
// If field in stream not found in struct, handle appropriately (based on option).
// If a struct field has no corresponding value in the stream, leave it AS IS.
// If nil in stream, set value to nil/zero value.
// - If map, update map from stream.
// If the stream value is NIL, set the map to nil.
// - if slice, try to update up to length of array in stream.
// if container len is less than stream array length,
// and container cannot be expanded, handled (based on option).
// This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
// map
// - first collect all keys (e.g. in k1)
// - for each key in stream, mark k1 that the key should not be removed
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
// struct:
// - for each field, track the *typeInfo s1
// - iterate through all s1, and for each one not marked, set value to zero
// - this involves checking the possible anonymous fields which are nil ptrs.
// too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// The disadvantage is that small functions which use panics cannot be inlined.
// The code accounts for that by only using panics behind an interface;
// since interface calls cannot be inlined, this is irrelevant.
//
// We considered storing the error is En|Decoder.
// - once it has its err field set, it cannot be used again.
// - panicing will be optional, controlled by const flag.
// - code should always check error first and return early.
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.
import (
"bytes"
"encoding"
"encoding/binary"
"errors"
"fmt"
"math"
"os"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"time"
)
const (
scratchByteArrayLen = 32
// initCollectionCap = 16 // 32 is defensive. 16 is preferred.
// Support encoding.(Binary|Text)(Unm|M)arshaler.
// This constant flag will enable or disable it.
supportMarshalInterfaces = true
// for debugging, set this to false, to catch panic traces.
// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
recoverPanicToErr = true
// arrayCacheLen is the length of the cache used in encoder or decoder for
// allowing zero-alloc initialization.
arrayCacheLen = 8
// always set xDebug = false before releasing software
xDebug = true
)
var (
oneByteArr = [1]byte{0}
zeroByteSlice = oneByteArr[:0:0]
)
var refBitset bitset32
var pool pooler
func init() {
pool.init()
refBitset.set(byte(reflect.Map))
refBitset.set(byte(reflect.Ptr))
refBitset.set(byte(reflect.Func))
refBitset.set(byte(reflect.Chan))
}
// type findCodecFnMode uint8
// const (
// findCodecFnModeMap findCodecFnMode = iota
// findCodecFnModeBinarySearch
// findCodecFnModeLinearSearch
// )
type charEncoding uint8
const (
cRAW charEncoding = iota
cUTF8
cUTF16LE
cUTF16BE
cUTF32LE
cUTF32BE
)
// valueType is the stream type
type valueType uint8
const (
valueTypeUnset valueType = iota
valueTypeNil
valueTypeInt
valueTypeUint
valueTypeFloat
valueTypeBool
valueTypeString
valueTypeSymbol
valueTypeBytes
valueTypeMap
valueTypeArray
valueTypeTime
valueTypeExt
// valueTypeInvalid = 0xff
)
var valueTypeStrings = [...]string{
"Unset",
"Nil",
"Int",
"Uint",
"Float",
"Bool",
"String",
"Symbol",
"Bytes",
"Map",
"Array",
"Timestamp",
"Ext",
}
func (x valueType) String() string {
if int(x) < len(valueTypeStrings) {
return valueTypeStrings[x]
}
return strconv.FormatInt(int64(x), 10)
}
type seqType uint8
const (
_ seqType = iota
seqTypeArray
seqTypeSlice
seqTypeChan
)
// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8
const (
_ containerState = iota
containerMapStart // slot left open, since Driver method already covers it
containerMapKey
containerMapValue
containerMapEnd
containerArrayStart // slot left open, since Driver methods already cover it
containerArrayElem
containerArrayEnd
)
// sfiIdx used for tracking where a (field/enc)Name is seen in a []*structFieldInfo
type sfiIdx struct {
name string
index int
}
// do not recurse if a containing type refers to an embedded type
// which refers back to its containing type (via a pointer).
// The second time this back-reference happens, break out,
// so as not to cause an infinite loop.
const rgetMaxRecursion = 2
// Anecdotally, we believe most types have <= 12 fields.
// Java's PMD rules set TooManyFields threshold to 15.
const typeInfoLoadArrayLen = 12
type typeInfoLoad struct {
fNames []string
encNames []string
etypes []uintptr
sfis []*structFieldInfo
}
type typeInfoLoadArray struct {
fNames [typeInfoLoadArrayLen]string
encNames [typeInfoLoadArrayLen]string
etypes [typeInfoLoadArrayLen]uintptr
sfis [typeInfoLoadArrayLen]*structFieldInfo
sfiidx [typeInfoLoadArrayLen]sfiIdx
}
// type containerStateRecv interface {
// sendContainerState(containerState)
// }
// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package
type jsonMarshaler interface {
MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
UnmarshalJSON([]byte) error
}
// type byteAccepter func(byte) bool
var (
bigen = binary.BigEndian
structInfoFieldName = "_struct"
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
intfTyp = intfSliceTyp.Elem()
stringTyp = reflect.TypeOf("")
timeTyp = reflect.TypeOf(time.Time{})
rawExtTyp = reflect.TypeOf(RawExt{})
rawTyp = reflect.TypeOf(Raw{})
uint8Typ = reflect.TypeOf(uint8(0))
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
uint8TypId = rt2id(uint8Typ)
uint8SliceTypId = rt2id(uint8SliceTyp)
rawExtTypId = rt2id(rawExtTyp)
rawTypId = rt2id(rawTyp)
intfTypId = rt2id(intfTyp)
timeTypId = rt2id(timeTyp)
stringTypId = rt2id(stringTyp)
mapStrIntfTypId = rt2id(mapStrIntfTyp)
mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
intfSliceTypId = rt2id(intfSliceTyp)
// mapBySliceTypId = rt2id(mapBySliceTyp)
intBitsize uint8 = uint8(reflect.TypeOf(int(0)).Bits())
uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())
bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
chkOvf checkOverflow
errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo")
)
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
var immutableKindsSet = [32]bool{
// reflect.Invalid: ,
reflect.Bool: true,
reflect.Int: true,
reflect.Int8: true,
reflect.Int16: true,
reflect.Int32: true,
reflect.Int64: true,
reflect.Uint: true,
reflect.Uint8: true,
reflect.Uint16: true,
reflect.Uint32: true,
reflect.Uint64: true,
reflect.Uintptr: true,
reflect.Float32: true,
reflect.Float64: true,
reflect.Complex64: true,
reflect.Complex128: true,
// reflect.Array
// reflect.Chan
// reflect.Func: true,
// reflect.Interface
// reflect.Map
// reflect.Ptr
// reflect.Slice
reflect.String: true,
// reflect.Struct
// reflect.UnsafePointer
}
// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
type Selfer interface {
CodecEncodeSelf(*Encoder)
CodecDecodeSelf(*Decoder)
}
// MapBySlice represents a slice which should be encoded as a map in the stream.
// The slice contains a sequence of key-value pairs.
// This affords storing a map in a specific sequence in the stream.
//
// The support of MapBySlice affords the following:
// - A slice type which implements MapBySlice will be encoded as a map
// - A slice can be decoded from a map in the stream
type MapBySlice interface {
MapBySlice()
}
// BasicHandle encapsulates the common options and extension functions.
//
// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
type BasicHandle struct {
// TypeInfos is used to get the type info for any type.
//
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
TypeInfos *TypeInfos
extHandle
EncodeOptions
DecodeOptions
noBuiltInTypeChecker
}
func (x *BasicHandle) getBasicHandle() *BasicHandle {
return x
}
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
if x.TypeInfos == nil {
return defTypeInfos.get(rtid, rt)
}
return x.TypeInfos.get(rtid, rt)
}
// Handle is the interface for a specific encoding format.
//
// Typically, a Handle is pre-configured before first time use,
// and not modified while in use. Such a pre-configured Handle
// is safe for concurrent access.
type Handle interface {
getBasicHandle() *BasicHandle
newEncDriver(w *Encoder) encDriver
newDecDriver(r *Decoder) decDriver
isBinary() bool
hasElemSeparators() bool
IsBuiltinType(rtid uintptr) bool
}
// Raw represents raw formatted bytes.
// We "blindly" store it during encode and retrieve the raw bytes during decode.
// Note: it is dangerous during encode, so we may gate the behaviour behind an Encode flag which must be explicitly set.
type Raw []byte
// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag.
//
// Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
Tag uint64
// Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value.
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types
Data []byte
// Value represents the extension, if Data is nil.
// Value is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
Value interface{}
}
// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
// WriteExt converts a value to a []byte.
//
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
WriteExt(v interface{}) []byte
// ReadExt updates a value from a []byte.
ReadExt(dst interface{}, src []byte)
}
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
type InterfaceExt interface {
// ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64.
//
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
ConvertExt(v interface{}) interface{}
// UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time.
UpdateExt(dst interface{}, src interface{})
}
// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
BytesExt
InterfaceExt
}
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
encFn func(reflect.Value) ([]byte, error)
decFn func(reflect.Value, []byte) error
}
func (x addExtWrapper) WriteExt(v interface{}) []byte {
bs, err := x.encFn(reflect.ValueOf(v))
if err != nil {
panic(err)
}
return bs
}
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
panic(err)
}
}
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
return x.WriteExt(v)
}
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
x.ReadExt(dest, v.([]byte))
}
type setExtWrapper struct {
b BytesExt
i InterfaceExt
}
func (x *setExtWrapper) check(v bool, s string) {
if v {
panic(fmt.Errorf("%s is not supported", s))
}
}
func (x *setExtWrapper) WriteExt(v interface{}) []byte {
x.check(x.b == nil, "BytesExt.WriteExt")
return x.b.WriteExt(v)
}
func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) {
x.check(x.b == nil, "BytesExt.ReadExt")
x.b.ReadExt(v, bs)
}
func (x *setExtWrapper) ConvertExt(v interface{}) interface{} {
x.check(x.i == nil, "InterfaceExt.ConvertExt")
return x.i.ConvertExt(v)
}
func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) {
x.check(x.i == nil, "InterfaceExt.UpdateExt")
x.i.UpdateExt(dest, v)
}
type binaryEncodingType struct{}
func (binaryEncodingType) isBinary() bool { return true }
type textEncodingType struct{}
func (textEncodingType) isBinary() bool { return false }
// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.
type noBuiltInTypeChecker struct{}
func (noBuiltInTypeChecker) IsBuiltinType(rt uintptr) bool { return false }
type noBuiltInTypes struct{ noBuiltInTypeChecker }
func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
// type noStreamingCodec struct{}
// func (noStreamingCodec) CheckBreak() bool { return false }
// func (noStreamingCodec) hasElemSeparators() bool { return false }
type noElemSeparators struct{}
func (noElemSeparators) hasElemSeparators() (v bool) { return }
// bigenHelper.
// Users must already slice the x completely, because we will not reslice.
type bigenHelper struct {
x []byte // must be correctly sliced to appropriate len. slicing is a cost.
w encWriter
}
func (z bigenHelper) writeUint16(v uint16) {
bigen.PutUint16(z.x, v)
z.w.writeb(z.x)
}
func (z bigenHelper) writeUint32(v uint32) {
bigen.PutUint32(z.x, v)
z.w.writeb(z.x)
}
func (z bigenHelper) writeUint64(v uint64) {
bigen.PutUint64(z.x, v)
z.w.writeb(z.x)
}
type extTypeTagFn struct {
rtid uintptr
rtidptr uintptr
rt reflect.Type
tag uint64
ext Ext
}
type extHandle []extTypeTagFn
// AddExt registes an encode and decode function for a reflect.Type.
// AddExt internally calls SetExt.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) AddExt(
rt reflect.Type, tag byte,
encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error,
) (err error) {
if encfn == nil || decfn == nil {
return o.SetExt(rt, uint64(tag), nil)
}
return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}
// Note that the type must be a named type, and specifically not
// a pointer or Interface. An error is returned if that is not honored.
// To Deregister an ext, call SetExt with nil Ext.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
// o is a pointer, because we may need to initialize it
rk := rt.Kind()
for rk == reflect.Ptr {
rt = rt.Elem()
rk = rt.Kind()
}
if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
}
rtid := rt2id(rt)
switch rtid {
case timeTypId, rawTypId, rawExtTypId:
// all natively supported type, so cannot have an extension
return // TODO: should we silently ignore, or return an error???
}
o2 := *o
if o2 == nil {
o2 = make([]extTypeTagFn, 0, 4)
*o = o2
} else {
for i := range o2 {
v := &o2[i]
if v.rtid == rtid {
v.tag, v.ext = tag, ext
return
}
}
}
rtidptr := rt2id(reflect.PtrTo(rt))
*o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext})
return
}
func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
var v *extTypeTagFn
for i := range o {
v = &o[i]
if v.rtid == rtid || v.rtidptr == rtid {
return v
}
}
return nil
}
func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn {
var v *extTypeTagFn
for i := range o {
v = &o[i]
if v.tag == tag {
return v
}
}
return nil
}
const maxLevelsEmbedding = 16
type structFieldInfo struct {
encName string // encode name
fieldName string // field name
is [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
nis uint8 // num levels of embedding. if 1, then it's not embedded.
omitEmpty bool
toArray bool // if field is _struct, is the toArray set?
}
func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
if v, valid := si.field(v, false); valid {
v.Set(reflect.Zero(v.Type()))
}
}
// rv returns the field of the struct.
// If anonymous, it returns an Invalid
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
// replicate FieldByIndex
for i, x := range si.is {
if uint8(i) == si.nis {
break
}
if v, valid = baseStructRv(v, update); !valid {
return
}
v = v.Field(int(x))
}
return v, true
}
// func (si *structFieldInfo) fieldval(v reflect.Value, update bool) reflect.Value {
// v, _ = si.field(v, update)
// return v
// }
func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
// if fname == "" {
// panic(errNoFieldNameToStructFieldInfo)
// }
si := structFieldInfo{
encName: fname,
}
if stag != "" {
for i, s := range strings.Split(stag, ",") {
if i == 0 {
if s != "" {
si.encName = s
}
} else {
if s == "omitempty" {
si.omitEmpty = true
} else if s == "toarray" {
si.toArray = true
}
}
}
}
// si.encNameBs = []byte(si.encName)
return &si
}
type sfiSortedByEncName []*structFieldInfo
func (p sfiSortedByEncName) Len() int {
return len(p)
}
func (p sfiSortedByEncName) Less(i, j int) bool {
return p[i].encName < p[j].encName
}
func (p sfiSortedByEncName) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
const structFieldNodeNumToCache = 4
type structFieldNodeCache struct {
rv [structFieldNodeNumToCache]reflect.Value
idx [structFieldNodeNumToCache]uint32
num uint8
}
func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
// defer func() { fmt.Printf(">>>> found in cache2? %v\n", valid) }()
for i, k := range &x.idx {
if uint8(i) == x.num {
return // break
}
if key == k {
return x.rv[i], true
}
}
return
}
func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
if x.num < structFieldNodeNumToCache {
x.rv[x.num] = fv
x.idx[x.num] = key
x.num++
return
}
}
type structFieldNode struct {
v reflect.Value
cache2 structFieldNodeCache
cache3 structFieldNodeCache
update bool
}
func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
// return si.fieldval(x.v, x.update)
// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
var valid bool
switch si.nis {
case 1:
fv = x.v.Field(int(si.is[0]))
case 2:
if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
fv = fv.Field(int(si.is[1]))
return
}
fv = x.v.Field(int(si.is[0]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
x.cache2.tryAdd(fv, uint32(si.is[0]))
fv = fv.Field(int(si.is[1]))
case 3:
var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
if fv, valid = x.cache3.get(key); valid {
fv = fv.Field(int(si.is[2]))
return
}
fv = x.v.Field(int(si.is[0]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
fv = fv.Field(int(si.is[1]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
x.cache3.tryAdd(fv, key)
fv = fv.Field(int(si.is[2]))
default:
fv, _ = si.field(x.v, x.update)
}
return
}
func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
for v.Kind() == reflect.Ptr {
if v.IsNil() {
if !update {
return
}
v.Set(reflect.New(v.Type().Elem()))
}
v = v.Elem()
}
return v, true
}
// typeInfo keeps information about each (non-ptr) type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
// - If base is a built in type, en/decode base value
// - If base is registered as an extension, en/decode base value
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
// - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
sfi []*structFieldInfo // sorted. Used when enc/dec struct to map.
sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.
rt reflect.Type
rtid uintptr
// rv0 reflect.Value // saved zero value, used if immutableKind
numMeth uint16 // number of methods
anyOmitEmpty bool
mbs bool // base type (T or *T) is a MapBySlice
// format of marshal type fields below: [btj][mu]p? OR csp?
bm bool // T is a binaryMarshaler
bmp bool // *T is a binaryMarshaler
bu bool // T is a binaryUnmarshaler
bup bool // *T is a binaryUnmarshaler
tm bool // T is a textMarshaler
tmp bool // *T is a textMarshaler
tu bool // T is a textUnmarshaler
tup bool // *T is a textUnmarshaler
jm bool // T is a jsonMarshaler
jmp bool // *T is a jsonMarshaler
ju bool // T is a jsonUnmarshaler
jup bool // *T is a jsonUnmarshaler
cs bool // T is a Selfer
csp bool // *T is a Selfer
toArray bool // whether this (struct) type should be encoded as an array
}
// define length beyond which we do a binary search instead of a linear search.
// From our testing, linear search seems faster than binary search up to 16-field structs.
// However, we set to 8 similar to what python does for hashtables.
const indexForEncNameBinarySearchThreshold = 8
func (ti *typeInfo) indexForEncName(name string) int {
// NOTE: name may be a stringView, so don't pass it to another function.
//tisfi := ti.sfi
sfilen := len(ti.sfi)
if sfilen < indexForEncNameBinarySearchThreshold {
for i, si := range ti.sfi {
if si.encName == name {
return i
}
}
return -1
}
// binary search. adapted from sort/search.go.
h, i, j := 0, 0, sfilen
for i < j {
h = i + (j-i)/2
if ti.sfi[h].encName < name {
i = h + 1
} else {
j = h
}
}
if i < sfilen && ti.sfi[i].encName == name {
return i
}
return -1
}
type rtid2ti struct {
rtid uintptr
ti *typeInfo
}
// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
infos atomicTypeInfoSlice // formerly map[uintptr]*typeInfo, now *[]rtid2ti
mu sync.Mutex
tags []string
}
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
return &TypeInfos{tags: tags}
}
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
// check for tags: codec, json, in that order.
// this allows seamless support for many configured structs.
for _, x := range x.tags {
s = t.Get(x)
if s != "" {
return s
}
}
return
}
func (x *TypeInfos) find(sp *[]rtid2ti, rtid uintptr) (idx int, ti *typeInfo) {
// binary search. adapted from sort/search.go.
// if sp == nil {
// return -1, nil
// }
s := *sp
h, i, j := 0, 0, len(s)
for i < j {
h = i + (j-i)/2
if s[h].rtid < rtid {
i = h + 1
} else {
j = h
}
}
if i < len(s) && s[i].rtid == rtid {
return i, s[i].ti
}
return i, nil
}
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
sp := x.infos.load()
var idx int
if sp != nil {
idx, pti = x.find(sp, rtid)
if pti != nil {
return
}
}
rk := rt.Kind()
if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
panic(fmt.Errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt))
}
// do not hold lock while computing this.
// it may lead to duplication, but that's ok.
ti := typeInfo{rt: rt, rtid: rtid}
// ti.rv0 = reflect.Zero(rt)
ti.numMeth = uint16(rt.NumMethod())
ti.bm, ti.bmp = implIntf(rt, binaryMarshalerTyp)
ti.bu, ti.bup = implIntf(rt, binaryUnmarshalerTyp)
ti.tm, ti.tmp = implIntf(rt, textMarshalerTyp)
ti.tu, ti.tup = implIntf(rt, textUnmarshalerTyp)
ti.jm, ti.jmp = implIntf(rt, jsonMarshalerTyp)
ti.ju, ti.jup = implIntf(rt, jsonUnmarshalerTyp)
ti.cs, ti.csp = implIntf(rt, selferTyp)
ti.mbs, _ = implIntf(rt, mapBySliceTyp)
if rk == reflect.Struct {
var omitEmpty bool
if f, ok := rt.FieldByName(structInfoFieldName); ok {
siInfo := parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag))
ti.toArray = siInfo.toArray
omitEmpty = siInfo.omitEmpty
}
pp, pi := pool.tiLoad()
pv := pi.(*typeInfoLoadArray)
pv.etypes[0] = ti.rtid
vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
x.rget(rt, rtid, omitEmpty, nil, &vv)
ti.sfip, ti.sfi, ti.anyOmitEmpty = rgetResolveSFI(vv.sfis, pv.sfiidx[:0])
pp.Put(pi)
}
// sfi = sfip
var vs []rtid2ti
x.mu.Lock()
sp = x.infos.load()
if sp == nil {
pti = &ti
vs = []rtid2ti{{rtid, pti}}
x.infos.store(&vs)
} else {
idx, pti = x.find(sp, rtid)
if pti == nil {
s := *sp
pti = &ti
vs = make([]rtid2ti, len(s)+1)
copy(vs, s[:idx])
vs[idx] = rtid2ti{rtid, pti}
copy(vs[idx+1:], s[idx:])
x.infos.store(&vs)
}
}
x.mu.Unlock()
return
}
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
indexstack []uint16, pv *typeInfoLoad,
) {
// Read up fields and store how to access the value.
//
// It uses go's rules for message selectors,
// which say that the field with the shallowest depth is selected.
//
// Note: we consciously use slices, not a map, to simulate a set.
// Typically, types have < 16 fields,
// and iteration using equals is faster than maps there
flen := rt.NumField()
if flen > (1<<maxLevelsEmbedding - 1) {
panic(fmt.Errorf("codec: types with more than %v fields are not supported - has %v fields", (1<<maxLevelsEmbedding - 1), flen))
}
LOOP:
for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
f := rt.Field(int(j))
fkind := f.Type.Kind()
// skip if a func type, or is unexported, or structTag value == "-"
switch fkind {
case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
continue LOOP
}
isUnexported := f.PkgPath != ""
if isUnexported && !f.Anonymous {
continue
}
stag := x.structTag(f.Tag)
if stag == "-" {
continue
}
var si *structFieldInfo
// if anonymous and no struct tag (or it's blank),
// and a struct (or pointer to struct), inline it.
if f.Anonymous && fkind != reflect.Interface {
// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
ft := f.Type
isPtr := ft.Kind() == reflect.Ptr
for ft.Kind() == reflect.Ptr {
ft = ft.Elem()
}
isStruct := ft.Kind() == reflect.Struct
// Ignore embedded fields of unexported non-struct types.
// Also, from go1.10, ignore pointers to unexported struct types
// because unmarshal cannot assign a new struct to an unexported field.
// See https://golang.org/issue/21357
if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
continue
}
doInline := stag == ""
if !doInline {
si = parseStructFieldInfo("", stag)
doInline = si.encName == ""
// doInline = si.isZero()
}
if doInline && isStruct {
// if etypes contains this, don't call rget again (as fields are already seen here)
ftid := rt2id(ft)
// We cannot recurse forever, but we need to track other field depths.
// So - we break if we see a type twice (not the first time).
// This should be sufficient to handle an embedded type that refers to its
// owning type, which then refers to its embedded type.
processIt := true
numk := 0
for _, k := range pv.etypes {
if k == ftid {
numk++
if numk == rgetMaxRecursion {
processIt = false
break
}
}
}
if processIt {
pv.etypes = append(pv.etypes, ftid)
indexstack2 := make([]uint16, len(indexstack)+1)
copy(indexstack2, indexstack)
indexstack2[len(indexstack)] = j
// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
x.rget(ft, ftid, omitEmpty, indexstack2, pv)
}
continue
}
}
// after the anonymous dance: if an unexported field, skip
if isUnexported {
continue
}
if f.Name == "" {
panic(errNoFieldNameToStructFieldInfo)
}
pv.fNames = append(pv.fNames, f.Name)
if si == nil {
si = parseStructFieldInfo(f.Name, stag)
} else if si.encName == "" {
si.encName = f.Name
}
si.fieldName = f.Name
pv.encNames = append(pv.encNames, si.encName)
// si.ikind = int(f.Type.Kind())
if len(indexstack) > maxLevelsEmbedding-1 {
panic(fmt.Errorf("codec: only supports up to %v depth of embedding - type has %v depth", maxLevelsEmbedding-1, len(indexstack)))
}
si.nis = uint8(len(indexstack)) + 1
copy(si.is[:], indexstack)
si.is[len(indexstack)] = j
if omitEmpty {
si.omitEmpty = true
}
pv.sfis = append(pv.sfis, si)
}
}
// resolves the struct field info got from a call to rget.
// Returns a trimmed, unsorted and sorted []*structFieldInfo.
func rgetResolveSFI(x []*structFieldInfo, pv []sfiIdx) (y, z []*structFieldInfo, anyOmitEmpty bool) {
var n int
for i, v := range x {
xn := v.encName // TODO: fieldName or encName? use encName for now.
var found bool
for j, k := range pv {
if k.name == xn {
// one of them must be reset to nil, and the index updated appropriately to the other one
if v.nis == x[k.index].nis {
} else if v.nis < x[k.index].nis {
pv[j].index = i
if x[k.index] != nil {
x[k.index] = nil
n++
}
} else {
if x[i] != nil {
x[i] = nil
n++
}
}
found = true
break
}
}
if !found {
pv = append(pv, sfiIdx{xn, i})
}
}
// remove all the nils
y = make([]*structFieldInfo, len(x)-n)
n = 0
for _, v := range x {
if v == nil {
continue
}
if !anyOmitEmpty && v.omitEmpty {
anyOmitEmpty = true
}
y[n] = v
n++
}
z = make([]*structFieldInfo, len(y))
copy(z, y)
sort.Sort(sfiSortedByEncName(z))
return
}
func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
}
// func round(x float64) float64 {
// t := math.Trunc(x)
// if math.Abs(x-t) >= 0.5 {
// return t + math.Copysign(1, x)
// }
// return t
// }
func xprintf(format string, a ...interface{}) {
if xDebug {
fmt.Fprintf(os.Stderr, format, a...)
}
}
func panicToErr(err *error) {
if recoverPanicToErr {
if x := recover(); x != nil {
// if false && xDebug {
// fmt.Printf("panic'ing with: %v\n", x)
// debug.PrintStack()
// }
panicValToErr(x, err)
}
}
}
func panicToErrs2(err1, err2 *error) {
if recoverPanicToErr {
if x := recover(); x != nil {
panicValToErr(x, err1)
panicValToErr(x, err2)
}
}
}
// func doPanic(tag string, format string, params ...interface{}) {
// params2 := make([]interface{}, len(params)+1)
// params2[0] = tag
// copy(params2[1:], params)
// panic(fmt.Errorf("%s: "+format, params2...))
// }
func isImmutableKind(k reflect.Kind) (v bool) {
return immutableKindsSet[k]
// return false ||
// k == reflect.Int ||
// k == reflect.Int8 ||
// k == reflect.Int16 ||
// k == reflect.Int32 ||
// k == reflect.Int64 ||
// k == reflect.Uint ||
// k == reflect.Uint8 ||
// k == reflect.Uint16 ||
// k == reflect.Uint32 ||
// k == reflect.Uint64 ||
// k == reflect.Uintptr ||
// k == reflect.Float32 ||
// k == reflect.Float64 ||
// k == reflect.Bool ||
// k == reflect.String
}
// ----
// type codecFnInfoAddrKind uint8
// const (
// codecFnInfoAddrAddr codecFnInfoAddrKind = iota // default
// codecFnInfoAddrBase
// codecFnInfoAddrAddrElseBase
// )
type codecFnInfo struct {
ti *typeInfo
xfFn Ext
xfTag uint64
seq seqType
addrD bool
addrF bool // if addrD, this says whether decode function can take a value or a ptr
addrE bool
}
// codecFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type codecFn struct {
i codecFnInfo
fe func(*Encoder, *codecFnInfo, reflect.Value)
fd func(*Decoder, *codecFnInfo, reflect.Value)
}
type codecRtidFn struct {
rtid uintptr
fn codecFn
}
type codecFner struct {
hh Handle
h *BasicHandle
cs [arrayCacheLen]*[arrayCacheLen]codecRtidFn
s []*[arrayCacheLen]codecRtidFn
sn uint32
be bool
js bool
cf [arrayCacheLen]codecRtidFn
}
func (c *codecFner) reset(hh Handle) {
c.hh = hh
c.h = hh.getBasicHandle()
_, c.js = hh.(*JsonHandle)
c.be = hh.isBinary()
}
func (c *codecFner) get(rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *codecFn) {
rtid := rt2id(rt)
var j uint32
var sn uint32 = c.sn
if sn == 0 {
c.s = c.cs[:1]
c.s[0] = &c.cf
c.cf[0].rtid = rtid
fn = &(c.cf[0].fn)
c.sn = 1
} else {
LOOP1:
for _, x := range c.s {
for i := range x {
if j == sn {
break LOOP1
}
if x[i].rtid == rtid {
fn = &(x[i].fn)
return
}
j++
}
}
sx, sy := sn/arrayCacheLen, sn%arrayCacheLen
if sy == 0 {
c.s = append(c.s, &[arrayCacheLen]codecRtidFn{})
}
c.s[sx][sy].rtid = rtid
fn = &(c.s[sx][sy].fn)
c.sn++
}
ti := c.h.getTypeInfo(rtid, rt)
fi := &(fn.i)
fi.ti = ti
rk := rt.Kind()
if checkCodecSelfer && (ti.cs || ti.csp) {
fn.fe = (*Encoder).selferMarshal
fn.fd = (*Decoder).selferUnmarshal
fi.addrF = true
fi.addrD = ti.csp
fi.addrE = ti.csp
} else if rtid == timeTypId {
fn.fe = (*Encoder).kTime
fn.fd = (*Decoder).kTime
} else if rtid == rawTypId {
fn.fe = (*Encoder).raw
fn.fd = (*Decoder).raw
} else if rtid == rawExtTypId {
fn.fe = (*Encoder).rawExt
fn.fd = (*Decoder).rawExt
fi.addrF = true
fi.addrD = true
fi.addrE = true
} else if false && c.hh.IsBuiltinType(rtid) {
// TODO: remove this whole block. currently turned off with the "false &&"
// fn.fe = (*Encoder).builtin
// fn.fd = (*Decoder).builtin
// fi.addrF = true
// fi.addrD = true
} else if xfFn := c.h.getExt(rtid); xfFn != nil {
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
fn.fe = (*Encoder).ext
fn.fd = (*Decoder).ext
fi.addrF = true
fi.addrD = true
if rk == reflect.Struct || rk == reflect.Array {
fi.addrE = true
}
} else if supportMarshalInterfaces && c.be && (ti.bm || ti.bmp) && (ti.bu || ti.bup) {
fn.fe = (*Encoder).binaryMarshal
fn.fd = (*Decoder).binaryUnmarshal
fi.addrF = true
fi.addrD = ti.bup
fi.addrE = ti.bmp
} else if supportMarshalInterfaces && !c.be && c.js && (ti.jm || ti.jmp) && (ti.ju || ti.jup) {
//If JSON, we should check JSONMarshal before textMarshal
fn.fe = (*Encoder).jsonMarshal
fn.fd = (*Decoder).jsonUnmarshal
fi.addrF = true
fi.addrD = ti.jup
fi.addrE = ti.jmp
} else if supportMarshalInterfaces && !c.be && (ti.tm || ti.tmp) && (ti.tu || ti.tup) {
fn.fe = (*Encoder).textMarshal
fn.fd = (*Decoder).textUnmarshal
fi.addrF = true
fi.addrD = ti.tup
fi.addrE = ti.tmp
} else {
if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
if rt.PkgPath() == "" { // un-named slice or map
if idx := fastpathAV.index(rtid); idx != -1 {
fn.fe = fastpathAV[idx].encfn
fn.fd = fastpathAV[idx].decfn
fi.addrD = true
fi.addrF = false
}
} else {
// use mapping for underlying type if there
var rtu reflect.Type
if rk == reflect.Map {
rtu = reflect.MapOf(rt.Key(), rt.Elem())
} else {
rtu = reflect.SliceOf(rt.Elem())
}
rtuid := rt2id(rtu)
if idx := fastpathAV.index(rtuid); idx != -1 {
xfnf := fastpathAV[idx].encfn
xrt := fastpathAV[idx].rt
fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
xfnf(e, xf, xrv.Convert(xrt))
}
fi.addrD = true
fi.addrF = false
xfnf2 := fastpathAV[idx].decfn
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
xfnf2(d, xf, xrv.Convert(reflect.PtrTo(xrt)))
}
}
}
}
if fn.fe == nil && fn.fd == nil {
switch rk {
case reflect.Bool:
fn.fe = (*Encoder).kBool
fn.fd = (*Decoder).kBool
case reflect.String:
fn.fe = (*Encoder).kString
fn.fd = (*Decoder).kString
case reflect.Int:
fn.fd = (*Decoder).kInt
fn.fe = (*Encoder).kInt
case reflect.Int8:
fn.fe = (*Encoder).kInt8
fn.fd = (*Decoder).kInt8
case reflect.Int16:
fn.fe = (*Encoder).kInt16
fn.fd = (*Decoder).kInt16
case reflect.Int32:
fn.fe = (*Encoder).kInt32
fn.fd = (*Decoder).kInt32
case reflect.Int64:
fn.fe = (*Encoder).kInt64
fn.fd = (*Decoder).kInt64
case reflect.Uint:
fn.fd = (*Decoder).kUint
fn.fe = (*Encoder).kUint
case reflect.Uint8:
fn.fe = (*Encoder).kUint8
fn.fd = (*Decoder).kUint8
case reflect.Uint16:
fn.fe = (*Encoder).kUint16
fn.fd = (*Decoder).kUint16
case reflect.Uint32:
fn.fe = (*Encoder).kUint32
fn.fd = (*Decoder).kUint32
case reflect.Uint64:
fn.fe = (*Encoder).kUint64
fn.fd = (*Decoder).kUint64
// case reflect.Ptr:
// fn.fd = (*Decoder).kPtr
case reflect.Uintptr:
fn.fe = (*Encoder).kUintptr
fn.fd = (*Decoder).kUintptr
case reflect.Float32:
fn.fe = (*Encoder).kFloat32
fn.fd = (*Decoder).kFloat32
case reflect.Float64:
fn.fe = (*Encoder).kFloat64
fn.fd = (*Decoder).kFloat64
case reflect.Invalid:
fn.fe = (*Encoder).kInvalid
fn.fd = (*Decoder).kErr
case reflect.Chan:
fi.seq = seqTypeChan
fn.fe = (*Encoder).kSlice
fn.fd = (*Decoder).kSlice
case reflect.Slice:
fi.seq = seqTypeSlice
fn.fe = (*Encoder).kSlice
fn.fd = (*Decoder).kSlice
case reflect.Array:
fi.seq = seqTypeArray
fn.fe = (*Encoder).kSlice
fi.addrF = false
fi.addrD = false
rt2 := reflect.SliceOf(rt.Elem())
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
// println(">>>>>> decoding an array ... ")
d.cf.get(rt2, true, false).fd(d, xf, xrv.Slice(0, xrv.Len()))
// println(">>>>>> decoding an array ... DONE")
}
// fn.fd = (*Decoder).kArray
case reflect.Struct:
if ti.anyOmitEmpty {
fn.fe = (*Encoder).kStruct
} else {
fn.fe = (*Encoder).kStructNoOmitempty
}
fn.fd = (*Decoder).kStruct
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
// case reflect.Ptr:
// fn.fe = (*Encoder).kPtr
// case reflect.Interface:
// fn.fe = (*Encoder).kInterface
case reflect.Map:
fn.fe = (*Encoder).kMap
fn.fd = (*Decoder).kMap
case reflect.Interface:
// encode: reflect.Interface are handled already by preEncodeValue
fn.fd = (*Decoder).kInterface
fn.fe = (*Encoder).kErr
default:
fn.fe = (*Encoder).kErr
fn.fd = (*Decoder).kErr
}
}
}
return
}
// ----
// these functions must be inlinable, and not call anybody
type checkOverflow struct{}
func (checkOverflow) Float32(f float64) (overflow bool) {
if f < 0 {
f = -f
}
return math.MaxFloat32 < f && f <= math.MaxFloat64
}
func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
if bitsize == 0 || bitsize >= 64 || v == 0 {
return
}
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
overflow = true
}
return
}
func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
if bitsize == 0 || bitsize >= 64 || v == 0 {
return
}
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
overflow = true
}
return
}
func (checkOverflow) SignedInt(v uint64) (i int64, overflow bool) {
//e.g. -127 to 128 for int8
pos := (v >> 63) == 0
ui2 := v & 0x7fffffffffffffff
if pos {
if ui2 > math.MaxInt64 {
overflow = true
return
}
} else {
if ui2 > math.MaxInt64-1 {
overflow = true
return
}
}
i = int64(v)
return
}
// ------------------ SORT -----------------
func isNaN(f float64) bool { return f != f }
// -----------------------
type ioFlusher interface {
Flush() error
}
// -----------------------
type intSlice []int64
type uintSlice []uint64
type uintptrSlice []uintptr
type floatSlice []float64
type boolSlice []bool
type stringSlice []string
type bytesSlice [][]byte
func (p intSlice) Len() int { return len(p) }
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p intSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p uintSlice) Len() int { return len(p) }
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p uintSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p uintptrSlice) Len() int { return len(p) }
func (p uintptrSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p uintptrSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p floatSlice) Len() int { return len(p) }
func (p floatSlice) Less(i, j int) bool {
return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
}
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p stringSlice) Len() int { return len(p) }
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p stringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p bytesSlice) Len() int { return len(p) }
func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
func (p bytesSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p boolSlice) Len() int { return len(p) }
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
func (p boolSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// ---------------------
type intRv struct {
v int64
r reflect.Value
}
type intRvSlice []intRv
type uintRv struct {
v uint64
r reflect.Value
}
type uintRvSlice []uintRv
type floatRv struct {
v float64
r reflect.Value
}
type floatRvSlice []floatRv
type boolRv struct {
v bool
r reflect.Value
}
type boolRvSlice []boolRv
type stringRv struct {
v string
r reflect.Value
}
type stringRvSlice []stringRv
type bytesRv struct {
v []byte
r reflect.Value
}
type bytesRvSlice []bytesRv
type timeRv struct {
v time.Time
r reflect.Value
}
type timeRvSlice []timeRv
func (p intRvSlice) Len() int { return len(p) }
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p intRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p uintRvSlice) Len() int { return len(p) }
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p uintRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p floatRvSlice) Len() int { return len(p) }
func (p floatRvSlice) Less(i, j int) bool {
return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
}
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p stringRvSlice) Len() int { return len(p) }
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p stringRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p bytesRvSlice) Len() int { return len(p) }
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p boolRvSlice) Len() int { return len(p) }
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
func (p boolRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p timeRvSlice) Len() int { return len(p) }
func (p timeRvSlice) Less(i, j int) bool { return p[i].v.Before(p[j].v) }
func (p timeRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// -----------------
type bytesI struct {
v []byte
i interface{}
}
type bytesISlice []bytesI
func (p bytesISlice) Len() int { return len(p) }
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesISlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// -----------------
type set []uintptr
func (s *set) add(v uintptr) (exists bool) {
// e.ci is always nil, or len >= 1
x := *s
if x == nil {
x = make([]uintptr, 1, 8)
x[0] = v
*s = x
return
}
// typically, length will be 1. make this perform.
if len(x) == 1 {
if j := x[0]; j == 0 {
x[0] = v
} else if j == v {
exists = true
} else {
x = append(x, v)
*s = x
}
return
}
// check if it exists
for _, j := range x {
if j == v {
exists = true
return
}
}
// try to replace a "deleted" slot
for i, j := range x {
if j == 0 {
x[i] = v
return
}
}
// if unable to replace deleted slot, just append it.
x = append(x, v)
*s = x
return
}
func (s *set) remove(v uintptr) (exists bool) {
x := *s
if len(x) == 0 {
return
}
if len(x) == 1 {
if x[0] == v {
x[0] = 0
}
return
}
for i, j := range x {
if j == v {
exists = true
x[i] = 0 // set it to 0, as way to delete it.
// copy(x[i:], x[i+1:])
// x = x[:len(x)-1]
return
}
}
return
}
// ------
// bitset types are better than [256]bool, because they permit the whole
// bitset array being on a single cache line and use less memory.
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
type bitset256 [32]byte
func (x *bitset256) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset256) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset256) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
type bitset128 [16]byte
func (x *bitset128) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset128) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset128) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
type bitset32 [4]byte
func (x *bitset32) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset32) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset32) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
// ------------
type pooler struct {
// for stringRV
strRv8, strRv16, strRv32, strRv64, strRv128 sync.Pool
// for the decNaked
dn sync.Pool
tiload sync.Pool
}
func (p *pooler) init() {
p.strRv8.New = func() interface{} { return new([8]stringRv) }
p.strRv16.New = func() interface{} { return new([16]stringRv) }
p.strRv32.New = func() interface{} { return new([32]stringRv) }
p.strRv64.New = func() interface{} { return new([64]stringRv) }
p.strRv128.New = func() interface{} { return new([128]stringRv) }
p.dn.New = func() interface{} { x := new(decNaked); x.init(); return x }
p.tiload.New = func() interface{} { return new(typeInfoLoadArray) }
}
func (p *pooler) stringRv8() (sp *sync.Pool, v interface{}) {
return &p.strRv8, p.strRv8.Get()
}
func (p *pooler) stringRv16() (sp *sync.Pool, v interface{}) {
return &p.strRv16, p.strRv16.Get()
}
func (p *pooler) stringRv32() (sp *sync.Pool, v interface{}) {
return &p.strRv32, p.strRv32.Get()
}
func (p *pooler) stringRv64() (sp *sync.Pool, v interface{}) {
return &p.strRv64, p.strRv64.Get()
}
func (p *pooler) stringRv128() (sp *sync.Pool, v interface{}) {
return &p.strRv128, p.strRv128.Get()
}
func (p *pooler) decNaked() (sp *sync.Pool, v interface{}) {
return &p.dn, p.dn.Get()
}
func (p *pooler) tiLoad() (sp *sync.Pool, v interface{}) {
return &p.tiload, p.tiload.Get()
}