// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import "math" const ( _ uint8 = iota simpleVdNil = 1 simpleVdFalse = 2 simpleVdTrue = 3 simpleVdFloat32 = 4 simpleVdFloat64 = 5 // each lasts for 4 (ie n, n+1, n+2, n+3) simpleVdPosInt = 8 simpleVdNegInt = 12 // containers: each lasts for 4 (ie n, n+1, n+2, ... n+7) simpleVdString = 216 simpleVdByteArray = 224 simpleVdArray = 232 simpleVdMap = 240 simpleVdExt = 248 ) type simpleEncDriver struct { e *Encoder h *SimpleHandle w encWriter noBuiltInTypes b [8]byte encNoSeparator } func (e *simpleEncDriver) EncodeNil() { e.w.writen1(simpleVdNil) } func (e *simpleEncDriver) EncodeBool(b bool) { if b { e.w.writen1(simpleVdTrue) } else { e.w.writen1(simpleVdFalse) } } func (e *simpleEncDriver) EncodeFloat32(f float32) { e.w.writen1(simpleVdFloat32) bigenHelper{e.b[:4], e.w}.writeUint32(math.Float32bits(f)) } func (e *simpleEncDriver) EncodeFloat64(f float64) { e.w.writen1(simpleVdFloat64) bigenHelper{e.b[:8], e.w}.writeUint64(math.Float64bits(f)) } func (e *simpleEncDriver) EncodeInt(v int64) { if v < 0 { e.encUint(uint64(-v), simpleVdNegInt) } else { e.encUint(uint64(v), simpleVdPosInt) } } func (e *simpleEncDriver) EncodeUint(v uint64) { e.encUint(v, simpleVdPosInt) } func (e *simpleEncDriver) encUint(v uint64, bd uint8) { if v <= math.MaxUint8 { e.w.writen2(bd, uint8(v)) } else if v <= math.MaxUint16 { e.w.writen1(bd + 1) bigenHelper{e.b[:2], e.w}.writeUint16(uint16(v)) } else if v <= math.MaxUint32 { e.w.writen1(bd + 2) bigenHelper{e.b[:4], e.w}.writeUint32(uint32(v)) } else { // if v <= math.MaxUint64 { e.w.writen1(bd + 3) bigenHelper{e.b[:8], e.w}.writeUint64(v) } } func (e *simpleEncDriver) encLen(bd byte, length int) { if length == 0 { e.w.writen1(bd) } else if length <= math.MaxUint8 { e.w.writen1(bd + 1) e.w.writen1(uint8(length)) } else if length <= math.MaxUint16 { e.w.writen1(bd + 2) bigenHelper{e.b[:2], e.w}.writeUint16(uint16(length)) } else if int64(length) <= math.MaxUint32 { e.w.writen1(bd + 3) bigenHelper{e.b[:4], e.w}.writeUint32(uint32(length)) } else { e.w.writen1(bd + 4) bigenHelper{e.b[:8], e.w}.writeUint64(uint64(length)) } } func (e *simpleEncDriver) EncodeExt(rv interface{}, xtag uint64, ext Ext, _ *Encoder) { bs := ext.WriteExt(rv) if bs == nil { e.EncodeNil() return } e.encodeExtPreamble(uint8(xtag), len(bs)) e.w.writeb(bs) } func (e *simpleEncDriver) EncodeRawExt(re *RawExt, _ *Encoder) { e.encodeExtPreamble(uint8(re.Tag), len(re.Data)) e.w.writeb(re.Data) } func (e *simpleEncDriver) encodeExtPreamble(xtag byte, length int) { e.encLen(simpleVdExt, length) e.w.writen1(xtag) } func (e *simpleEncDriver) EncodeArrayStart(length int) { e.encLen(simpleVdArray, length) } func (e *simpleEncDriver) EncodeMapStart(length int) { e.encLen(simpleVdMap, length) } func (e *simpleEncDriver) EncodeString(c charEncoding, v string) { e.encLen(simpleVdString, len(v)) e.w.writestr(v) } func (e *simpleEncDriver) EncodeSymbol(v string) { e.EncodeString(c_UTF8, v) } func (e *simpleEncDriver) EncodeStringBytes(c charEncoding, v []byte) { e.encLen(simpleVdByteArray, len(v)) e.w.writeb(v) } //------------------------------------ type simpleDecDriver struct { d *Decoder h *SimpleHandle r decReader bdRead bool bdType valueType bd byte br bool // bytes reader noBuiltInTypes noStreamingCodec decNoSeparator b [scratchByteArrayLen]byte } func (d *simpleDecDriver) readNextBd() { d.bd = d.r.readn1() d.bdRead = true d.bdType = valueTypeUnset } func (d *simpleDecDriver) IsContainerType(vt valueType) bool { switch vt { case valueTypeNil: return d.bd == simpleVdNil case valueTypeBytes: const x uint8 = simpleVdByteArray return d.bd == x || d.bd == x+1 || d.bd == x+2 || d.bd == x+3 || d.bd == x+4 case valueTypeString: const x uint8 = simpleVdString return d.bd == x || d.bd == x+1 || d.bd == x+2 || d.bd == x+3 || d.bd == x+4 case valueTypeArray: const x uint8 = simpleVdArray return d.bd == x || d.bd == x+1 || d.bd == x+2 || d.bd == x+3 || d.bd == x+4 case valueTypeMap: const x uint8 = simpleVdMap return d.bd == x || d.bd == x+1 || d.bd == x+2 || d.bd == x+3 || d.bd == x+4 } d.d.errorf("isContainerType: unsupported parameter: %v", vt) return false // "unreachable" } func (d *simpleDecDriver) TryDecodeAsNil() bool { if !d.bdRead { d.readNextBd() } if d.bd == simpleVdNil { d.bdRead = false return true } return false } func (d *simpleDecDriver) decCheckInteger() (ui uint64, neg bool) { if !d.bdRead { d.readNextBd() } switch d.bd { case simpleVdPosInt: ui = uint64(d.r.readn1()) case simpleVdPosInt + 1: ui = uint64(bigen.Uint16(d.r.readx(2))) case simpleVdPosInt + 2: ui = uint64(bigen.Uint32(d.r.readx(4))) case simpleVdPosInt + 3: ui = uint64(bigen.Uint64(d.r.readx(8))) case simpleVdNegInt: ui = uint64(d.r.readn1()) neg = true case simpleVdNegInt + 1: ui = uint64(bigen.Uint16(d.r.readx(2))) neg = true case simpleVdNegInt + 2: ui = uint64(bigen.Uint32(d.r.readx(4))) neg = true case simpleVdNegInt + 3: ui = uint64(bigen.Uint64(d.r.readx(8))) neg = true default: d.d.errorf("decIntAny: Integer only valid from pos/neg integer1..8. Invalid descriptor: %v", d.bd) return } // don't do this check, because callers may only want the unsigned value. // if ui > math.MaxInt64 { // d.d.errorf("decIntAny: Integer out of range for signed int64: %v", ui) // return // } return } func (d *simpleDecDriver) DecodeInt(bitsize uint8) (i int64) { ui, neg := d.decCheckInteger() i, overflow := chkOvf.SignedInt(ui) if overflow { d.d.errorf("simple: overflow converting %v to signed integer", ui) return } if neg { i = -i } if chkOvf.Int(i, bitsize) { d.d.errorf("simple: overflow integer: %v", i) return } d.bdRead = false return } func (d *simpleDecDriver) DecodeUint(bitsize uint8) (ui uint64) { ui, neg := d.decCheckInteger() if neg { d.d.errorf("Assigning negative signed value to unsigned type") return } if chkOvf.Uint(ui, bitsize) { d.d.errorf("simple: overflow integer: %v", ui) return } d.bdRead = false return } func (d *simpleDecDriver) DecodeFloat(chkOverflow32 bool) (f float64) { if !d.bdRead { d.readNextBd() } if d.bd == simpleVdFloat32 { f = float64(math.Float32frombits(bigen.Uint32(d.r.readx(4)))) } else if d.bd == simpleVdFloat64 { f = math.Float64frombits(bigen.Uint64(d.r.readx(8))) } else { if d.bd >= simpleVdPosInt && d.bd <= simpleVdNegInt+3 { f = float64(d.DecodeInt(64)) } else { d.d.errorf("Float only valid from float32/64: Invalid descriptor: %v", d.bd) return } } if chkOverflow32 && chkOvf.Float32(f) { d.d.errorf("msgpack: float32 overflow: %v", f) return } d.bdRead = false return } // bool can be decoded from bool only (single byte). func (d *simpleDecDriver) DecodeBool() (b bool) { if !d.bdRead { d.readNextBd() } if d.bd == simpleVdTrue { b = true } else if d.bd == simpleVdFalse { } else { d.d.errorf("Invalid single-byte value for bool: %s: %x", msgBadDesc, d.bd) return } d.bdRead = false return } func (d *simpleDecDriver) ReadMapStart() (length int) { d.bdRead = false return d.decLen() } func (d *simpleDecDriver) ReadArrayStart() (length int) { d.bdRead = false return d.decLen() } func (d *simpleDecDriver) decLen() int { switch d.bd % 8 { case 0: return 0 case 1: return int(d.r.readn1()) case 2: return int(bigen.Uint16(d.r.readx(2))) case 3: ui := uint64(bigen.Uint32(d.r.readx(4))) if chkOvf.Uint(ui, intBitsize) { d.d.errorf("simple: overflow integer: %v", ui) return 0 } return int(ui) case 4: ui := bigen.Uint64(d.r.readx(8)) if chkOvf.Uint(ui, intBitsize) { d.d.errorf("simple: overflow integer: %v", ui) return 0 } return int(ui) } d.d.errorf("decLen: Cannot read length: bd%8 must be in range 0..4. Got: %d", d.bd%8) return -1 } func (d *simpleDecDriver) DecodeString() (s string) { return string(d.DecodeBytes(d.b[:], true, true)) } func (d *simpleDecDriver) DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte) { if !d.bdRead { d.readNextBd() } if d.bd == simpleVdNil { d.bdRead = false return } clen := d.decLen() d.bdRead = false if zerocopy { if d.br { return d.r.readx(clen) } else if len(bs) == 0 { bs = d.b[:] } } return decByteSlice(d.r, clen, bs) } func (d *simpleDecDriver) DecodeExt(rv interface{}, xtag uint64, ext Ext) (realxtag uint64) { if xtag > 0xff { d.d.errorf("decodeExt: tag must be <= 0xff; got: %v", xtag) return } realxtag1, xbs := d.decodeExtV(ext != nil, uint8(xtag)) realxtag = uint64(realxtag1) if ext == nil { re := rv.(*RawExt) re.Tag = realxtag re.Data = detachZeroCopyBytes(d.br, re.Data, xbs) } else { ext.ReadExt(rv, xbs) } return } func (d *simpleDecDriver) decodeExtV(verifyTag bool, tag byte) (xtag byte, xbs []byte) { if !d.bdRead { d.readNextBd() } switch d.bd { case simpleVdExt, simpleVdExt + 1, simpleVdExt + 2, simpleVdExt + 3, simpleVdExt + 4: l := d.decLen() xtag = d.r.readn1() if verifyTag && xtag != tag { d.d.errorf("Wrong extension tag. Got %b. Expecting: %v", xtag, tag) return } xbs = d.r.readx(l) case simpleVdByteArray, simpleVdByteArray + 1, simpleVdByteArray + 2, simpleVdByteArray + 3, simpleVdByteArray + 4: xbs = d.DecodeBytes(nil, false, true) default: d.d.errorf("Invalid d.bd for extensions (Expecting extensions or byte array). Got: 0x%x", d.bd) return } d.bdRead = false return } func (d *simpleDecDriver) DecodeNaked() (v interface{}, vt valueType, decodeFurther bool) { if !d.bdRead { d.readNextBd() } switch d.bd { case simpleVdNil: vt = valueTypeNil case simpleVdFalse: vt = valueTypeBool v = false case simpleVdTrue: vt = valueTypeBool v = true case simpleVdPosInt, simpleVdPosInt + 1, simpleVdPosInt + 2, simpleVdPosInt + 3: if d.h.SignedInteger { vt = valueTypeInt v = d.DecodeInt(64) } else { vt = valueTypeUint v = d.DecodeUint(64) } case simpleVdNegInt, simpleVdNegInt + 1, simpleVdNegInt + 2, simpleVdNegInt + 3: vt = valueTypeInt v = d.DecodeInt(64) case simpleVdFloat32: vt = valueTypeFloat v = d.DecodeFloat(true) case simpleVdFloat64: vt = valueTypeFloat v = d.DecodeFloat(false) case simpleVdString, simpleVdString + 1, simpleVdString + 2, simpleVdString + 3, simpleVdString + 4: vt = valueTypeString v = d.DecodeString() case simpleVdByteArray, simpleVdByteArray + 1, simpleVdByteArray + 2, simpleVdByteArray + 3, simpleVdByteArray + 4: vt = valueTypeBytes v = d.DecodeBytes(nil, false, false) case simpleVdExt, simpleVdExt + 1, simpleVdExt + 2, simpleVdExt + 3, simpleVdExt + 4: vt = valueTypeExt l := d.decLen() var re RawExt re.Tag = uint64(d.r.readn1()) re.Data = d.r.readx(l) v = &re case simpleVdArray, simpleVdArray + 1, simpleVdArray + 2, simpleVdArray + 3, simpleVdArray + 4: vt = valueTypeArray decodeFurther = true case simpleVdMap, simpleVdMap + 1, simpleVdMap + 2, simpleVdMap + 3, simpleVdMap + 4: vt = valueTypeMap decodeFurther = true default: d.d.errorf("decodeNaked: Unrecognized d.bd: 0x%x", d.bd) return } if !decodeFurther { d.bdRead = false } return } //------------------------------------ // SimpleHandle is a Handle for a very simple encoding format. // // simple is a simplistic codec similar to binc, but not as compact. // - Encoding of a value is always preceeded by the descriptor byte (bd) // - True, false, nil are encoded fully in 1 byte (the descriptor) // - Integers (intXXX, uintXXX) are encoded in 1, 2, 4 or 8 bytes (plus a descriptor byte). // There are positive (uintXXX and intXXX >= 0) and negative (intXXX < 0) integers. // - Floats are encoded in 4 or 8 bytes (plus a descriptor byte) // - Lenght of containers (strings, bytes, array, map, extensions) // are encoded in 0, 1, 2, 4 or 8 bytes. // Zero-length containers have no length encoded. // For others, the number of bytes is given by pow(2, bd%3) // - maps are encoded as [bd] [length] [[key][value]]... // - arrays are encoded as [bd] [length] [value]... // - extensions are encoded as [bd] [length] [tag] [byte]... // - strings/bytearrays are encoded as [bd] [length] [byte]... // // The full spec will be published soon. type SimpleHandle struct { BasicHandle binaryEncodingType } func (h *SimpleHandle) newEncDriver(e *Encoder) encDriver { return &simpleEncDriver{e: e, w: e.w, h: h} } func (h *SimpleHandle) newDecDriver(d *Decoder) decDriver { return &simpleDecDriver{d: d, r: d.r, h: h, br: d.bytes} } var _ decDriver = (*simpleDecDriver)(nil) var _ encDriver = (*simpleEncDriver)(nil)