// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec // All non-std package dependencies live in this file, // so porting to different environment is easy (just update functions). import ( "errors" "fmt" "reflect" "time" ) func panicValToErr(panicVal interface{}, err *error) { switch xerr := panicVal.(type) { case nil: case error: *err = xerr case string: *err = errors.New(xerr) default: *err = fmt.Errorf("%v", panicVal) } return } func hIsEmptyValue(v reflect.Value, deref, checkStruct bool) bool { switch v.Kind() { case reflect.Invalid: return true case reflect.Array, reflect.Map, reflect.Slice, reflect.String: return v.Len() == 0 case reflect.Bool: return !v.Bool() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return v.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return v.Uint() == 0 case reflect.Float32, reflect.Float64: return v.Float() == 0 case reflect.Interface, reflect.Ptr: if deref { if v.IsNil() { return true } return hIsEmptyValue(v.Elem(), deref, checkStruct) } return v.IsNil() case reflect.Struct: // check for time.Time, and return true if IsZero if rv2rtid(v) == timeTypId { return rv2i(v).(time.Time).IsZero() } if !checkStruct { return false } // return true if all fields are empty. else return false. // we cannot use equality check, because some fields may be maps/slices/etc // and consequently the structs are not comparable. // return v.Interface() == reflect.Zero(v.Type()).Interface() for i, n := 0, v.NumField(); i < n; i++ { if !hIsEmptyValue(v.Field(i), deref, checkStruct) { return false } } return true } return false } func isEmptyValue(v reflect.Value, deref, checkStruct bool) bool { return hIsEmptyValue(v, deref, checkStruct) } func pruneSignExt(v []byte, pos bool) (n int) { if len(v) < 2 { } else if pos && v[0] == 0 { for ; v[n] == 0 && n+1 < len(v) && (v[n+1]&(1<<7) == 0); n++ { } } else if !pos && v[0] == 0xff { for ; v[n] == 0xff && n+1 < len(v) && (v[n+1]&(1<<7) != 0); n++ { } } return } // validate that this function is correct ... // culled from OGRE (Object-Oriented Graphics Rendering Engine) // function: halfToFloatI (http://stderr.org/doc/ogre-doc/api/OgreBitwise_8h-source.html) func halfFloatToFloatBits(yy uint16) (d uint32) { y := uint32(yy) s := (y >> 15) & 0x01 e := (y >> 10) & 0x1f m := y & 0x03ff if e == 0 { if m == 0 { // plu or minus 0 return s << 31 } // Denormalized number -- renormalize it for (m & 0x00000400) == 0 { m <<= 1 e -= 1 } e += 1 const zz uint32 = 0x0400 m &= ^zz } else if e == 31 { if m == 0 { // Inf return (s << 31) | 0x7f800000 } return (s << 31) | 0x7f800000 | (m << 13) // NaN } e = e + (127 - 15) m = m << 13 return (s << 31) | (e << 23) | m } // GrowCap will return a new capacity for a slice, given the following: // - oldCap: current capacity // - unit: in-memory size of an element // - num: number of elements to add func growCap(oldCap, unit, num int) (newCap int) { // appendslice logic (if cap < 1024, *2, else *1.25): // leads to many copy calls, especially when copying bytes. // bytes.Buffer model (2*cap + n): much better for bytes. // smarter way is to take the byte-size of the appended element(type) into account // maintain 3 thresholds: // t1: if cap <= t1, newcap = 2x // t2: if cap <= t2, newcap = 1.75x // t3: if cap <= t3, newcap = 1.5x // else newcap = 1.25x // // t1, t2, t3 >= 1024 always. // i.e. if unit size >= 16, then always do 2x or 1.25x (ie t1, t2, t3 are all same) // // With this, appending for bytes increase by: // 100% up to 4K // 75% up to 8K // 50% up to 16K // 25% beyond that // unit can be 0 e.g. for struct{}{}; handle that appropriately var t1, t2, t3 int // thresholds if unit <= 1 { t1, t2, t3 = 4*1024, 8*1024, 16*1024 } else if unit < 16 { t3 = 16 / unit * 1024 t1 = t3 * 1 / 4 t2 = t3 * 2 / 4 } else { t1, t2, t3 = 1024, 1024, 1024 } var x int // temporary variable // x is multiplier here: one of 5, 6, 7 or 8; incr of 25%, 50%, 75% or 100% respectively if oldCap <= t1 { // [0,t1] x = 8 } else if oldCap > t3 { // (t3,infinity] x = 5 } else if oldCap <= t2 { // (t1,t2] x = 7 } else { // (t2,t3] x = 6 } newCap = x * oldCap / 4 if num > 0 { newCap += num } // ensure newCap is a multiple of 64 (if it is > 64) or 16. if newCap > 64 { if x = newCap % 64; x != 0 { x = newCap / 64 newCap = 64 * (x + 1) } } else { if x = newCap % 16; x != 0 { x = newCap / 16 newCap = 16 * (x + 1) } } return }