// Copyright (C) 2014 Yasuhiro Matsumoto . // // Use of this source code is governed by an MIT-style // license that can be found in the LICENSE file. package sqlite3 /* #cgo CFLAGS: -std=gnu99 #cgo CFLAGS: -DSQLITE_ENABLE_RTREE -DSQLITE_THREADSAFE #cgo CFLAGS: -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_FTS3_PARENTHESIS #include #include #include #ifdef __CYGWIN__ # include #endif #ifndef SQLITE_OPEN_READWRITE # define SQLITE_OPEN_READWRITE 0 #endif #ifndef SQLITE_OPEN_FULLMUTEX # define SQLITE_OPEN_FULLMUTEX 0 #endif static int _sqlite3_open_v2(const char *filename, sqlite3 **ppDb, int flags, const char *zVfs) { #ifdef SQLITE_OPEN_URI return sqlite3_open_v2(filename, ppDb, flags | SQLITE_OPEN_URI, zVfs); #else return sqlite3_open_v2(filename, ppDb, flags, zVfs); #endif } static int _sqlite3_bind_text(sqlite3_stmt *stmt, int n, char *p, int np) { return sqlite3_bind_text(stmt, n, p, np, SQLITE_TRANSIENT); } static int _sqlite3_bind_blob(sqlite3_stmt *stmt, int n, void *p, int np) { return sqlite3_bind_blob(stmt, n, p, np, SQLITE_TRANSIENT); } #include #include static int _sqlite3_exec(sqlite3* db, const char* pcmd, long long* rowid, long long* changes) { int rv = sqlite3_exec(db, pcmd, 0, 0, 0); *rowid = (long long) sqlite3_last_insert_rowid(db); *changes = (long long) sqlite3_changes(db); return rv; } static int _sqlite3_step(sqlite3_stmt* stmt, long long* rowid, long long* changes) { int rv = sqlite3_step(stmt); sqlite3* db = sqlite3_db_handle(stmt); *rowid = (long long) sqlite3_last_insert_rowid(db); *changes = (long long) sqlite3_changes(db); return rv; } void _sqlite3_result_text(sqlite3_context* ctx, const char* s) { sqlite3_result_text(ctx, s, -1, &free); } void _sqlite3_result_blob(sqlite3_context* ctx, const void* b, int l) { sqlite3_result_blob(ctx, b, l, SQLITE_TRANSIENT); } void callbackTrampoline(sqlite3_context*, int, sqlite3_value**); void stepTrampoline(sqlite3_context*, int, sqlite3_value**); void doneTrampoline(sqlite3_context*); */ import "C" import ( "database/sql" "database/sql/driver" "errors" "fmt" "io" "net/url" "reflect" "runtime" "strconv" "strings" "time" "unsafe" ) // Timestamp formats understood by both this module and SQLite. // The first format in the slice will be used when saving time values // into the database. When parsing a string from a timestamp or // datetime column, the formats are tried in order. var SQLiteTimestampFormats = []string{ "2006-01-02 15:04:05.999999999", "2006-01-02T15:04:05.999999999", "2006-01-02 15:04:05", "2006-01-02T15:04:05", "2006-01-02 15:04", "2006-01-02T15:04", "2006-01-02", "2006-01-02 15:04:05-07:00", } func init() { sql.Register("sqlite3", &SQLiteDriver{}) } // Return SQLite library Version information. func Version() (libVersion string, libVersionNumber int, sourceId string) { libVersion = C.GoString(C.sqlite3_libversion()) libVersionNumber = int(C.sqlite3_libversion_number()) sourceId = C.GoString(C.sqlite3_sourceid()) return libVersion, libVersionNumber, sourceId } // Driver struct. type SQLiteDriver struct { Extensions []string ConnectHook func(*SQLiteConn) error } // Conn struct. type SQLiteConn struct { db *C.sqlite3 loc *time.Location txlock string funcs []*functionInfo aggregators []*aggInfo } // Tx struct. type SQLiteTx struct { c *SQLiteConn } // Stmt struct. type SQLiteStmt struct { c *SQLiteConn s *C.sqlite3_stmt nv int nn []string t string closed bool cls bool } // Result struct. type SQLiteResult struct { id int64 changes int64 } // Rows struct. type SQLiteRows struct { s *SQLiteStmt nc int cols []string decltype []string cls bool } type functionInfo struct { f reflect.Value argConverters []callbackArgConverter variadicConverter callbackArgConverter retConverter callbackRetConverter } func (fi *functionInfo) Call(ctx *C.sqlite3_context, argv []*C.sqlite3_value) { args, err := callbackConvertArgs(argv, fi.argConverters, fi.variadicConverter) if err != nil { callbackError(ctx, err) return } ret := fi.f.Call(args) if len(ret) == 2 && ret[1].Interface() != nil { callbackError(ctx, ret[1].Interface().(error)) return } err = fi.retConverter(ctx, ret[0]) if err != nil { callbackError(ctx, err) return } } type aggInfo struct { constructor reflect.Value // Active aggregator objects for aggregations in flight. The // aggregators are indexed by a counter stored in the aggregation // user data space provided by sqlite. active map[int64]reflect.Value next int64 stepArgConverters []callbackArgConverter stepVariadicConverter callbackArgConverter doneRetConverter callbackRetConverter } func (ai *aggInfo) agg(ctx *C.sqlite3_context) (int64, reflect.Value, error) { aggIdx := (*int64)(C.sqlite3_aggregate_context(ctx, C.int(8))) if *aggIdx == 0 { *aggIdx = ai.next ret := ai.constructor.Call(nil) if len(ret) == 2 && ret[1].Interface() != nil { return 0, reflect.Value{}, ret[1].Interface().(error) } if ret[0].IsNil() { return 0, reflect.Value{}, errors.New("aggregator constructor returned nil state") } ai.next++ ai.active[*aggIdx] = ret[0] } return *aggIdx, ai.active[*aggIdx], nil } func (ai *aggInfo) Step(ctx *C.sqlite3_context, argv []*C.sqlite3_value) { _, agg, err := ai.agg(ctx) if err != nil { callbackError(ctx, err) return } args, err := callbackConvertArgs(argv, ai.stepArgConverters, ai.stepVariadicConverter) if err != nil { callbackError(ctx, err) return } ret := agg.MethodByName("Step").Call(args) if len(ret) == 1 && ret[0].Interface() != nil { callbackError(ctx, ret[0].Interface().(error)) return } } func (ai *aggInfo) Done(ctx *C.sqlite3_context) { idx, agg, err := ai.agg(ctx) if err != nil { callbackError(ctx, err) return } defer func() { delete(ai.active, idx) }() ret := agg.MethodByName("Done").Call(nil) if len(ret) == 2 && ret[1].Interface() != nil { callbackError(ctx, ret[1].Interface().(error)) return } err = ai.doneRetConverter(ctx, ret[0]) if err != nil { callbackError(ctx, err) return } } // Commit transaction. func (tx *SQLiteTx) Commit() error { _, err := tx.c.exec("COMMIT") return err } // Rollback transaction. func (tx *SQLiteTx) Rollback() error { _, err := tx.c.exec("ROLLBACK") return err } // RegisterFunc makes a Go function available as a SQLite function. // // The Go function can have arguments of the following types: any // numeric type except complex, bool, []byte, string and // interface{}. interface{} arguments are given the direct translation // of the SQLite data type: int64 for INTEGER, float64 for FLOAT, // []byte for BLOB, string for TEXT. // // The function can additionally be variadic, as long as the type of // the variadic argument is one of the above. // // If pure is true. SQLite will assume that the function's return // value depends only on its inputs, and make more aggressive // optimizations in its queries. // // See _example/go_custom_funcs for a detailed example. func (c *SQLiteConn) RegisterFunc(name string, impl interface{}, pure bool) error { var fi functionInfo fi.f = reflect.ValueOf(impl) t := fi.f.Type() if t.Kind() != reflect.Func { return errors.New("Non-function passed to RegisterFunc") } if t.NumOut() != 1 && t.NumOut() != 2 { return errors.New("SQLite functions must return 1 or 2 values") } if t.NumOut() == 2 && !t.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) { return errors.New("Second return value of SQLite function must be error") } numArgs := t.NumIn() if t.IsVariadic() { numArgs-- } for i := 0; i < numArgs; i++ { conv, err := callbackArg(t.In(i)) if err != nil { return err } fi.argConverters = append(fi.argConverters, conv) } if t.IsVariadic() { conv, err := callbackArg(t.In(numArgs).Elem()) if err != nil { return err } fi.variadicConverter = conv // Pass -1 to sqlite so that it allows any number of // arguments. The call helper verifies that the minimum number // of arguments is present for variadic functions. numArgs = -1 } conv, err := callbackRet(t.Out(0)) if err != nil { return err } fi.retConverter = conv // fi must outlast the database connection, or we'll have dangling pointers. c.funcs = append(c.funcs, &fi) cname := C.CString(name) defer C.free(unsafe.Pointer(cname)) opts := C.SQLITE_UTF8 if pure { opts |= C.SQLITE_DETERMINISTIC } rv := C.sqlite3_create_function(c.db, cname, C.int(numArgs), C.int(opts), unsafe.Pointer(&fi), (*[0]byte)(unsafe.Pointer(C.callbackTrampoline)), nil, nil) if rv != C.SQLITE_OK { return c.lastError() } return nil } // RegisterAggregator makes a Go type available as a SQLite aggregation function. // // Because aggregation is incremental, it's implemented in Go with a // type that has 2 methods: func Step(values) accumulates one row of // data into the accumulator, and func Done() ret finalizes and // returns the aggregate value. "values" and "ret" may be any type // supported by RegisterFunc. // // RegisterAggregator takes as implementation a constructor function // that constructs an instance of the aggregator type each time an // aggregation begins. The constructor must return a pointer to a // type, or an interface that implements Step() and Done(). // // The constructor function and the Step/Done methods may optionally // return an error in addition to their other return values. // // See _example/go_custom_funcs for a detailed example. func (c *SQLiteConn) RegisterAggregator(name string, impl interface{}, pure bool) error { var ai aggInfo ai.constructor = reflect.ValueOf(impl) t := ai.constructor.Type() if t.Kind() != reflect.Func { return errors.New("non-function passed to RegisterAggregator") } if t.NumOut() != 1 && t.NumOut() != 2 { return errors.New("SQLite aggregator constructors must return 1 or 2 values") } if t.NumOut() == 2 && !t.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) { return errors.New("Second return value of SQLite function must be error") } if t.NumIn() != 0 { return errors.New("SQLite aggregator constructors must not have arguments") } agg := t.Out(0) switch agg.Kind() { case reflect.Ptr, reflect.Interface: default: return errors.New("SQlite aggregator constructor must return a pointer object") } stepFn, found := agg.MethodByName("Step") if !found { return errors.New("SQlite aggregator doesn't have a Step() function") } step := stepFn.Type if step.NumOut() != 0 && step.NumOut() != 1 { return errors.New("SQlite aggregator Step() function must return 0 or 1 values") } if step.NumOut() == 1 && !step.Out(0).Implements(reflect.TypeOf((*error)(nil)).Elem()) { return errors.New("type of SQlite aggregator Step() return value must be error") } stepNArgs := step.NumIn() start := 0 if agg.Kind() == reflect.Ptr { // Skip over the method receiver stepNArgs-- start++ } if step.IsVariadic() { stepNArgs-- } for i := start; i < start+stepNArgs; i++ { conv, err := callbackArg(step.In(i)) if err != nil { return err } ai.stepArgConverters = append(ai.stepArgConverters, conv) } if step.IsVariadic() { conv, err := callbackArg(t.In(start + stepNArgs).Elem()) if err != nil { return err } ai.stepVariadicConverter = conv // Pass -1 to sqlite so that it allows any number of // arguments. The call helper verifies that the minimum number // of arguments is present for variadic functions. stepNArgs = -1 } doneFn, found := agg.MethodByName("Done") if !found { return errors.New("SQlite aggregator doesn't have a Done() function") } done := doneFn.Type doneNArgs := done.NumIn() if agg.Kind() == reflect.Ptr { // Skip over the method receiver doneNArgs-- } if doneNArgs != 0 { return errors.New("SQlite aggregator Done() function must have no arguments") } if done.NumOut() != 1 && done.NumOut() != 2 { return errors.New("SQLite aggregator Done() function must return 1 or 2 values") } if done.NumOut() == 2 && !done.Out(1).Implements(reflect.TypeOf((*error)(nil)).Elem()) { return errors.New("second return value of SQLite aggregator Done() function must be error") } conv, err := callbackRet(done.Out(0)) if err != nil { return err } ai.doneRetConverter = conv ai.active = make(map[int64]reflect.Value) ai.next = 1 // ai must outlast the database connection, or we'll have dangling pointers. c.aggregators = append(c.aggregators, &ai) cname := C.CString(name) defer C.free(unsafe.Pointer(cname)) opts := C.SQLITE_UTF8 if pure { opts |= C.SQLITE_DETERMINISTIC } rv := C.sqlite3_create_function(c.db, cname, C.int(stepNArgs), C.int(opts), unsafe.Pointer(&ai), nil, (*[0]byte)(unsafe.Pointer(C.stepTrampoline)), (*[0]byte)(unsafe.Pointer(C.doneTrampoline))) if rv != C.SQLITE_OK { return c.lastError() } return nil } // AutoCommit return which currently auto commit or not. func (c *SQLiteConn) AutoCommit() bool { return int(C.sqlite3_get_autocommit(c.db)) != 0 } func (c *SQLiteConn) lastError() Error { return Error{ Code: ErrNo(C.sqlite3_errcode(c.db)), ExtendedCode: ErrNoExtended(C.sqlite3_extended_errcode(c.db)), err: C.GoString(C.sqlite3_errmsg(c.db)), } } // Implements Execer func (c *SQLiteConn) Exec(query string, args []driver.Value) (driver.Result, error) { if len(args) == 0 { return c.exec(query) } for { s, err := c.Prepare(query) if err != nil { return nil, err } var res driver.Result if s.(*SQLiteStmt).s != nil { na := s.NumInput() if len(args) < na { return nil, fmt.Errorf("Not enough args to execute query. Expected %d, got %d.", na, len(args)) } res, err = s.Exec(args[:na]) if err != nil && err != driver.ErrSkip { s.Close() return nil, err } args = args[na:] } tail := s.(*SQLiteStmt).t s.Close() if tail == "" { return res, nil } query = tail } } // Implements Queryer func (c *SQLiteConn) Query(query string, args []driver.Value) (driver.Rows, error) { for { s, err := c.Prepare(query) if err != nil { return nil, err } s.(*SQLiteStmt).cls = true na := s.NumInput() if len(args) < na { return nil, fmt.Errorf("Not enough args to execute query. Expected %d, got %d.", na, len(args)) } rows, err := s.Query(args[:na]) if err != nil && err != driver.ErrSkip { s.Close() return nil, err } args = args[na:] tail := s.(*SQLiteStmt).t if tail == "" { return rows, nil } rows.Close() s.Close() query = tail } } func (c *SQLiteConn) exec(cmd string) (driver.Result, error) { pcmd := C.CString(cmd) defer C.free(unsafe.Pointer(pcmd)) var rowid, changes C.longlong rv := C._sqlite3_exec(c.db, pcmd, &rowid, &changes) if rv != C.SQLITE_OK { return nil, c.lastError() } return &SQLiteResult{int64(rowid), int64(changes)}, nil } // Begin transaction. func (c *SQLiteConn) Begin() (driver.Tx, error) { if _, err := c.exec(c.txlock); err != nil { return nil, err } return &SQLiteTx{c}, nil } func errorString(err Error) string { return C.GoString(C.sqlite3_errstr(C.int(err.Code))) } // Open database and return a new connection. // You can specify DSN string with URI filename. // test.db // file:test.db?cache=shared&mode=memory // :memory: // file::memory: // go-sqlite handle especially query parameters. // _loc=XXX // Specify location of time format. It's possible to specify "auto". // _busy_timeout=XXX // Specify value for sqlite3_busy_timeout. // _txlock=XXX // Specify locking behavior for transactions. XXX can be "immediate", // "deferred", "exclusive". func (d *SQLiteDriver) Open(dsn string) (driver.Conn, error) { if C.sqlite3_threadsafe() == 0 { return nil, errors.New("sqlite library was not compiled for thread-safe operation") } var loc *time.Location txlock := "BEGIN" busy_timeout := 5000 pos := strings.IndexRune(dsn, '?') if pos >= 1 { params, err := url.ParseQuery(dsn[pos+1:]) if err != nil { return nil, err } // _loc if val := params.Get("_loc"); val != "" { if val == "auto" { loc = time.Local } else { loc, err = time.LoadLocation(val) if err != nil { return nil, fmt.Errorf("Invalid _loc: %v: %v", val, err) } } } // _busy_timeout if val := params.Get("_busy_timeout"); val != "" { iv, err := strconv.ParseInt(val, 10, 64) if err != nil { return nil, fmt.Errorf("Invalid _busy_timeout: %v: %v", val, err) } busy_timeout = int(iv) } // _txlock if val := params.Get("_txlock"); val != "" { switch val { case "immediate": txlock = "BEGIN IMMEDIATE" case "exclusive": txlock = "BEGIN EXCLUSIVE" case "deferred": txlock = "BEGIN" default: return nil, fmt.Errorf("Invalid _txlock: %v", val) } } if !strings.HasPrefix(dsn, "file:") { dsn = dsn[:pos] } } var db *C.sqlite3 name := C.CString(dsn) defer C.free(unsafe.Pointer(name)) rv := C._sqlite3_open_v2(name, &db, C.SQLITE_OPEN_FULLMUTEX| C.SQLITE_OPEN_READWRITE| C.SQLITE_OPEN_CREATE, nil) if rv != 0 { return nil, Error{Code: ErrNo(rv)} } if db == nil { return nil, errors.New("sqlite succeeded without returning a database") } rv = C.sqlite3_busy_timeout(db, C.int(busy_timeout)) if rv != C.SQLITE_OK { return nil, Error{Code: ErrNo(rv)} } conn := &SQLiteConn{db: db, loc: loc, txlock: txlock} if len(d.Extensions) > 0 { rv = C.sqlite3_enable_load_extension(db, 1) if rv != C.SQLITE_OK { return nil, errors.New(C.GoString(C.sqlite3_errmsg(db))) } for _, extension := range d.Extensions { cext := C.CString(extension) defer C.free(unsafe.Pointer(cext)) rv = C.sqlite3_load_extension(db, cext, nil, nil) if rv != C.SQLITE_OK { return nil, errors.New(C.GoString(C.sqlite3_errmsg(db))) } } rv = C.sqlite3_enable_load_extension(db, 0) if rv != C.SQLITE_OK { return nil, errors.New(C.GoString(C.sqlite3_errmsg(db))) } } if d.ConnectHook != nil { if err := d.ConnectHook(conn); err != nil { return nil, err } } runtime.SetFinalizer(conn, (*SQLiteConn).Close) return conn, nil } // Close the connection. func (c *SQLiteConn) Close() error { rv := C.sqlite3_close_v2(c.db) if rv != C.SQLITE_OK { return c.lastError() } c.db = nil runtime.SetFinalizer(c, nil) return nil } // Prepare query string. Return a new statement. func (c *SQLiteConn) Prepare(query string) (driver.Stmt, error) { pquery := C.CString(query) defer C.free(unsafe.Pointer(pquery)) var s *C.sqlite3_stmt var tail *C.char rv := C.sqlite3_prepare_v2(c.db, pquery, -1, &s, &tail) if rv != C.SQLITE_OK { return nil, c.lastError() } var t string if tail != nil && *tail != '\000' { t = strings.TrimSpace(C.GoString(tail)) } nv := int(C.sqlite3_bind_parameter_count(s)) var nn []string for i := 0; i < nv; i++ { pn := C.GoString(C.sqlite3_bind_parameter_name(s, C.int(i+1))) if len(pn) > 1 && pn[0] == '$' && 48 <= pn[1] && pn[1] <= 57 { nn = append(nn, C.GoString(C.sqlite3_bind_parameter_name(s, C.int(i+1)))) } } ss := &SQLiteStmt{c: c, s: s, nv: nv, nn: nn, t: t} runtime.SetFinalizer(ss, (*SQLiteStmt).Close) return ss, nil } // Close the statement. func (s *SQLiteStmt) Close() error { if s.closed { return nil } s.closed = true if s.c == nil || s.c.db == nil { return errors.New("sqlite statement with already closed database connection") } rv := C.sqlite3_finalize(s.s) if rv != C.SQLITE_OK { return s.c.lastError() } runtime.SetFinalizer(s, nil) return nil } // Return a number of parameters. func (s *SQLiteStmt) NumInput() int { return s.nv } type bindArg struct { n int v driver.Value } func (s *SQLiteStmt) bind(args []driver.Value) error { rv := C.sqlite3_reset(s.s) if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE { return s.c.lastError() } var vargs []bindArg narg := len(args) vargs = make([]bindArg, narg) if len(s.nn) > 0 { for i, v := range s.nn { if pi, err := strconv.Atoi(v[1:]); err == nil { vargs[i] = bindArg{pi, args[i]} } } } else { for i, v := range args { vargs[i] = bindArg{i + 1, v} } } for _, varg := range vargs { n := C.int(varg.n) v := varg.v switch v := v.(type) { case nil: rv = C.sqlite3_bind_null(s.s, n) case string: if len(v) == 0 { b := []byte{0} rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(0)) } else { b := []byte(v) rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b))) } case int64: rv = C.sqlite3_bind_int64(s.s, n, C.sqlite3_int64(v)) case bool: if bool(v) { rv = C.sqlite3_bind_int(s.s, n, 1) } else { rv = C.sqlite3_bind_int(s.s, n, 0) } case float64: rv = C.sqlite3_bind_double(s.s, n, C.double(v)) case []byte: var p *byte if len(v) > 0 { p = &v[0] } rv = C._sqlite3_bind_blob(s.s, n, unsafe.Pointer(p), C.int(len(v))) case time.Time: b := []byte(v.UTC().Format(SQLiteTimestampFormats[0])) rv = C._sqlite3_bind_text(s.s, n, (*C.char)(unsafe.Pointer(&b[0])), C.int(len(b))) } if rv != C.SQLITE_OK { return s.c.lastError() } } return nil } // Query the statement with arguments. Return records. func (s *SQLiteStmt) Query(args []driver.Value) (driver.Rows, error) { if err := s.bind(args); err != nil { return nil, err } return &SQLiteRows{s, int(C.sqlite3_column_count(s.s)), nil, nil, s.cls}, nil } // Return last inserted ID. func (r *SQLiteResult) LastInsertId() (int64, error) { return r.id, nil } // Return how many rows affected. func (r *SQLiteResult) RowsAffected() (int64, error) { return r.changes, nil } // Execute the statement with arguments. Return result object. func (s *SQLiteStmt) Exec(args []driver.Value) (driver.Result, error) { if err := s.bind(args); err != nil { C.sqlite3_reset(s.s) C.sqlite3_clear_bindings(s.s) return nil, err } var rowid, changes C.longlong rv := C._sqlite3_step(s.s, &rowid, &changes) if rv != C.SQLITE_ROW && rv != C.SQLITE_OK && rv != C.SQLITE_DONE { err := s.c.lastError() C.sqlite3_reset(s.s) C.sqlite3_clear_bindings(s.s) return nil, err } return &SQLiteResult{int64(rowid), int64(changes)}, nil } // Close the rows. func (rc *SQLiteRows) Close() error { if rc.s.closed { return nil } if rc.cls { return rc.s.Close() } rv := C.sqlite3_reset(rc.s.s) if rv != C.SQLITE_OK { return rc.s.c.lastError() } return nil } // Return column names. func (rc *SQLiteRows) Columns() []string { if rc.nc != len(rc.cols) { rc.cols = make([]string, rc.nc) for i := 0; i < rc.nc; i++ { rc.cols[i] = C.GoString(C.sqlite3_column_name(rc.s.s, C.int(i))) } } return rc.cols } // Move cursor to next. func (rc *SQLiteRows) Next(dest []driver.Value) error { rv := C.sqlite3_step(rc.s.s) if rv == C.SQLITE_DONE { return io.EOF } if rv != C.SQLITE_ROW { rv = C.sqlite3_reset(rc.s.s) if rv != C.SQLITE_OK { return rc.s.c.lastError() } return nil } if rc.decltype == nil { rc.decltype = make([]string, rc.nc) for i := 0; i < rc.nc; i++ { rc.decltype[i] = strings.ToLower(C.GoString(C.sqlite3_column_decltype(rc.s.s, C.int(i)))) } } for i := range dest { switch C.sqlite3_column_type(rc.s.s, C.int(i)) { case C.SQLITE_INTEGER: val := int64(C.sqlite3_column_int64(rc.s.s, C.int(i))) switch rc.decltype[i] { case "timestamp", "datetime", "date": unixTimestamp := strconv.FormatInt(val, 10) var t time.Time if len(unixTimestamp) == 13 { duration, err := time.ParseDuration(unixTimestamp + "ms") if err != nil { return fmt.Errorf("error parsing %s value %d, %s", rc.decltype[i], val, err) } epoch := time.Date(1970, 1, 1, 0, 0, 0, 0, time.UTC) t = epoch.Add(duration) } else { t = time.Unix(val, 0) } if rc.s.c.loc != nil { t = t.In(rc.s.c.loc) } dest[i] = t case "boolean": dest[i] = val > 0 default: dest[i] = val } case C.SQLITE_FLOAT: dest[i] = float64(C.sqlite3_column_double(rc.s.s, C.int(i))) case C.SQLITE_BLOB: p := C.sqlite3_column_blob(rc.s.s, C.int(i)) if p == nil { dest[i] = nil continue } n := int(C.sqlite3_column_bytes(rc.s.s, C.int(i))) switch dest[i].(type) { case sql.RawBytes: dest[i] = (*[1 << 30]byte)(unsafe.Pointer(p))[0:n] default: slice := make([]byte, n) copy(slice[:], (*[1 << 30]byte)(unsafe.Pointer(p))[0:n]) dest[i] = slice } case C.SQLITE_NULL: dest[i] = nil case C.SQLITE_TEXT: var err error var timeVal time.Time n := int(C.sqlite3_column_bytes(rc.s.s, C.int(i))) s := C.GoStringN((*C.char)(unsafe.Pointer(C.sqlite3_column_text(rc.s.s, C.int(i)))), C.int(n)) switch rc.decltype[i] { case "timestamp", "datetime", "date": var t time.Time s = strings.TrimSuffix(s, "Z") for _, format := range SQLiteTimestampFormats { if timeVal, err = time.ParseInLocation(format, s, time.UTC); err == nil { t = timeVal break } } if err != nil { // The column is a time value, so return the zero time on parse failure. t = time.Time{} } if rc.s.c.loc != nil { t = t.In(rc.s.c.loc) } dest[i] = t default: dest[i] = []byte(s) } } } return nil }