package bolt import ( "fmt" "io" "os" "sort" "time" "unsafe" ) // txid represents the internal transaction identifier. type txid uint64 // Tx represents a read-only or read/write transaction on the database. // Read-only transactions can be used for retrieving values for keys and creating cursors. // Read/write transactions can create and remove buckets and create and remove keys. // // IMPORTANT: You must commit or rollback transactions when you are done with // them. Pages can not be reclaimed by the writer until no more transactions // are using them. A long running read transaction can cause the database to // quickly grow. type Tx struct { writable bool managed bool db *DB meta *meta root Bucket pages map[pgid]*page stats TxStats commitHandlers []func() } // init initializes the transaction. func (tx *Tx) init(db *DB) { tx.db = db tx.pages = nil // Copy the meta page since it can be changed by the writer. tx.meta = &meta{} db.meta().copy(tx.meta) // Copy over the root bucket. tx.root = newBucket(tx) tx.root.bucket = &bucket{} *tx.root.bucket = tx.meta.root // Increment the transaction id and add a page cache for writable transactions. if tx.writable { tx.pages = make(map[pgid]*page) tx.meta.txid += txid(1) } } // ID returns the transaction id. func (tx *Tx) ID() int { return int(tx.meta.txid) } // DB returns a reference to the database that created the transaction. func (tx *Tx) DB() *DB { return tx.db } // Size returns current database size in bytes as seen by this transaction. func (tx *Tx) Size() int64 { return int64(tx.meta.pgid) * int64(tx.db.pageSize) } // Writable returns whether the transaction can perform write operations. func (tx *Tx) Writable() bool { return tx.writable } // Cursor creates a cursor associated with the root bucket. // All items in the cursor will return a nil value because all root bucket keys point to buckets. // The cursor is only valid as long as the transaction is open. // Do not use a cursor after the transaction is closed. func (tx *Tx) Cursor() *Cursor { return tx.root.Cursor() } // Stats retrieves a copy of the current transaction statistics. func (tx *Tx) Stats() TxStats { return tx.stats } // Bucket retrieves a bucket by name. // Returns nil if the bucket does not exist. func (tx *Tx) Bucket(name []byte) *Bucket { return tx.root.Bucket(name) } // CreateBucket creates a new bucket. // Returns an error if the bucket already exists, if the bucket name is blank, or if the bucket name is too long. func (tx *Tx) CreateBucket(name []byte) (*Bucket, error) { return tx.root.CreateBucket(name) } // CreateBucketIfNotExists creates a new bucket if it doesn't already exist. // Returns an error if the bucket name is blank, or if the bucket name is too long. func (tx *Tx) CreateBucketIfNotExists(name []byte) (*Bucket, error) { return tx.root.CreateBucketIfNotExists(name) } // DeleteBucket deletes a bucket. // Returns an error if the bucket cannot be found or if the key represents a non-bucket value. func (tx *Tx) DeleteBucket(name []byte) error { return tx.root.DeleteBucket(name) } // ForEach executes a function for each bucket in the root. // If the provided function returns an error then the iteration is stopped and // the error is returned to the caller. func (tx *Tx) ForEach(fn func(name []byte, b *Bucket) error) error { return tx.root.ForEach(func(k, v []byte) error { if err := fn(k, tx.root.Bucket(k)); err != nil { return err } return nil }) } // OnCommit adds a handler function to be executed after the transaction successfully commits. func (tx *Tx) OnCommit(fn func()) { tx.commitHandlers = append(tx.commitHandlers, fn) } // Commit writes all changes to disk and updates the meta page. // Returns an error if a disk write error occurs. func (tx *Tx) Commit() error { _assert(!tx.managed, "managed tx commit not allowed") if tx.db == nil { return ErrTxClosed } else if !tx.writable { return ErrTxNotWritable } // TODO(benbjohnson): Use vectorized I/O to write out dirty pages. // Rebalance nodes which have had deletions. var startTime = time.Now() tx.root.rebalance() if tx.stats.Rebalance > 0 { tx.stats.RebalanceTime += time.Since(startTime) } // spill data onto dirty pages. startTime = time.Now() if err := tx.root.spill(); err != nil { tx.rollback() return err } tx.stats.SpillTime += time.Since(startTime) // Free the old root bucket. tx.meta.root.root = tx.root.root // Free the freelist and allocate new pages for it. This will overestimate // the size of the freelist but not underestimate the size (which would be bad). tx.db.freelist.free(tx.meta.txid, tx.db.page(tx.meta.freelist)) p, err := tx.allocate((tx.db.freelist.size() / tx.db.pageSize) + 1) if err != nil { tx.rollback() return err } if err := tx.db.freelist.write(p); err != nil { tx.rollback() return err } tx.meta.freelist = p.id // Write dirty pages to disk. startTime = time.Now() if err := tx.write(); err != nil { tx.rollback() return err } // If strict mode is enabled then perform a consistency check. // Only the first consistency error is reported in the panic. if tx.db.StrictMode { if err, ok := <-tx.Check(); ok { panic("check fail: " + err.Error()) } } // Write meta to disk. if err := tx.writeMeta(); err != nil { tx.rollback() return err } tx.stats.WriteTime += time.Since(startTime) // Finalize the transaction. tx.close() // Execute commit handlers now that the locks have been removed. for _, fn := range tx.commitHandlers { fn() } return nil } // Rollback closes the transaction and ignores all previous updates. func (tx *Tx) Rollback() error { _assert(!tx.managed, "managed tx rollback not allowed") if tx.db == nil { return ErrTxClosed } tx.rollback() return nil } func (tx *Tx) rollback() { if tx.db == nil { return } if tx.writable { tx.db.freelist.rollback(tx.meta.txid) tx.db.freelist.reload(tx.db.page(tx.db.meta().freelist)) } tx.close() } func (tx *Tx) close() { if tx.db == nil { return } if tx.writable { // Grab freelist stats. var freelistFreeN = tx.db.freelist.free_count() var freelistPendingN = tx.db.freelist.pending_count() var freelistAlloc = tx.db.freelist.size() // Remove writer lock. tx.db.rwlock.Unlock() // Merge statistics. tx.db.statlock.Lock() tx.db.stats.FreePageN = freelistFreeN tx.db.stats.PendingPageN = freelistPendingN tx.db.stats.FreeAlloc = (freelistFreeN + freelistPendingN) * tx.db.pageSize tx.db.stats.FreelistInuse = freelistAlloc tx.db.stats.TxStats.add(&tx.stats) tx.db.statlock.Unlock() } else { tx.db.removeTx(tx) } tx.db = nil } // Copy writes the entire database to a writer. // This function exists for backwards compatibility. Use WriteTo() in func (tx *Tx) Copy(w io.Writer) error { _, err := tx.WriteTo(w) return err } // WriteTo writes the entire database to a writer. // If err == nil then exactly tx.Size() bytes will be written into the writer. func (tx *Tx) WriteTo(w io.Writer) (n int64, err error) { // Attempt to open reader directly. var f *os.File if f, err = os.OpenFile(tx.db.path, os.O_RDONLY|odirect, 0); err != nil { // Fallback to a regular open if that doesn't work. if f, err = os.OpenFile(tx.db.path, os.O_RDONLY, 0); err != nil { return 0, err } } // Copy the meta pages. tx.db.metalock.Lock() n, err = io.CopyN(w, f, int64(tx.db.pageSize*2)) tx.db.metalock.Unlock() if err != nil { _ = f.Close() return n, fmt.Errorf("meta copy: %s", err) } // Copy data pages. wn, err := io.CopyN(w, f, tx.Size()-int64(tx.db.pageSize*2)) n += wn if err != nil { _ = f.Close() return n, err } return n, f.Close() } // CopyFile copies the entire database to file at the given path. // A reader transaction is maintained during the copy so it is safe to continue // using the database while a copy is in progress. func (tx *Tx) CopyFile(path string, mode os.FileMode) error { f, err := os.OpenFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, mode) if err != nil { return err } err = tx.Copy(f) if err != nil { _ = f.Close() return err } return f.Close() } // Check performs several consistency checks on the database for this transaction. // An error is returned if any inconsistency is found. // // It can be safely run concurrently on a writable transaction. However, this // incurs a high cost for large databases and databases with a lot of subbuckets // because of caching. This overhead can be removed if running on a read-only // transaction, however, it is not safe to execute other writer transactions at // the same time. func (tx *Tx) Check() <-chan error { ch := make(chan error) go tx.check(ch) return ch } func (tx *Tx) check(ch chan error) { // Check if any pages are double freed. freed := make(map[pgid]bool) for _, id := range tx.db.freelist.all() { if freed[id] { ch <- fmt.Errorf("page %d: already freed", id) } freed[id] = true } // Track every reachable page. reachable := make(map[pgid]*page) reachable[0] = tx.page(0) // meta0 reachable[1] = tx.page(1) // meta1 for i := uint32(0); i <= tx.page(tx.meta.freelist).overflow; i++ { reachable[tx.meta.freelist+pgid(i)] = tx.page(tx.meta.freelist) } // Recursively check buckets. tx.checkBucket(&tx.root, reachable, freed, ch) // Ensure all pages below high water mark are either reachable or freed. for i := pgid(0); i < tx.meta.pgid; i++ { _, isReachable := reachable[i] if !isReachable && !freed[i] { ch <- fmt.Errorf("page %d: unreachable unfreed", int(i)) } } // Close the channel to signal completion. close(ch) } func (tx *Tx) checkBucket(b *Bucket, reachable map[pgid]*page, freed map[pgid]bool, ch chan error) { // Ignore inline buckets. if b.root == 0 { return } // Check every page used by this bucket. b.tx.forEachPage(b.root, 0, func(p *page, _ int) { if p.id > tx.meta.pgid { ch <- fmt.Errorf("page %d: out of bounds: %d", int(p.id), int(b.tx.meta.pgid)) } // Ensure each page is only referenced once. for i := pgid(0); i <= pgid(p.overflow); i++ { var id = p.id + i if _, ok := reachable[id]; ok { ch <- fmt.Errorf("page %d: multiple references", int(id)) } reachable[id] = p } // We should only encounter un-freed leaf and branch pages. if freed[p.id] { ch <- fmt.Errorf("page %d: reachable freed", int(p.id)) } else if (p.flags&branchPageFlag) == 0 && (p.flags&leafPageFlag) == 0 { ch <- fmt.Errorf("page %d: invalid type: %s", int(p.id), p.typ()) } }) // Check each bucket within this bucket. _ = b.ForEach(func(k, v []byte) error { if child := b.Bucket(k); child != nil { tx.checkBucket(child, reachable, freed, ch) } return nil }) } // allocate returns a contiguous block of memory starting at a given page. func (tx *Tx) allocate(count int) (*page, error) { p, err := tx.db.allocate(count) if err != nil { return nil, err } // Save to our page cache. tx.pages[p.id] = p // Update statistics. tx.stats.PageCount++ tx.stats.PageAlloc += count * tx.db.pageSize return p, nil } // write writes any dirty pages to disk. func (tx *Tx) write() error { // Sort pages by id. pages := make(pages, 0, len(tx.pages)) for _, p := range tx.pages { pages = append(pages, p) } sort.Sort(pages) // Write pages to disk in order. for _, p := range pages { size := (int(p.overflow) + 1) * tx.db.pageSize buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:size] offset := int64(p.id) * int64(tx.db.pageSize) if _, err := tx.db.ops.writeAt(buf, offset); err != nil { return err } // Update statistics. tx.stats.Write++ } if !tx.db.NoSync || IgnoreNoSync { if err := fdatasync(tx.db); err != nil { return err } } // Clear out page cache. tx.pages = make(map[pgid]*page) return nil } // writeMeta writes the meta to the disk. func (tx *Tx) writeMeta() error { // Create a temporary buffer for the meta page. buf := make([]byte, tx.db.pageSize) p := tx.db.pageInBuffer(buf, 0) tx.meta.write(p) // Write the meta page to file. if _, err := tx.db.ops.writeAt(buf, int64(p.id)*int64(tx.db.pageSize)); err != nil { return err } if !tx.db.NoSync || IgnoreNoSync { if err := fdatasync(tx.db); err != nil { return err } } // Update statistics. tx.stats.Write++ return nil } // page returns a reference to the page with a given id. // If page has been written to then a temporary bufferred page is returned. func (tx *Tx) page(id pgid) *page { // Check the dirty pages first. if tx.pages != nil { if p, ok := tx.pages[id]; ok { return p } } // Otherwise return directly from the mmap. return tx.db.page(id) } // forEachPage iterates over every page within a given page and executes a function. func (tx *Tx) forEachPage(pgid pgid, depth int, fn func(*page, int)) { p := tx.page(pgid) // Execute function. fn(p, depth) // Recursively loop over children. if (p.flags & branchPageFlag) != 0 { for i := 0; i < int(p.count); i++ { elem := p.branchPageElement(uint16(i)) tx.forEachPage(elem.pgid, depth+1, fn) } } } // Page returns page information for a given page number. // This is only safe for concurrent use when used by a writable transaction. func (tx *Tx) Page(id int) (*PageInfo, error) { if tx.db == nil { return nil, ErrTxClosed } else if pgid(id) >= tx.meta.pgid { return nil, nil } // Build the page info. p := tx.db.page(pgid(id)) info := &PageInfo{ ID: id, Count: int(p.count), OverflowCount: int(p.overflow), } // Determine the type (or if it's free). if tx.db.freelist.freed(pgid(id)) { info.Type = "free" } else { info.Type = p.typ() } return info, nil } // TxStats represents statistics about the actions performed by the transaction. type TxStats struct { // Page statistics. PageCount int // number of page allocations PageAlloc int // total bytes allocated // Cursor statistics. CursorCount int // number of cursors created // Node statistics NodeCount int // number of node allocations NodeDeref int // number of node dereferences // Rebalance statistics. Rebalance int // number of node rebalances RebalanceTime time.Duration // total time spent rebalancing // Split/Spill statistics. Split int // number of nodes split Spill int // number of nodes spilled SpillTime time.Duration // total time spent spilling // Write statistics. Write int // number of writes performed WriteTime time.Duration // total time spent writing to disk } func (s *TxStats) add(other *TxStats) { s.PageCount += other.PageCount s.PageAlloc += other.PageAlloc s.CursorCount += other.CursorCount s.NodeCount += other.NodeCount s.NodeDeref += other.NodeDeref s.Rebalance += other.Rebalance s.RebalanceTime += other.RebalanceTime s.Split += other.Split s.Spill += other.Spill s.SpillTime += other.SpillTime s.Write += other.Write s.WriteTime += other.WriteTime } // Sub calculates and returns the difference between two sets of transaction stats. // This is useful when obtaining stats at two different points and time and // you need the performance counters that occurred within that time span. func (s *TxStats) Sub(other *TxStats) TxStats { var diff TxStats diff.PageCount = s.PageCount - other.PageCount diff.PageAlloc = s.PageAlloc - other.PageAlloc diff.CursorCount = s.CursorCount - other.CursorCount diff.NodeCount = s.NodeCount - other.NodeCount diff.NodeDeref = s.NodeDeref - other.NodeDeref diff.Rebalance = s.Rebalance - other.Rebalance diff.RebalanceTime = s.RebalanceTime - other.RebalanceTime diff.Split = s.Split - other.Split diff.Spill = s.Spill - other.Spill diff.SpillTime = s.SpillTime - other.SpillTime diff.Write = s.Write - other.Write diff.WriteTime = s.WriteTime - other.WriteTime return diff }