// Copyright 2011 The Snappy-Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package snappy import ( "encoding/binary" ) // We limit how far copy back-references can go, the same as the C++ code. const maxOffset = 1 << 15 // emitLiteral writes a literal chunk and returns the number of bytes written. func emitLiteral(dst, lit []byte) int { i, n := 0, uint(len(lit)-1) switch { case n < 60: dst[0] = uint8(n)<<2 | tagLiteral i = 1 case n < 1<<8: dst[0] = 60<<2 | tagLiteral dst[1] = uint8(n) i = 2 case n < 1<<16: dst[0] = 61<<2 | tagLiteral dst[1] = uint8(n) dst[2] = uint8(n >> 8) i = 3 case n < 1<<24: dst[0] = 62<<2 | tagLiteral dst[1] = uint8(n) dst[2] = uint8(n >> 8) dst[3] = uint8(n >> 16) i = 4 case int64(n) < 1<<32: dst[0] = 63<<2 | tagLiteral dst[1] = uint8(n) dst[2] = uint8(n >> 8) dst[3] = uint8(n >> 16) dst[4] = uint8(n >> 24) i = 5 default: panic("snappy: source buffer is too long") } if copy(dst[i:], lit) != len(lit) { panic("snappy: destination buffer is too short") } return i + len(lit) } // emitCopy writes a copy chunk and returns the number of bytes written. func emitCopy(dst []byte, offset, length int) int { i := 0 for length > 0 { x := length - 4 if 0 <= x && x < 1<<3 && offset < 1<<11 { dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1 dst[i+1] = uint8(offset) i += 2 break } x = length if x > 1<<6 { x = 1 << 6 } dst[i+0] = uint8(x-1)<<2 | tagCopy2 dst[i+1] = uint8(offset) dst[i+2] = uint8(offset >> 8) i += 3 length -= x } return i } // Encode returns the encoded form of src. The returned slice may be a sub- // slice of dst if dst was large enough to hold the entire encoded block. // Otherwise, a newly allocated slice will be returned. // It is valid to pass a nil dst. func Encode(dst, src []byte) ([]byte, error) { if n := MaxEncodedLen(len(src)); len(dst) < n { dst = make([]byte, n) } // The block starts with the varint-encoded length of the decompressed bytes. d := binary.PutUvarint(dst, uint64(len(src))) // Return early if src is short. if len(src) <= 4 { if len(src) != 0 { d += emitLiteral(dst[d:], src) } return dst[:d], nil } // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive. const maxTableSize = 1 << 14 shift, tableSize := uint(32-8), 1<<8 for tableSize < maxTableSize && tableSize < len(src) { shift-- tableSize *= 2 } var table [maxTableSize]int // Iterate over the source bytes. var ( s int // The iterator position. t int // The last position with the same hash as s. lit int // The start position of any pending literal bytes. ) for s+3 < len(src) { // Update the hash table. b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3] h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24 p := &table[(h*0x1e35a7bd)>>shift] // We need to to store values in [-1, inf) in table. To save // some initialization time, (re)use the table's zero value // and shift the values against this zero: add 1 on writes, // subtract 1 on reads. t, *p = *p-1, s+1 // If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte. if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] { s++ continue } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { d += emitLiteral(dst[d:], src[lit:s]) } // Extend the match to be as long as possible. s0 := s s, t = s+4, t+4 for s < len(src) && src[s] == src[t] { s++ t++ } // Emit the copied bytes. d += emitCopy(dst[d:], s-t, s-s0) lit = s } // Emit any final pending literal bytes and return. if lit != len(src) { d += emitLiteral(dst[d:], src[lit:]) } return dst[:d], nil } // MaxEncodedLen returns the maximum length of a snappy block, given its // uncompressed length. func MaxEncodedLen(srcLen int) int { // Compressed data can be defined as: // compressed := item* literal* // item := literal* copy // // The trailing literal sequence has a space blowup of at most 62/60 // since a literal of length 60 needs one tag byte + one extra byte // for length information. // // Item blowup is trickier to measure. Suppose the "copy" op copies // 4 bytes of data. Because of a special check in the encoding code, // we produce a 4-byte copy only if the offset is < 65536. Therefore // the copy op takes 3 bytes to encode, and this type of item leads // to at most the 62/60 blowup for representing literals. // // Suppose the "copy" op copies 5 bytes of data. If the offset is big // enough, it will take 5 bytes to encode the copy op. Therefore the // worst case here is a one-byte literal followed by a five-byte copy. // That is, 6 bytes of input turn into 7 bytes of "compressed" data. // // This last factor dominates the blowup, so the final estimate is: return 32 + srcLen + srcLen/6 }