go-sqlite3/driver/config.go

1348 lines
43 KiB
Go
Raw Normal View History

// Copyright (C) 2018 The Go-SQLite3 Authors.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
#include <string.h>
#ifndef SQLITE_OPEN_READWRITE
# define SQLITE_OPEN_READWRITE 0
#endif
#ifndef SQLITE_OPEN_FULLMUTEX
# define SQLITE_OPEN_FULLMUTEX 0
#endif
#ifndef SQLITE_DETERMINISTIC
# define SQLITE_DETERMINISTIC 0
#endif
static int
_sqlite3_open_v2(const char *filename, sqlite3 **ppDb, int flags, const char *zVfs) {
#ifdef SQLITE_OPEN_URI
return sqlite3_open_v2(filename, ppDb, flags | SQLITE_OPEN_URI, zVfs);
#else
return sqlite3_open_v2(filename, ppDb, flags, zVfs);
#endif
}
*/
import "C"
import (
"bytes"
"database/sql/driver"
"errors"
"fmt"
"net/url"
"runtime"
"strconv"
"strings"
"time"
"unsafe"
)
// Mode represents the open open for the database connection
type Mode C.int
func (m Mode) String() string {
switch m {
case ModeReadOnly:
return "ro"
case ModeReadWrite:
return "rw"
case ModeReadWriteCreate:
return "rwc"
case ModeMemory:
return "memory"
default:
return ""
}
}
// C returns the C.int of Mode
func (m Mode) C() C.int {
return C.int(m)
}
const (
// ModeReadOnly defines SQLITE_OPEN_READONLY for the database connection.
ModeReadOnly = Mode(C.SQLITE_OPEN_READONLY)
// ModeReadWrite defines SQLITE_OPEN_READWRITE for the database connection.
ModeReadWrite = Mode(C.SQLITE_OPEN_READWRITE)
// ModeReadWriteCreate defines SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE.
ModeReadWriteCreate = Mode(C.SQLITE_OPEN_READWRITE | C.SQLITE_OPEN_CREATE)
// ModeMemory defines mode=memory which will
// create a pure in-memory database that never reads or writes from disk
ModeMemory = Mode(C.SQLITE_OPEN_MEMORY)
)
// CacheMode represents the current CacheMode
type CacheMode C.int
func (c CacheMode) String() string {
switch c {
case CacheModeShared:
return "shared"
case CacheModePrivate:
return "private"
default:
return ""
}
}
// C returns the C.int of CacheMode
func (c CacheMode) C() C.int {
return C.int(c)
}
const (
// CacheModeShared sets the cache mode of SQLite to 'shared'
CacheModeShared = CacheMode(C.SQLITE_OPEN_SHAREDCACHE)
// CacheModePrivate sets the cache mode of SQLite to 'private'
CacheModePrivate = CacheMode(C.SQLITE_OPEN_PRIVATECACHE)
)
// Mutex represents how the database opens connections within
// single or multi-threading
type Mutex C.int
func (m Mutex) String() string {
switch m {
case MutexNo:
return "no"
case MutexFull:
return "full"
default:
return ""
}
}
// C returns the C.int of Mutex
func (m Mutex) C() C.int {
return C.int(m)
}
const (
// MutexNo will force the database connection opens
// in the multi-thread threading mode as long as the
// single-thread mode has not been set at compile-time or start-time.
MutexNo = Mutex(C.SQLITE_OPEN_NOMUTEX)
// MutexFull will force the database connection opens
// in the serialized threading mode unless single-thread
// was previously selected at compile-time or start-time.
MutexFull = Mutex(C.SQLITE_OPEN_FULLMUTEX)
)
// TxLock defines the Transaction Lock Behaviour.
type TxLock string
func (tx TxLock) String() string {
switch tx {
case TxLockDeferred:
return "deferred"
case TxLockImmediate:
return "immediate"
case TxLockExclusive:
return "exclusive"
default:
return ""
}
}
func (tx TxLock) Value() string {
return string(tx)
}
const (
// TxLockDeferred deferred transaction behaviour. (Default)
// Deferred means that no locks are acquired on the database
// until the database is first accessed.
// Thus with a deferred transaction,
// the BEGIN statement itself does nothing to the filesystem.
// Locks are not acquired until the first read or write operation.
// The first read operation against a database creates a SHARED lock
// and the first write operation creates a RESERVED lock.
// Because the acquisition of locks is deferred until they are needed,
// it is possible that another thread or process could create a separate transaction
// and write to the database after the BEGIN on the current thread has executed.
TxLockDeferred = TxLock("BEGIN")
// TxLockImmediate immediate transaction behaviour.
// If the transaction is immediate,
// then RESERVED locks are acquired on all databases
// as soon as the BEGIN command is executed,
// without waiting for the database to be used.
// After a BEGIN IMMEDIATE, no other database connection
// will be able to write to the database or do a BEGIN IMMEDIATE or BEGIN EXCLUSIVE.
// Other processes can continue to read from the database however.
TxLockImmediate = TxLock("BEGIN IMMEDIATE")
// TxLockExclusive exclusive transaction behaviour.
// An exclusive transaction causes EXCLUSIVE locks to be acquired on all databases.
// After a BEGIN EXCLUSIVE, no other database connection
// except for read_uncommitted connections will be able to read the database
// and no other connection without exception will be able to write the database
// until the transaction is complete.
TxLockExclusive = TxLock("BEGIN EXCLUSIVE")
)
// LockingMode defines the database locking mode.
// In NORMAL locking-mode (the default unless overridden at compile-time using SQLITE_DEFAULT_LOCKING_MODE),
// a database connection unlocks the database file at the conclusion of each read or write transaction.
// When the locking-mode is set to EXCLUSIVE,
// the database connection never releases file-locks.
// The first time the database is read in EXCLUSIVE mode,
// a shared lock is obtained and held.
// The first time the database is written, an exclusive lock is obtained and held.
//
// Database locks obtained by a connection in EXCLUSIVE mode may be released
// either by closing the database connection,
// or by setting the locking-mode back to NORMAL.
// Simply setting the locking-mode to NORMAL is not enough -
// locks are not released until the next time the database file is accessed.
//
// There are three reasons to set the locking-mode to EXCLUSIVE.
//
// The application wants to prevent other processes from accessing the database file.
// The number of system calls for filesystem operations is reduced,
// possibly resulting in a small performance increase.
// WAL databases can be accessed in EXCLUSIVE mode without the use of shared memory.
// (Additional information)
// When the locking_mode pragma specifies a particular database, for example:
//
// PRAGMA main.locking_mode=EXCLUSIVE;
// Then the locking mode applies only to the named database.
// If no database name qualifier precedes the "locking_mode" keyword
// then the locking mode is applied to all databases,
// including any new databases added by subsequent ATTACH commands.
//
// The "temp" database (in which TEMP tables and indices are stored)
// and in-memory databases always uses exclusive locking mode.
// The locking mode of temp and in-memory databases cannot be changed.
// All other databases use the normal locking mode by default and are affected by this pragma.
//
// If the locking mode is EXCLUSIVE when first entering WAL journal mode,
// then the locking mode cannot be changed to NORMAL until after exiting WAL journal mode.
// If the locking mode is NORMAL when first entering WAL journal mode,
//then the locking mode can be changed between NORMAL and EXCLUSIVE
// and back again at any time and without needing to exit WAL journal mode.
type LockingMode string
func (l LockingMode) String() string {
return strings.ToLower(string(l))
}
const (
// LockingModeNormal In NORMAL locking-mode
// (the default unless overridden at compile-time using SQLITE_DEFAULT_LOCKING_MODE),
// a database connection unlocks the database file at the conclusion
// of each read or write transaction.
LockingModeNormal = LockingMode("NORMAL")
// LockingModeExclusive When the locking-mode is set to EXCLUSIVE,
// the database connection never releases file-locks.
// The first time the database is read in EXCLUSIVE mode,
// a shared lock is obtained and held.
// The first time the database is written, an exclusive lock is obtained and held.
LockingModeExclusive = LockingMode("EXCLUSIVE")
)
// AutoVacuum defines the auto vacuum status of the database.
// The default setting for auto-vacuum is 0 or "none", unless the SQLITE_DEFAULT_AUTOVACUUM compile-time option is used.
// SQLITE_DEFAULT_AUTOVACUUM can be controlled within the package using
// build tags. See README for more information.
//
// Auto-vacuuming is only possible if the database stores some additional information
// that allows each database page to be traced backwards to its referrer.
// Therefore, auto-vacuuming must be turned on before any tables are created.
// It is not possible to enable or disable auto-vacuum after a table has been created.
type AutoVacuum string
func (av AutoVacuum) String() string {
return strings.ToLower(string(av))
}
const (
// AutoVacuumNone setting means that auto-vacuum is disabled.
//
// When auto-vacuum is disabled and data is deleted data from a database,
// the database file remains the same size.
// Unused database file pages are added to a "freelist" and reused for subsequent inserts.
// So no database file space is lost.
// However, the database file does not shrink.
// In this mode the VACUUM command can be used to rebuild the entire database file
// and thus reclaim unused disk space.
//
// The database connection can be changed between full
// and incremental autovacuum mode at any time.
// However, changing from "none" to "full" or "incremental"
// can only occur when the database is new (no tables have yet been created)
// or by running the VACUUM command. To change auto-vacuum modes,
// first use the auto_vacuum pragma to set the new desired mode,
// then invoke the VACUUM command to reorganize the entire database file.
// To change from "full" or "incremental" back to "none"
// always requires running VACUUM even on an empty database.
AutoVacuumNone = AutoVacuum("NONE")
// AutoVacuumFull sets auto vacuum of the database to FULL.
//
// When the auto-vacuum mode is 1 or "full",
// the freelist pages are moved to the end of the database file and the database file
// is truncated to remove the freelist pages at every transaction commit.
// Note, however, that auto-vacuum only truncates the freelist pages from the file.
// Auto-vacuum does not defragment the database nor repack individual database pages
// the way that the VACUUM command does.
// In fact, because it moves pages around within the file,
// auto-vacuum can actually make fragmentation worse.
AutoVacuumFull = AutoVacuum("FULL")
// AutoVacuumIncremental sets the auto vacuum of the database to INCREMENTAL.
//
// When the value of auto-vacuum is 2 or "incremental"
// then the additional information needed to do auto-vacuuming is stored
// in the database file but auto-vacuuming does not occur automatically
// at each commit as it does with auto_vacuum=full.
// In incremental mode, the separate incremental_vacuum pragma must be invoked
// to cause the auto-vacuum to occur.
AutoVacuumIncremental = AutoVacuum("INCREMENTAL")
)
// JournalMode defines the journal mode associated with the current database connection.
//
// Note that the journal_mode for an in-memory database is either
// MEMORY or OFF and can not be changed to a different value.
// An attempt to change the journal_mode of an in-memory database
// to any setting other than MEMORY or OFF is ignored.
// Note also that the journal_mode cannot be changed while a transaction is active.
type JournalMode string
func (j JournalMode) String() string {
return strings.ToLower(string(j))
}
const (
// JournalModeDelete is the normal behavior.
// In the DELETE mode, the rollback journal is deleted at the conclusion
// of each transaction.
// Indeed, the delete operation is the action that causes the transaction to commit.
// (See the document titled Atomic Commit In SQLite for additional detail.)
JournalModeDelete = JournalMode("DELETE")
// JournalModeTruncate commits transactions by truncating the rollback journal
// to zero-length instead of deleting it.
// On many systems, truncating a file is much faster
// than deleting the file since the containing directory does not need to be changed.
JournalModeTruncate = JournalMode("TRUNCATE")
// JournalModePersist prevents the rollback journal from being deleted
// at the end of each transaction.
// Instead, the header of the journal is overwritten with zeros.
// This will prevent other database connections from rolling the journal back.
// The PERSIST journaling mode is useful as an optimization on platforms
// where deleting or truncating a file is much more expensive
// than overwriting the first block of a file with zeros.
// See also: PRAGMA journal_size_limit and SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT.
JournalModePersist = JournalMode("PERSIST")
// JournalModeMemory stores the rollback journal in volatile RAM.
// This saves disk I/O but at the expense of database safety and integrity.
// If the application using SQLite crashes in the middle of a transaction
// when the MEMORY journaling mode is set,
// then the database file will very likely go corrupt.
JournalModeMemory = JournalMode("MEMORY")
// JournalModeWAL uses a write-ahead log instead of a rollback journal
// to implement transactions.
// The WAL journaling mode is persistent;
// after being set it stays in effect across multiple database connections
// and after closing and reopening the database.
JournalModeWAL = JournalMode("WAL")
// JournalModeOff disables the rollback journal completely.
// No rollback journal is ever created and hence there is never a rollback journal to delete.
// The OFF journaling mode disables the atomic commit and rollback capabilities of SQLite. The ROLLBACK command no longer works; it behaves in an undefined way. Applications must avoid using the ROLLBACK command when the journal mode is OFF. If the application crashes in the middle of a transaction when the OFF journaling mode is set, then the database file will very likely go corrupt.
JournalModeOff = JournalMode("OFF")
)
// SecureDelete defines the secure-delete setting.
//
// When secure_delete is on, SQLite overwrites deleted content with zeros.
// The default setting for secure_delete is determined by the SQLITE_SECURE_DELETE
// compile-time option and is normally off.
// The off setting for secure_delete improves performance by reducing
// the number of CPU cycles and the amount of disk I/O.
// Applications that wish to avoid leaving forensic traces after content is deleted
// or updated should enable the secure_delete pragma prior to performing the delete or update,
// or else run VACUUM after the delete or update.
type SecureDelete string
func (sd SecureDelete) String() string {
return strings.ToLower(string(sd))
}
const (
// SecureDeleteOff disables secure deletion of content.
SecureDeleteOff = SecureDelete("OFF")
// SecureDeleteOn will cause SQLite overwrites deleted content with zeros.
SecureDeleteOn = SecureDelete("ON")
// SecureDeleteFast defines the "fast" setting for secure_delete (added circa 2017-08-01) is an intermediate setting
// in between "on" and "off". When secure_delete is set to "fast",
// SQLite will overwrite deleted content with zeros only if doing so
// does not increase the amount of I/O. In other words,
// the "fast" setting uses more CPU cycles but does not use more I/O.
// This has the effect of purging all old content from b-tree pages,
// but leaving forensic traces on freelist pages.
SecureDeleteFast = SecureDelete("FAST")
)
// Synchronous sync setting of the database connection.
type Synchronous string
func (s Synchronous) String() string {
return strings.ToLower(string(s))
}
const (
// SynchronousOff sets synchronous to OFF (0),
// SQLite continues without syncing as soon as it has handed data off to the operating system.
// If the application running SQLite crashes, the data will be safe,
// but the database might become corrupted if the operating system crashes
// or the computer loses power before that data has been written to the disk surface.
// On the other hand, commits can be orders of magnitude faster with synchronous OFF.
SynchronousOff = Synchronous("OFF")
// SynchronousNormal sets synchronous to NORMAL (1),
// the SQLite database engine will still sync at the most critical moments,
// but less often than in FULL mode.
// There is a very small (though non-zero) chance that a power failure
// at just the wrong time could corrupt the database in journal_mode=DELETE
// on an older filesystem. WAL mode is safe from corruption with synchronous=NORMAL,
// and probably DELETE mode is safe too on modern filesystems.
// WAL mode is always consistent with synchronous=NORMAL,
// but WAL mode does lose durability.
// A transaction committed in WAL mode with synchronous=NORMAL
// might roll back following a power loss or system crash.
// Transactions are durable across application crashes regardless
// of the synchronous setting or journal mode.
// The synchronous=NORMAL setting is a good choice for most applications running in WAL mode.
SynchronousNormal = Synchronous("NORMAL")
// SynchronousFull sets synchronous to FULL (2),
// the SQLite database engine will use the xSync method of the VFS
// to ensure that all content is safely written to the disk surface prior to continuing.
// This ensures that an operating system crash or power failure
// will not corrupt the database. FULL synchronous is very safe,
// but it is also slower.
///FULL is the most commonly used synchronous setting when not in WAL mode.
SynchronousFull = Synchronous("FULL")
// SynchronousExtra is like FULL with the addition that the directory containing
// a rollback journal is synced after that journal is unlinked to commit a transaction
// in DELETE mode. EXTRA provides additional durability if the commit
// is followed closely by a power loss.
SynchronousExtra = Synchronous("EXTRA")
)
// Config is configuration parsed from a DSN string.
// If a new Config is created instead of being parsed from a DSN string,
// the NewConfig function should be used, which sets default values.
// Manual usage is allowed
type Config struct {
// Database
Database string
// Mode of the SQLite database
Mode Mode
// CacheMode of the SQLite Connection
Cache CacheMode
// Mutex flag SQLITE_OPEN_MUTEX_NO, SQLITE_OPEN_MUTEX_FULL
// Defaults to SQLITE_OPEN_MUTEX_FULL
Mutex Mutex
// The immutable parameter is a boolean query parameter that indicates
// that the database file is stored on read-only media. When immutable is set,
// SQLite assumes that the database file cannot be changed,
// even by a process with higher privilege,
// and so the database is opened read-only and all locking and change detection is disabled.
// Caution: Setting the immutable property on a database file that
// does in fact change can result in incorrect query results and/or SQLITE_CORRUPT errors.
Immutable bool
// TimeZone location
TimeZone *time.Location
// TransactionLock behaviour
TransactionLock TxLock
// LockingMode behaviour
LockingMode LockingMode
// Authentication holds the UserAuth configuration
Authentication *Auth
// AutoVacuum sets the auto vacuum status of the database
// Defaults to NONE
AutoVacuum AutoVacuum
// BusyTimeout defines the time a connection will wait when the
// connection is BUSY and locked by an other connection.
// BusyTimeout is defined in milliseconds
BusyTimeout time.Duration
// CaseSensitiveLike controls the behaviour of the LIKE operator.
// Default or disabled the LIKE operation is case-insensitive.
// When enabling this options behaviour of LIKE will become case-sensitive.
CaseSensitiveLike bool
// DeferForeignKeys when enabled will cause the enforcement
// of all foreign key constraints is delayed until
// the outermost transaction is committed.
// The defer_foreign_keys pragma defaults to false
// so that foreign key constraints are only deferred
// if they are created as "DEFERRABLE INITIALLY DEFERRED".
// The defer_foreign_keys pragma is automatically switched off at each COMMIT or ROLLBACK.
// Hence, the defer_foreign_keys pragma must be separately enabled for each transaction.
// This pragma is only meaningful if foreign key constraints are enabled, of course.
DeferForeignKeys bool
// ForeignKeyConstraints enable or disable the enforcement of foreign key constraints.
ForeignKeyConstraints bool
// IgnoreCheckConstraints enables or disables the enforcement of CHECK constraints.
// The default setting is off, meaning that CHECK constraints are enforced by default.
IgnoreCheckConstraints bool
// JournalMode sets the journal mode for databases associated with the current database connection.
JournalMode JournalMode
// QueryOnly prevents all changes to the database when set to true.
QueryOnly bool
// RecursiveTriggers enable or disable the recursive trigger capability.
RecursiveTriggers bool
// SecureDelete enables or disables or sets the secure deletion within the database.
SecureDelete SecureDelete
// Synchronous Mode of the database
Synchronous Synchronous
// WriteableSchema enables of disables the ability to using UPDATE, INSERT, DELETE
// Warning: misuse of this pragma can easily result in a corrupt database file.
WriteableSchema bool
// Extensions
Extensions []string
// ConnectHook
ConnectHook func(*SQLiteConn) error
}
// Auth holds the authentication configuration for the SQLite UserAuth module.
type Auth struct {
// Username for authentication
Username string
// Password for authentication
Password string
// Salt for encryption
Salt string
// CryptEncoder used for the password encryption
Encoder CryptEncoder
}
// NewConfig creates a new Config and sets default values.
func NewConfig() *Config {
return &Config{
Database: ":memory:",
Mode: ModeReadWriteCreate,
Cache: CacheModePrivate,
Immutable: false,
Mutex: MutexFull,
TransactionLock: TxLockDeferred,
LockingMode: LockingModeNormal,
AutoVacuum: AutoVacuumNone,
CaseSensitiveLike: false,
DeferForeignKeys: false,
ForeignKeyConstraints: false,
IgnoreCheckConstraints: false,
JournalMode: JournalModeDelete,
QueryOnly: false,
RecursiveTriggers: false,
SecureDelete: SecureDeleteOff,
Synchronous: SynchronousNormal,
WriteableSchema: false,
Authentication: &Auth{
Encoder: NewSHA1Encoder(),
},
}
}
// FormatDSN formats the given Config into a DSN string which can be passed to
// the driver.
func (cfg *Config) FormatDSN() string {
var buf bytes.Buffer
params := url.Values{}
if len(cfg.Cache.String()) > 0 {
params.Set("cache", cfg.Cache.String())
}
if len(cfg.Mode.String()) > 0 {
params.Set("mode", cfg.Mode.String())
}
if len(cfg.Mutex.String()) > 0 {
params.Set("mutex", cfg.Mutex.String())
}
if cfg.Immutable {
params.Set("immutable", "true")
}
if cfg.TimeZone != nil {
if cfg.TimeZone == time.Local {
params.Set("tz", "auto")
} else {
params.Set("tz", cfg.TimeZone.String())
}
}
if len(cfg.TransactionLock.String()) > 0 && cfg.TransactionLock != TxLockDeferred {
params.Set("txlock", cfg.TransactionLock.String())
}
if len(cfg.LockingMode) > 0 && cfg.LockingMode != LockingModeNormal {
params.Set("lock", cfg.LockingMode.String())
}
if len(cfg.AutoVacuum) > 0 && cfg.AutoVacuum != AutoVacuumNone {
params.Set("vacuum", cfg.AutoVacuum.String())
}
if cfg.CaseSensitiveLike {
params.Set("cslike", "true")
}
if cfg.DeferForeignKeys {
params.Set("defer_fk", "true")
}
if cfg.ForeignKeyConstraints {
params.Set("fk", "true")
}
if cfg.IgnoreCheckConstraints {
params.Set("ignore_check_contraints", "true")
}
if len(cfg.JournalMode) > 0 && cfg.JournalMode != JournalModeDelete {
params.Set("journal", cfg.JournalMode.String())
}
if cfg.QueryOnly {
params.Set("query_only", "true")
}
if cfg.RecursiveTriggers {
params.Set("recursive_triggers", "true")
}
if len(cfg.SecureDelete) > 0 && cfg.SecureDelete != SecureDeleteOff {
params.Set("secure_delete", cfg.SecureDelete.String())
}
if len(cfg.Synchronous) > 0 && cfg.Synchronous != SynchronousNormal {
params.Set("sync", cfg.Synchronous.String())
}
if cfg.WriteableSchema {
params.Set("writable_schema", "true")
}
if cfg.Authentication != nil {
if len(cfg.Authentication.Username) > 0 && len(cfg.Authentication.Password) > 0 {
params.Set("user", cfg.Authentication.Username)
params.Set("pass", cfg.Authentication.Password)
if len(cfg.Authentication.Salt) > 0 {
params.Set("salt", cfg.Authentication.Salt)
}
if cfg.Authentication.Encoder != nil {
params.Set("crypt", cfg.Authentication.Encoder.String())
}
}
}
if !strings.HasPrefix(cfg.Database, "file:") {
buf.WriteString("file:")
}
buf.WriteString(cfg.Database)
// Append Options
if len(params) > 0 {
buf.WriteRune('?')
buf.WriteString(params.Encode())
}
return buf.String()
}
// Create connection from Configuration
func (cfg *Config) createConnection() (driver.Conn, error) {
if C.sqlite3_threadsafe() == 0 {
return nil, errors.New("sqlite library was not compiled for thread-safe operation")
}
if len(cfg.Database) == 0 {
return nil, fmt.Errorf("No database configured")
}
var db *C.sqlite3
// Configure Database URI
// Because we are adding the 'immutable' flag to the database file
// We are required to conform the database path to an URI
// The immutable flag is an query parameter which means that the URI needs
// to start with 'file:'. Regardless if it is an in-memory database or not.
uri := cfg.Database
if !strings.HasPrefix(uri, "file:") {
uri = fmt.Sprintf("file:%s", uri)
}
if !strings.Contains(uri, ":memory:") {
uri = fmt.Sprintf("%s?immutable=%t", uri, cfg.Immutable)
}
database := C.CString(uri)
// Free CString on return
defer C.free(unsafe.Pointer(database))
// Open the database
// https://www.sqlite.org/c3ref/open.html
rv := C._sqlite3_open_v2(
database,
&db,
cfg.Mutex.C()|cfg.Cache.C()|cfg.Mode.C(),
nil)
// Check if the database was opened succesful.
if rv != C.SQLITE_OK {
fmt.Println(Error{Code: ErrNo(rv)})
return nil, Error{Code: ErrNo(rv)}
}
// Verify we have a database pointer
if db == nil {
return nil, errors.New("sqlite succeeded without returning a database")
}
// Set SQLITE Busy Timeout Handler
rv = C.sqlite3_busy_timeout(db, C.int(cfg.BusyTimeout))
if rv != C.SQLITE_OK {
// Failed to set busy timeout
// close the database and return the error
C.sqlite3_close_v2(db)
return nil, Error{Code: ErrNo(rv)}
}
// Create basic connection
conn := &SQLiteConn{
db: db,
tz: cfg.TimeZone,
txlock: cfg.TransactionLock.Value(),
}
// At this point we have the following
// - database pointer
// - basic connection
//
// Now we need to configure the connection according to the *Config
// USER AUTHENTICATION
//
// User Authentication is always performed even when
// sqlite_userauth is not compiled in, because without user authentication
// the authentication is a no-op.
//
// Workflow
// - Authenticate
// ON::SUCCESS => Continue
// ON::SQLITE_AUTH => Return error and exit Open(...)
//
// - Activate User Authentication
// Check if the user wants to activate User Authentication.
// If so then first create a temporary AuthConn to the database
// This is possible because we are already succesfully authenticated.
//
// - Check if `sqlite_user`` table exists
// YES => Add the provided user from DSN as Admin User and
// activate user authentication.
// NO => Continue
//
//
// Because we need to perform authentication we need to register
// the required functions on the connection.
// Register sqlite_crypt function with the CryptEncoder provided
// within *Config.Authentication
if err := conn.RegisterFunc("sqlite_crypt", cfg.Authentication.Encoder.Encode, true); err != nil {
return nil, fmt.Errorf("CryptEncoderSHA1: %s", err)
}
// Register: authenticate
// Authenticate will perform an authentication of the provided username
// and password against the database.
//
// If a database contains the SQLITE_USER table, then the
// call to Authenticate must be invoked with an
// appropriate username and password prior to enable read and write
// access to the database.
//
// Return SQLITE_OK on success or SQLITE_ERROR if the username/password
// combination is incorrect or unknown.
//
// If the SQLITE_USER table is not present in the database file, then
// this interface is a harmless no-op returnning SQLITE_OK.
if err := conn.RegisterFunc("authenticate", conn.authenticate, true); err != nil {
return nil, err
}
// Register: auth_user_add
// auth_user_add can be used (by an admin user only)
// to create a new user. When called on a no-authentication-required
// database, this routine converts the database into an authentication-
// required database, automatically makes the added user an
// administrator, and logs in the current connection as that user.
// The AuthUserAdd only works for the "main" database, not
// for any ATTACH-ed databases. Any call to AuthUserAdd by a
// non-admin user results in an error.
if err := conn.RegisterFunc("auth_user_add", conn.authUserAdd, true); err != nil {
return nil, err
}
// Register: auth_user_change
// auth_user_change can be used to change a users
// login credentials or admin privilege. Any user can change their own
// login credentials. Only an admin user can change another users login
// credentials or admin privilege setting. No user may change their own
// admin privilege setting.
if err := conn.RegisterFunc("auth_user_change", conn.authUserChange, true); err != nil {
return nil, err
}
// Register: auth_user_delete
// auth_user_delete can be used (by an admin user only)
// to delete a user. The currently logged-in user cannot be deleted,
// which guarantees that there is always an admin user and hence that
// the database cannot be converted into a no-authentication-required
// database.
if err := conn.RegisterFunc("auth_user_delete", conn.authUserDelete, true); err != nil {
return nil, err
}
// Register: auth_enabled
// auth_enabled can be used to check if user authentication is enabled
if err := conn.RegisterFunc("auth_enabled", conn.authEnabled, true); err != nil {
return nil, err
}
// Preform Authentication only if username and password are provided
// If authentication is not enabled on the database
// this call is a NO-OP.
// Only call this when Username and Password are provided in the *Config
if len(cfg.Authentication.Username) > 0 && len(cfg.Authentication.Password) > 0 {
if err := conn.Authenticate(cfg.Authentication.Username, cfg.Authentication.Password); err != nil {
return nil, err
}
}
// AUTO VACUUM
// The user preference for auto_vacuum needs to be implemented directly after
// the authentication and before the sqlite_user table gets created if the user
// decides to activate User Authentication because
// auto_vacuum needs to be set before any tables are created
// and activating user authentication creates the internal table `sqlite_user`.
if err := conn.PRAGMA(PRAGMA_AUTO_VACUUM, cfg.AutoVacuum.String()); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Check if authentication is enabled
// This can now be succesfully checked because we are successfully connected.
// Only issue this when Username and Password are configured.
// If this is an unauthenticated database
// the provided user will be created as Admin.
if len(cfg.Authentication.Username) > 0 && len(cfg.Authentication.Password) > 0 {
authExists := conn.AuthEnabled()
if !authExists {
if err := conn.AuthUserAdd(cfg.Authentication.Username, cfg.Authentication.Password, true); err != nil {
return nil, err
}
}
}
// Case Sensitive LIKE
if err := conn.PRAGMA(PRAGMA_CASE_SENSITIVE_LIKE, strconv.FormatBool(cfg.CaseSensitiveLike)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Defer Foreign Keys
if err := conn.PRAGMA(PRAGMA_DEFER_FOREIGN_KEYS, strconv.FormatBool(cfg.DeferForeignKeys)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Ignore CHECK constraints
if err := conn.PRAGMA(PRAGMA_IGNORE_CHECK_CONTRAINTS, strconv.FormatBool(cfg.IgnoreCheckConstraints)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Journal Mode
if err := conn.PRAGMA(PRAGMA_JOURNAL_MODE, cfg.JournalMode.String()); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Locking Mode
if err := conn.PRAGMA(PRAGMA_LOCKING_MODE, cfg.LockingMode.String()); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Query Only
if err := conn.PRAGMA(PRAGMA_QUERY_ONLY, strconv.FormatBool(cfg.QueryOnly)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Recursive Triggers
if err := conn.PRAGMA(PRAGMA_RECURSIVE_TRIGGERS, strconv.FormatBool(cfg.RecursiveTriggers)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Secure Delete
if err := conn.PRAGMA(PRAGMA_SECURE_DELETE, cfg.SecureDelete.String()); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Synchronous
if err := conn.PRAGMA(PRAGMA_SYNCHRONOUS, cfg.SecureDelete.String()); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Writable Schema
if err := conn.PRAGMA(PRAGMA_WRITABLE_SCHEMA, strconv.FormatBool(cfg.WriteableSchema)); err != nil {
C.sqlite3_close_v2(db)
return nil, err
}
// Load Extensions
if len(cfg.Extensions) > 0 {
if err := conn.loadExtensions(cfg.Extensions); err != nil {
//fmt.Println("Error while loading Extensions")
conn.Close()
return nil, err
}
}
// Configure Connect Hooks
if cfg.ConnectHook != nil {
if err := cfg.ConnectHook(conn); err != nil {
conn.Close()
return nil, err
}
}
// Configure Finalizer
runtime.SetFinalizer(conn, (*SQLiteConn).Close)
return conn, nil
}
// ParseDSN parses the DSN string to a Config
func ParseDSN(dsn string) (cfg *Config, err error) {
// New default with default values
cfg = NewConfig()
cfg.Database = dsn
pos := strings.IndexRune(dsn, '?')
if pos >= 1 {
// Update DatabaseURI
cfg.Database = dsn[0:pos]
// Parse Options
params, err := url.ParseQuery(dsn[pos+1:])
if err != nil {
return nil, err
}
// Normalize Params
normalizeParams(params)
if !strings.HasPrefix(dsn, "file:") {
dsn = dsn[:pos]
}
// Parse Autentication
if val := params.Get("user"); val != "" {
cfg.Authentication.Username = val
}
if val := params.Get("pass"); val != "" {
cfg.Authentication.Password = val
}
if val := params.Get("salt"); val != "" {
cfg.Authentication.Salt = val
}
if val := params.Get("crypt"); val != "" {
if cfg.Authentication.Encoder, err = parseCryptEncoder(val, cfg.Authentication.Salt); err != nil {
return nil, err
}
}
// Parse Multi name options
// Multi name options are options which has multiple aliases for the same option
for k := range params {
// Cache
if k == "cache" {
val := params.Get(k)
switch strings.ToLower(val) {
case "shared":
cfg.Cache = CacheModeShared
case "private":
cfg.Cache = CacheModePrivate
default:
return nil, fmt.Errorf("Unknown cache mode: %v, expecting value of 'shared, private'", val)
}
}
// Immutable
if k == "immutable" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.Immutable = false
case "1", "yes", "true", "on":
cfg.Immutable = true
default:
return nil, fmt.Errorf("Unknown immutable: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Mode
if k == "mode" {
val := params.Get(k)
switch strings.ToUpper(val) {
case "RO":
cfg.Mode = ModeReadOnly
case "RW":
cfg.Mode = ModeReadWrite
case "RWC":
cfg.Mode = ModeReadWriteCreate
case "MEMORY":
cfg.Mode = ModeMemory
default:
return nil, fmt.Errorf("Unknown mode: %v, expecting value of 'ro, rw, rwc, memory'", val)
}
}
// Mutex
if k == "mutex" {
val := params.Get(k)
switch strings.ToLower(val) {
case "no":
cfg.Mutex = MutexNo
case "full":
cfg.Mutex = MutexFull
default:
return nil, fmt.Errorf("Invalid mutex: %v, expecting value of 'no, full", val)
}
}
// Timezone
if k == "tz" || k == "timezone" || k == "loc" {
val := params.Get(k)
switch strings.ToLower(val) {
case "auto":
cfg.TimeZone = time.Local
default:
cfg.TimeZone, err = time.LoadLocation(val)
if err != nil {
return nil, fmt.Errorf("Invalid tz: %v: %v", val, err)
}
}
}
// Transaction Lock
if k == "txlock" || k == "transaction_lock" {
val := params.Get(k)
switch strings.ToLower(val) {
case "immediate":
cfg.TransactionLock = TxLockImmediate
case "exclusive":
cfg.TransactionLock = TxLockExclusive
case "deferred":
cfg.TransactionLock = TxLockDeferred
default:
return nil, fmt.Errorf("Invalid txlock: %v, expecting value of 'deferred, immediate, exclusive'", val)
}
}
// AutoVacuum
if k == "auto_vacuum" || k == "vacuum" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "none":
cfg.AutoVacuum = AutoVacuumNone
case "1", "full":
cfg.AutoVacuum = AutoVacuumFull
case "2", "incremental":
cfg.AutoVacuum = AutoVacuumIncremental
default:
return nil, fmt.Errorf("Invalid auto_vacuum: %v, expecting value of '0 NONE 1 FULL 2 INCREMENTAL'", val)
}
}
// Busy Timeout
if k == "busy_timeout" || k == "timeout" {
val := params.Get(k)
iv, err := strconv.ParseInt(val, 10, 64)
if err != nil {
return nil, fmt.Errorf("Invalid busy_timeout: %v: %v", val, err)
}
cfg.BusyTimeout, _ = time.ParseDuration(fmt.Sprintf("%dms", iv))
}
// Case Sensitive LIKE
if k == "case_sensitive_like" || k == "cslike" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.CaseSensitiveLike = false
case "1", "yes", "true", "on":
cfg.CaseSensitiveLike = true
default:
return nil, fmt.Errorf("Invalid case_sensitive_like: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Defer Foreign Keys
if k == "defer_foreign_keys" || k == "defer_fk" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.DeferForeignKeys = false
case "1", "yes", "true", "on":
cfg.DeferForeignKeys = true
default:
return nil, fmt.Errorf("Invalid defer_foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Foreign Keys
if k == "foreign_keys" || k == "fk" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.ForeignKeyConstraints = false
case "1", "yes", "true", "on":
cfg.ForeignKeyConstraints = true
default:
return nil, fmt.Errorf("Invalid foreign_keys: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Ignore Check Constraints
if k == "ignore_check_constraints" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.IgnoreCheckConstraints = false
case "1", "yes", "true", "on":
cfg.IgnoreCheckConstraints = true
default:
return nil, fmt.Errorf("Invalid ignore_check_constraints: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Parse Synchronous before Journal Mode
// Because if WAL mode is selected for Journal
// This will change the Synchronous mode
if k == "synchronous" || k == "sync" {
val := params.Get(k)
switch strings.ToUpper(val) {
case "0", "OFF":
cfg.Synchronous = SynchronousOff
case "1", "NORMAL":
cfg.Synchronous = SynchronousNormal
case "2", "FULL":
cfg.Synchronous = SynchronousFull
case "3", "EXTRA":
cfg.Synchronous = SynchronousExtra
default:
return nil, fmt.Errorf("Invalid synchronous: %v, expecting value of '0 OFF 1 NORMAL 2 FULL 3 EXTRA'", val)
}
}
// Journal Mode
if k == "journal_mode" || k == "journal" {
val := params.Get(k)
switch strings.ToUpper(val) {
case "DELETE", "TRUNCATE", "PERSIST", "MEMORY", "OFF":
cfg.JournalMode = JournalMode(strings.ToUpper(val))
case "WAL":
cfg.JournalMode = JournalModeWAL
// For WAL Mode set Synchronous Mode to 'NORMAL'
// See https://www.sqlite.org/pragma.html#pragma_synchronous
cfg.Synchronous = SynchronousNormal
default:
return nil, fmt.Errorf("Invalid journal: %v, expecting value of 'DELETE TRUNCATE PERSIST MEMORY WAL OFF'", val)
}
}
// Locking Mode
if k == "locking_mode" || k == "locking" || k == "lock" {
val := params.Get(k)
switch strings.ToUpper(val) {
case "NORMAL":
cfg.LockingMode = LockingModeNormal
case "EXCLUSIVE":
cfg.LockingMode = LockingModeExclusive
default:
return nil, fmt.Errorf("Invalid locking_mode: %v, expecting value of 'NORMAL EXCLUSIVE", val)
}
}
// Query Only
if k == "query_only" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.QueryOnly = false
case "1", "yes", "true", "on":
cfg.QueryOnly = true
default:
return nil, fmt.Errorf("Invalid query_only: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Recursive Triggers
if k == "rt" || k == "recursive_triggers" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.RecursiveTriggers = false
case "1", "yes", "true", "on":
cfg.RecursiveTriggers = true
default:
return nil, fmt.Errorf("Invalid recursive_triggers: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
// Secure Delete
if k == "secure_delete" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.SecureDelete = SecureDeleteOff
case "1", "yes", "true", "on":
cfg.SecureDelete = SecureDeleteOn
case "fast":
cfg.SecureDelete = SecureDeleteFast
default:
return nil, fmt.Errorf("Invalid secure_delete: %v, expecting boolean value of '0 1 false true no yes off on fast'", val)
}
}
if k == "writable_schema" {
val := params.Get(k)
switch strings.ToLower(val) {
case "0", "no", "false", "off":
cfg.WriteableSchema = false
case "1", "yes", "true", "on":
cfg.WriteableSchema = true
default:
return nil, fmt.Errorf("Invalid writable_schema: %v, expecting boolean value of '0 1 false true no yes off on'", val)
}
}
}
}
return cfg, nil
}
func normalizeParams(params url.Values) {
for k, v := range params {
params[strings.ToLower(k)] = v
}
}
func parseCryptEncoder(crypt, salt string) (CryptEncoder, error) {
switch strings.ToUpper(crypt) {
case "SHA1":
return NewSHA1Encoder(), nil
case "SSHA1":
if len(salt) == 0 {
return nil, fmt.Errorf("crypt=ssha1, requires salt")
}
return NewSSHA1Encoder(salt), nil
case "SHA256":
return NewSHA256Encoder(), nil
case "SSHA256":
if len(salt) == 0 {
return nil, fmt.Errorf("crypt=ssha256, requires salt")
}
return NewSSHA256Encoder(salt), nil
case "SHA384":
return NewSHA384Encoder(), nil
case "SSHA384":
if len(salt) == 0 {
return nil, fmt.Errorf("crypt=ssha384, requires salt")
}
return NewSSHA384Encoder(salt), nil
case "SHA512":
return NewSHA512Encoder(), nil
case "SSHA512":
if len(salt) == 0 {
return nil, fmt.Errorf("crypt=ssha512, requires salt")
}
return NewSSHA512Encoder(salt), nil
default:
return nil, fmt.Errorf("Unknown crypt encoder provider")
}
}