// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "bytes" "encoding" "errors" "fmt" "io" "reflect" "sort" "sync" ) const ( defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024 ) // AsSymbolFlag defines what should be encoded as symbols. type AsSymbolFlag uint8 const ( // AsSymbolDefault is default. // Currently, this means only encode struct field names as symbols. // The default is subject to change. AsSymbolDefault AsSymbolFlag = iota // AsSymbolAll means encode anything which could be a symbol as a symbol. AsSymbolAll = 0xfe // AsSymbolNone means do not encode anything as a symbol. AsSymbolNone = 1 << iota // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols. AsSymbolMapStringKeysFlag // AsSymbolStructFieldName means encode struct field names as symbols. AsSymbolStructFieldNameFlag ) // encWriter abstracts writing to a byte array or to an io.Writer. type encWriter interface { writeb([]byte) writestr(string) writen1(byte) writen2(byte, byte) atEndOfEncode() } // encDriver abstracts the actual codec (binc vs msgpack, etc) type encDriver interface { IsBuiltinType(rt uintptr) bool EncodeBuiltin(rt uintptr, v interface{}) EncodeNil() EncodeInt(i int64) EncodeUint(i uint64) EncodeBool(b bool) EncodeFloat32(f float32) EncodeFloat64(f float64) // encodeExtPreamble(xtag byte, length int) EncodeRawExt(re *RawExt, e *Encoder) EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder) EncodeArrayStart(length int) EncodeArrayEnd() EncodeArrayEntrySeparator() EncodeMapStart(length int) EncodeMapEnd() EncodeMapEntrySeparator() EncodeMapKVSeparator() EncodeString(c charEncoding, v string) EncodeSymbol(v string) EncodeStringBytes(c charEncoding, v []byte) //TODO //encBignum(f *big.Int) //encStringRunes(c charEncoding, v []rune) } type encNoSeparator struct{} func (_ encNoSeparator) EncodeMapEnd() {} func (_ encNoSeparator) EncodeArrayEnd() {} func (_ encNoSeparator) EncodeArrayEntrySeparator() {} func (_ encNoSeparator) EncodeMapEntrySeparator() {} func (_ encNoSeparator) EncodeMapKVSeparator() {} type encStructFieldBytesV struct { b []byte v reflect.Value } type encStructFieldBytesVslice []encStructFieldBytesV func (p encStructFieldBytesVslice) Len() int { return len(p) } func (p encStructFieldBytesVslice) Less(i, j int) bool { return bytes.Compare(p[i].b, p[j].b) == -1 } func (p encStructFieldBytesVslice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } type ioEncWriterWriter interface { WriteByte(c byte) error WriteString(s string) (n int, err error) Write(p []byte) (n int, err error) } type ioEncStringWriter interface { WriteString(s string) (n int, err error) } type EncodeOptions struct { // Encode a struct as an array, and not as a map StructToArray bool // Canonical representation means that encoding a value will always result in the same // sequence of bytes. // // This mostly will apply to maps. In this case, codec will do more work to encode the // map keys out of band, and then sort them, before writing out the map to the stream. Canonical bool // AsSymbols defines what should be encoded as symbols. // // Encoding as symbols can reduce the encoded size significantly. // // However, during decoding, each string to be encoded as a symbol must // be checked to see if it has been seen before. Consequently, encoding time // will increase if using symbols, because string comparisons has a clear cost. // // Sample values: // AsSymbolNone // AsSymbolAll // AsSymbolMapStringKeys // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag AsSymbols AsSymbolFlag } // --------------------------------------------- type simpleIoEncWriterWriter struct { w io.Writer bw io.ByteWriter sw ioEncStringWriter } func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) { if o.bw != nil { return o.bw.WriteByte(c) } _, err = o.w.Write([]byte{c}) return } func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) { if o.sw != nil { return o.sw.WriteString(s) } // return o.w.Write([]byte(s)) return o.w.Write(bytesView(s)) } func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) { return o.w.Write(p) } // ---------------------------------------- // ioEncWriter implements encWriter and can write to an io.Writer implementation type ioEncWriter struct { w ioEncWriterWriter // x [8]byte // temp byte array re-used internally for efficiency } func (z *ioEncWriter) writeb(bs []byte) { if len(bs) == 0 { return } n, err := z.w.Write(bs) if err != nil { panic(err) } if n != len(bs) { panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n)) } } func (z *ioEncWriter) writestr(s string) { n, err := z.w.WriteString(s) if err != nil { panic(err) } if n != len(s) { panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n)) } } func (z *ioEncWriter) writen1(b byte) { if err := z.w.WriteByte(b); err != nil { panic(err) } } func (z *ioEncWriter) writen2(b1 byte, b2 byte) { z.writen1(b1) z.writen1(b2) } func (z *ioEncWriter) atEndOfEncode() {} // ---------------------------------------- // bytesEncWriter implements encWriter and can write to an byte slice. // It is used by Marshal function. type bytesEncWriter struct { b []byte c int // cursor out *[]byte // write out on atEndOfEncode } func (z *bytesEncWriter) writeb(s []byte) { if len(s) > 0 { c := z.grow(len(s)) copy(z.b[c:], s) } } func (z *bytesEncWriter) writestr(s string) { if len(s) > 0 { c := z.grow(len(s)) copy(z.b[c:], s) } } func (z *bytesEncWriter) writen1(b1 byte) { c := z.grow(1) z.b[c] = b1 } func (z *bytesEncWriter) writen2(b1 byte, b2 byte) { c := z.grow(2) z.b[c] = b1 z.b[c+1] = b2 } func (z *bytesEncWriter) atEndOfEncode() { *(z.out) = z.b[:z.c] } func (z *bytesEncWriter) grow(n int) (oldcursor int) { oldcursor = z.c z.c = oldcursor + n if z.c > len(z.b) { if z.c > cap(z.b) { // Tried using appendslice logic: (if cap < 1024, *2, else *1.25). // However, it was too expensive, causing too many iterations of copy. // Using bytes.Buffer model was much better (2*cap + n) bs := make([]byte, 2*cap(z.b)+n) copy(bs, z.b[:oldcursor]) z.b = bs } else { z.b = z.b[:cap(z.b)] } } return } // --------------------------------------------- type encFnInfoX struct { e *Encoder ti *typeInfo xfFn Ext xfTag uint64 seq seqType } type encFnInfo struct { // use encFnInfo as a value receiver. // keep most of it less-used variables accessible via a pointer (*encFnInfoX). // As sweet spot for value-receiver is 3 words, keep everything except // encDriver (which everyone needs) directly accessible. // ensure encFnInfoX is set for everyone who needs it i.e. // rawExt, ext, builtin, (selfer|binary|text)Marshal, kSlice, kStruct, kMap, kInterface, fastpath ee encDriver *encFnInfoX } func (f encFnInfo) builtin(rv reflect.Value) { f.ee.EncodeBuiltin(f.ti.rtid, rv.Interface()) } func (f encFnInfo) rawExt(rv reflect.Value) { // rev := rv.Interface().(RawExt) // f.ee.EncodeRawExt(&rev, f.e) var re *RawExt if rv.CanAddr() { re = rv.Addr().Interface().(*RawExt) } else { rev := rv.Interface().(RawExt) re = &rev } f.ee.EncodeRawExt(re, f.e) } func (f encFnInfo) ext(rv reflect.Value) { // if this is a struct and it was addressable, then pass the address directly (not the value) if rv.CanAddr() && rv.Kind() == reflect.Struct { rv = rv.Addr() } f.ee.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e) } func (f encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) { if indir == 0 { v = rv.Interface() } else if indir == -1 { v = rv.Addr().Interface() } else { for j := int8(0); j < indir; j++ { if rv.IsNil() { f.ee.EncodeNil() return } rv = rv.Elem() } v = rv.Interface() } return v, true } func (f encFnInfo) selferMarshal(rv reflect.Value) { if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed { v.(Selfer).CodecEncodeSelf(f.e) } } func (f encFnInfo) binaryMarshal(rv reflect.Value) { if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed { bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary() if fnerr != nil { panic(fnerr) } if bs == nil { f.ee.EncodeNil() } else { f.ee.EncodeStringBytes(c_RAW, bs) } } } func (f encFnInfo) textMarshal(rv reflect.Value) { if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed { // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface()) bs, fnerr := v.(encoding.TextMarshaler).MarshalText() if fnerr != nil { panic(fnerr) } if bs == nil { f.ee.EncodeNil() } else { f.ee.EncodeStringBytes(c_UTF8, bs) } } } func (f encFnInfo) kBool(rv reflect.Value) { f.ee.EncodeBool(rv.Bool()) } func (f encFnInfo) kString(rv reflect.Value) { f.ee.EncodeString(c_UTF8, rv.String()) } func (f encFnInfo) kFloat64(rv reflect.Value) { f.ee.EncodeFloat64(rv.Float()) } func (f encFnInfo) kFloat32(rv reflect.Value) { f.ee.EncodeFloat32(float32(rv.Float())) } func (f encFnInfo) kInt(rv reflect.Value) { f.ee.EncodeInt(rv.Int()) } func (f encFnInfo) kUint(rv reflect.Value) { f.ee.EncodeUint(rv.Uint()) } func (f encFnInfo) kInvalid(rv reflect.Value) { f.ee.EncodeNil() } func (f encFnInfo) kErr(rv reflect.Value) { f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv) } func (f encFnInfo) kSlice(rv reflect.Value) { ti := f.ti // array may be non-addressable, so we have to manage with care // (don't call rv.Bytes, rv.Slice, etc). // E.g. type struct S{B [2]byte}; // Encode(S{}) will bomb on "panic: slice of unaddressable array". if f.seq != seqTypeArray { if rv.IsNil() { f.ee.EncodeNil() return } // If in this method, then there was no extension function defined. // So it's okay to treat as []byte. if ti.rtid == uint8SliceTypId { f.ee.EncodeStringBytes(c_RAW, rv.Bytes()) return } } rtelem := ti.rt.Elem() l := rv.Len() if rtelem.Kind() == reflect.Uint8 { switch f.seq { case seqTypeArray: // if l == 0 { f.ee.encodeStringBytes(c_RAW, nil) } else if rv.CanAddr() { f.ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes()) } else { var bs []byte if l <= cap(f.e.b) { bs = f.e.b[:l] } else { bs = make([]byte, l) } reflect.Copy(reflect.ValueOf(bs), rv) // TODO: Test that reflect.Copy works instead of manual one-by-one // for i := 0; i < l; i++ { // bs[i] = byte(rv.Index(i).Uint()) // } f.ee.EncodeStringBytes(c_RAW, bs) } case seqTypeSlice: f.ee.EncodeStringBytes(c_RAW, rv.Bytes()) case seqTypeChan: bs := f.e.b[:0] // do not use range, so that the number of elements encoded // does not change, and encoding does not hang waiting on someone to close chan. // for b := range rv.Interface().(<-chan byte) { // bs = append(bs, b) // } ch := rv.Interface().(<-chan byte) for i := 0; i < l; i++ { bs = append(bs, <-ch) } f.ee.EncodeStringBytes(c_RAW, bs) } return } if ti.mbs { if l%2 == 1 { f.e.errorf("mapBySlice requires even slice length, but got %v", l) return } f.ee.EncodeMapStart(l / 2) } else { f.ee.EncodeArrayStart(l) } e := f.e sep := !e.be if l > 0 { for rtelem.Kind() == reflect.Ptr { rtelem = rtelem.Elem() } // if kind is reflect.Interface, do not pre-determine the // encoding type, because preEncodeValue may break it down to // a concrete type and kInterface will bomb. var fn encFn if rtelem.Kind() != reflect.Interface { rtelemid := reflect.ValueOf(rtelem).Pointer() fn = e.getEncFn(rtelemid, rtelem, true, true) } // TODO: Consider perf implication of encoding odd index values as symbols if type is string if sep { for j := 0; j < l; j++ { if j > 0 { if ti.mbs { if j%2 == 0 { f.ee.EncodeMapEntrySeparator() } else { f.ee.EncodeMapKVSeparator() } } else { f.ee.EncodeArrayEntrySeparator() } } if f.seq == seqTypeChan { if rv2, ok2 := rv.Recv(); ok2 { e.encodeValue(rv2, fn) } } else { e.encodeValue(rv.Index(j), fn) } } } else { for j := 0; j < l; j++ { if f.seq == seqTypeChan { if rv2, ok2 := rv.Recv(); ok2 { e.encodeValue(rv2, fn) } } else { e.encodeValue(rv.Index(j), fn) } } } } if sep { if ti.mbs { f.ee.EncodeMapEnd() } else { f.ee.EncodeArrayEnd() } } } func (f encFnInfo) kStruct(rv reflect.Value) { fti := f.ti e := f.e tisfi := fti.sfip toMap := !(fti.toArray || e.h.StructToArray) newlen := len(fti.sfi) // Use sync.Pool to reduce allocating slices unnecessarily. // The cost of the occasional locking is less than the cost of locking. var fkvs []encStructFieldKV var pool *sync.Pool var poolv interface{} idxpool := newlen / 8 if encStructPoolLen != 4 { panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed } if idxpool < encStructPoolLen { pool = &encStructPool[idxpool] poolv = pool.Get() switch vv := poolv.(type) { case *[8]encStructFieldKV: fkvs = vv[:newlen] case *[16]encStructFieldKV: fkvs = vv[:newlen] case *[32]encStructFieldKV: fkvs = vv[:newlen] case *[64]encStructFieldKV: fkvs = vv[:newlen] } } if fkvs == nil { fkvs = make([]encStructFieldKV, newlen) } // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct) if toMap { tisfi = fti.sfi } newlen = 0 var kv encStructFieldKV for _, si := range tisfi { kv.v = si.field(rv, false) // if si.i != -1 { // rvals[newlen] = rv.Field(int(si.i)) // } else { // rvals[newlen] = rv.FieldByIndex(si.is) // } if toMap { if si.omitEmpty && isEmptyValue(kv.v) { continue } kv.k = si.encName } else { // use the zero value. // if a reference or struct, set to nil (so you do not output too much) if si.omitEmpty && isEmptyValue(kv.v) { switch kv.v.Kind() { case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice: kv.v = reflect.Value{} //encode as nil } } } fkvs[newlen] = kv newlen++ } // debugf(">>>> kStruct: newlen: %v", newlen) sep := !e.be ee := f.ee //don't dereference everytime if sep { if toMap { ee.EncodeMapStart(newlen) // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 for j := 0; j < newlen; j++ { kv = fkvs[j] if j > 0 { ee.EncodeMapEntrySeparator() } if asSymbols { ee.EncodeSymbol(kv.k) } else { ee.EncodeString(c_UTF8, kv.k) } ee.EncodeMapKVSeparator() e.encodeValue(kv.v, encFn{}) } ee.EncodeMapEnd() } else { ee.EncodeArrayStart(newlen) for j := 0; j < newlen; j++ { kv = fkvs[j] if j > 0 { ee.EncodeArrayEntrySeparator() } e.encodeValue(kv.v, encFn{}) } ee.EncodeArrayEnd() } } else { if toMap { ee.EncodeMapStart(newlen) // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 for j := 0; j < newlen; j++ { kv = fkvs[j] if asSymbols { ee.EncodeSymbol(kv.k) } else { ee.EncodeString(c_UTF8, kv.k) } e.encodeValue(kv.v, encFn{}) } } else { ee.EncodeArrayStart(newlen) for j := 0; j < newlen; j++ { kv = fkvs[j] e.encodeValue(kv.v, encFn{}) } } } // do not use defer. Instead, use explicit pool return at end of function. // defer has a cost we are trying to avoid. // If there is a panic and these slices are not returned, it is ok. if pool != nil { pool.Put(poolv) } } // func (f encFnInfo) kPtr(rv reflect.Value) { // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called") // if rv.IsNil() { // f.ee.encodeNil() // return // } // f.e.encodeValue(rv.Elem()) // } func (f encFnInfo) kInterface(rv reflect.Value) { if rv.IsNil() { f.ee.EncodeNil() return } f.e.encodeValue(rv.Elem(), encFn{}) } func (f encFnInfo) kMap(rv reflect.Value) { if rv.IsNil() { f.ee.EncodeNil() return } l := rv.Len() f.ee.EncodeMapStart(l) e := f.e sep := !e.be if l == 0 { if sep { f.ee.EncodeMapEnd() } return } var asSymbols bool // determine the underlying key and val encFn's for the map. // This eliminates some work which is done for each loop iteration i.e. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn. // // However, if kind is reflect.Interface, do not pre-determine the // encoding type, because preEncodeValue may break it down to // a concrete type and kInterface will bomb. var keyFn, valFn encFn ti := f.ti rtkey := ti.rt.Key() rtval := ti.rt.Elem() rtkeyid := reflect.ValueOf(rtkey).Pointer() // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String var keyTypeIsString = rtkeyid == stringTypId if keyTypeIsString { asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0 } else { for rtkey.Kind() == reflect.Ptr { rtkey = rtkey.Elem() } if rtkey.Kind() != reflect.Interface { rtkeyid = reflect.ValueOf(rtkey).Pointer() keyFn = e.getEncFn(rtkeyid, rtkey, true, true) } } for rtval.Kind() == reflect.Ptr { rtval = rtval.Elem() } if rtval.Kind() != reflect.Interface { rtvalid := reflect.ValueOf(rtval).Pointer() valFn = e.getEncFn(rtvalid, rtval, true, true) } mks := rv.MapKeys() // for j, lmks := 0, len(mks); j < lmks; j++ { ee := f.ee //don't dereference everytime if e.h.Canonical { // first encode each key to a []byte first, then sort them, then record // println(">>>>>>>> CANONICAL <<<<<<<<") var mksv []byte // temporary byte slice for the encoding e2 := NewEncoderBytes(&mksv, e.hh) mksbv := make([]encStructFieldBytesV, len(mks)) for i, k := range mks { l := len(mksv) e2.MustEncode(k) mksbv[i].v = k mksbv[i].b = mksv[l:] } sort.Sort(encStructFieldBytesVslice(mksbv)) for j := range mksbv { if j > 0 { ee.EncodeMapEntrySeparator() } e.w.writeb(mksbv[j].b) ee.EncodeMapKVSeparator() e.encodeValue(rv.MapIndex(mksbv[j].v), valFn) } ee.EncodeMapEnd() } else if sep { for j := range mks { if j > 0 { ee.EncodeMapEntrySeparator() } if keyTypeIsString { if asSymbols { ee.EncodeSymbol(mks[j].String()) } else { ee.EncodeString(c_UTF8, mks[j].String()) } } else { e.encodeValue(mks[j], keyFn) } ee.EncodeMapKVSeparator() e.encodeValue(rv.MapIndex(mks[j]), valFn) } ee.EncodeMapEnd() } else { for j := range mks { if keyTypeIsString { if asSymbols { ee.EncodeSymbol(mks[j].String()) } else { ee.EncodeString(c_UTF8, mks[j].String()) } } else { e.encodeValue(mks[j], keyFn) } e.encodeValue(rv.MapIndex(mks[j]), valFn) } } } // -------------------------------------------------- // encFn encapsulates the captured variables and the encode function. // This way, we only do some calculations one times, and pass to the // code block that should be called (encapsulated in a function) // instead of executing the checks every time. type encFn struct { i encFnInfo f func(encFnInfo, reflect.Value) } // -------------------------------------------------- type rtidEncFn struct { rtid uintptr fn encFn } // An Encoder writes an object to an output stream in the codec format. type Encoder struct { // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder e encDriver w encWriter s []rtidEncFn be bool // is binary encoding wi ioEncWriter wb bytesEncWriter h *BasicHandle hh Handle f map[uintptr]encFn b [scratchByteArrayLen]byte } // NewEncoder returns an Encoder for encoding into an io.Writer. // // For efficiency, Users are encouraged to pass in a memory buffered writer // (eg bufio.Writer, bytes.Buffer). func NewEncoder(w io.Writer, h Handle) *Encoder { e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()} ww, ok := w.(ioEncWriterWriter) if !ok { sww := simpleIoEncWriterWriter{w: w} sww.bw, _ = w.(io.ByteWriter) sww.sw, _ = w.(ioEncStringWriter) ww = &sww //ww = bufio.NewWriterSize(w, defEncByteBufSize) } e.wi.w = ww e.w = &e.wi e.e = h.newEncDriver(e) return e } // NewEncoderBytes returns an encoder for encoding directly and efficiently // into a byte slice, using zero-copying to temporary slices. // // It will potentially replace the output byte slice pointed to. // After encoding, the out parameter contains the encoded contents. func NewEncoderBytes(out *[]byte, h Handle) *Encoder { e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()} in := *out if in == nil { in = make([]byte, defEncByteBufSize) } e.wb.b, e.wb.out = in, out e.w = &e.wb e.e = h.newEncDriver(e) return e } // Encode writes an object into a stream. // // Encoding can be configured via the struct tag for the fields. // The "codec" key in struct field's tag value is the key name, // followed by an optional comma and options. // Note that the "json" key is used in the absence of the "codec" key. // // To set an option on all fields (e.g. omitempty on all fields), you // can create a field called _struct, and set flags on it. // // Struct values "usually" encode as maps. Each exported struct field is encoded unless: // - the field's tag is "-", OR // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option. // // When encoding as a map, the first string in the tag (before the comma) // is the map key string to use when encoding. // // However, struct values may encode as arrays. This happens when: // - StructToArray Encode option is set, OR // - the tag on the _struct field sets the "toarray" option // // Values with types that implement MapBySlice are encoded as stream maps. // // The empty values (for omitempty option) are false, 0, any nil pointer // or interface value, and any array, slice, map, or string of length zero. // // Anonymous fields are encoded inline if no struct tag is present. // Else they are encoded as regular fields. // // Examples: // // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below. // type MyStruct struct { // _struct bool `codec:",omitempty"` //set omitempty for every field // Field1 string `codec:"-"` //skip this field // Field2 int `codec:"myName"` //Use key "myName" in encode stream // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty. // ... // } // // type MyStruct struct { // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field // //and encode struct as an array // } // // The mode of encoding is based on the type of the value. When a value is seen: // - If an extension is registered for it, call that extension function // - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error) // - Else encode it based on its reflect.Kind // // Note that struct field names and keys in map[string]XXX will be treated as symbols. // Some formats support symbols (e.g. binc) and will properly encode the string // only once in the stream, and use a tag to refer to it thereafter. func (e *Encoder) Encode(v interface{}) (err error) { defer panicToErr(&err) e.encode(v) e.w.atEndOfEncode() return } // MustEncode is like Encode, but panics if unable to Encode. // This provides insight to the code location that triggered the error. func (e *Encoder) MustEncode(v interface{}) { e.encode(v) e.w.atEndOfEncode() } // comment out these (Must)Write methods. They were only put there to support cbor. // However, users already have access to the streams, and can write directly. // // // Write allows users write to the Encoder stream directly. // func (e *Encoder) Write(bs []byte) (err error) { // defer panicToErr(&err) // e.w.writeb(bs) // return // } // // MustWrite is like write, but panics if unable to Write. // func (e *Encoder) MustWrite(bs []byte) { // e.w.writeb(bs) // } func (e *Encoder) encode(iv interface{}) { // if ics, ok := iv.(Selfer); ok { // ics.CodecEncodeSelf(e) // return // } switch v := iv.(type) { case nil: e.e.EncodeNil() case Selfer: v.CodecEncodeSelf(e) case reflect.Value: e.encodeValue(v, encFn{}) case string: e.e.EncodeString(c_UTF8, v) case bool: e.e.EncodeBool(v) case int: e.e.EncodeInt(int64(v)) case int8: e.e.EncodeInt(int64(v)) case int16: e.e.EncodeInt(int64(v)) case int32: e.e.EncodeInt(int64(v)) case int64: e.e.EncodeInt(v) case uint: e.e.EncodeUint(uint64(v)) case uint8: e.e.EncodeUint(uint64(v)) case uint16: e.e.EncodeUint(uint64(v)) case uint32: e.e.EncodeUint(uint64(v)) case uint64: e.e.EncodeUint(v) case float32: e.e.EncodeFloat32(v) case float64: e.e.EncodeFloat64(v) case []uint8: e.e.EncodeStringBytes(c_RAW, v) case *string: e.e.EncodeString(c_UTF8, *v) case *bool: e.e.EncodeBool(*v) case *int: e.e.EncodeInt(int64(*v)) case *int8: e.e.EncodeInt(int64(*v)) case *int16: e.e.EncodeInt(int64(*v)) case *int32: e.e.EncodeInt(int64(*v)) case *int64: e.e.EncodeInt(*v) case *uint: e.e.EncodeUint(uint64(*v)) case *uint8: e.e.EncodeUint(uint64(*v)) case *uint16: e.e.EncodeUint(uint64(*v)) case *uint32: e.e.EncodeUint(uint64(*v)) case *uint64: e.e.EncodeUint(*v) case *float32: e.e.EncodeFloat32(*v) case *float64: e.e.EncodeFloat64(*v) case *[]uint8: e.e.EncodeStringBytes(c_RAW, *v) default: // canonical mode is not supported for fastpath of maps (but is fine for slices) if e.h.Canonical { if !fastpathEncodeTypeSwitchSlice(iv, e) { e.encodeI(iv, false, false) } } else if !fastpathEncodeTypeSwitch(iv, e) { e.encodeI(iv, false, false) } } } func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) { if rv, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed { rt := rv.Type() rtid := reflect.ValueOf(rt).Pointer() fn := e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer) fn.f(fn.i, rv) } } func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, proceed bool) { LOOP: for { switch rv.Kind() { case reflect.Ptr, reflect.Interface: if rv.IsNil() { e.e.EncodeNil() return } rv = rv.Elem() continue LOOP case reflect.Slice, reflect.Map: if rv.IsNil() { e.e.EncodeNil() return } case reflect.Invalid, reflect.Func: e.e.EncodeNil() return } break } return rv, true } func (e *Encoder) encodeValue(rv reflect.Value, fn encFn) { // if a valid fn is passed, it MUST BE for the dereferenced type of rv if rv, proceed := e.preEncodeValue(rv); proceed { if fn.f == nil { rt := rv.Type() rtid := reflect.ValueOf(rt).Pointer() fn = e.getEncFn(rtid, rt, true, true) } fn.f(fn.i, rv) } } func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn encFn) { // rtid := reflect.ValueOf(rt).Pointer() var ok bool if useMapForCodecCache { fn, ok = e.f[rtid] } else { for _, v := range e.s { if v.rtid == rtid { fn, ok = v.fn, true break } } } if ok { return } // fi.encFnInfoX = new(encFnInfoX) ti := getTypeInfo(rtid, rt) var fi encFnInfo fi.ee = e.e if checkCodecSelfer && ti.cs { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).selferMarshal } else if rtid == rawExtTypId { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).rawExt } else if e.e.IsBuiltinType(rtid) { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).builtin } else if xfFn := e.h.getExt(rtid); xfFn != nil { // fi.encFnInfoX = new(encFnInfoX) fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext fn.f = (encFnInfo).ext } else if supportMarshalInterfaces && e.be && ti.bm { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).binaryMarshal } else if supportMarshalInterfaces && !e.be && ti.tm { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).textMarshal } else { rk := rt.Kind() if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) { if rt.PkgPath() == "" { if idx := fastpathAV.index(rtid); idx != -1 { fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = fastpathAV[idx].encfn } } else { ok = false // use mapping for underlying type if there var rtu reflect.Type if rk == reflect.Map { rtu = reflect.MapOf(rt.Key(), rt.Elem()) } else { rtu = reflect.SliceOf(rt.Elem()) } rtuid := reflect.ValueOf(rtu).Pointer() if idx := fastpathAV.index(rtuid); idx != -1 { xfnf := fastpathAV[idx].encfn xrt := fastpathAV[idx].rt fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = func(xf encFnInfo, xrv reflect.Value) { xfnf(xf, xrv.Convert(xrt)) } } } } if fn.f == nil { switch rk { case reflect.Bool: fn.f = (encFnInfo).kBool case reflect.String: fn.f = (encFnInfo).kString case reflect.Float64: fn.f = (encFnInfo).kFloat64 case reflect.Float32: fn.f = (encFnInfo).kFloat32 case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16: fn.f = (encFnInfo).kInt case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16: fn.f = (encFnInfo).kUint case reflect.Invalid: fn.f = (encFnInfo).kInvalid case reflect.Chan: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeChan} fn.f = (encFnInfo).kSlice case reflect.Slice: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeSlice} fn.f = (encFnInfo).kSlice case reflect.Array: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti, seq: seqTypeArray} fn.f = (encFnInfo).kSlice case reflect.Struct: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).kStruct // case reflect.Ptr: // fn.f = (encFnInfo).kPtr case reflect.Interface: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).kInterface case reflect.Map: fi.encFnInfoX = &encFnInfoX{e: e, ti: ti} fn.f = (encFnInfo).kMap default: fn.f = (encFnInfo).kErr } } } fn.i = fi if useMapForCodecCache { if e.f == nil { e.f = make(map[uintptr]encFn, 32) } e.f[rtid] = fn } else { if e.s == nil { e.s = make([]rtidEncFn, 0, 32) } e.s = append(e.s, rtidEncFn{rtid, fn}) } return } func (e *Encoder) errorf(format string, params ...interface{}) { err := fmt.Errorf(format, params...) panic(err) } // ---------------------------------------- type encStructFieldKV struct { k string v reflect.Value } const encStructPoolLen = 4 // encStructPool is an array of sync.Pool. // Each element of the array pools one of encStructPool(8|16|32|64). // It allows the re-use of slices up to 64 in length. // A performance cost of encoding structs was collecting // which values were empty and should be omitted. // We needed slices of reflect.Value and string to collect them. // This shared pool reduces the amount of unnecessary creation we do. // The cost is that of locking sometimes, but sync.Pool is efficient // enough to reduce thread contention. var encStructPool [encStructPoolLen]sync.Pool func init() { encStructPool[0].New = func() interface{} { return new([8]encStructFieldKV) } encStructPool[1].New = func() interface{} { return new([16]encStructFieldKV) } encStructPool[2].New = func() interface{} { return new([32]encStructFieldKV) } encStructPool[3].New = func() interface{} { return new([64]encStructFieldKV) } } // ---------------------------------------- // func encErr(format string, params ...interface{}) { // doPanic(msgTagEnc, format, params...) // }