client_golang/prometheus/histogram.go

1454 lines
58 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// sparseBounds for the frac of observed values. Only relevant for schema > 0.
// Position in the slice is the schema. (0 is never used, just here for
// convenience of using the schema directly as the index.)
//
// TODO(beorn7): Currently, we do a binary search into these slices. There are
// ways to turn it into a small number of simple array lookups. It probably only
// matters for schema 5 and beyond, but should be investigated. See this comment
// as a starting point:
// https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310
var sparseBounds = [][]float64{
// Schema "0":
{0.5},
// Schema 1:
{0.5, 0.7071067811865475},
// Schema 2:
{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
// Schema 3:
{
0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
},
// Schema 4:
{
0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
},
// Schema 5:
{
0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
},
// Schema 6:
{
0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
},
// Schema 7:
{
0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
},
// Schema 8:
{
0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
},
}
// The sparseBounds above can be generated with the code below.
// TODO(beorn7): Actually do it via go generate.
//
// var sparseBounds [][]float64 = make([][]float64, 9)
//
// func init() {
// // Populate sparseBounds.
// numBuckets := 1
// for i := range sparseBounds {
// bounds := []float64{0.5}
// factor := math.Exp2(math.Exp2(float64(-i)))
// for j := 0; j < numBuckets-1; j++ {
// var bound float64
// if (j+1)%2 == 0 {
// // Use previously calculated value for increased precision.
// bound = sparseBounds[i-1][j/2+1]
// } else {
// bound = bounds[j] * factor
// }
// bounds = append(bounds, bound)
// }
// numBuckets *= 2
// sparseBounds[i] = bounds
// }
// }
// A Histogram counts individual observations from an event or sample stream in
// configurable buckets. Similar to a summary, it also provides a sum of
// observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile function in the query language.
//
// Note that Histograms, in contrast to Summaries, can be aggregated with the
// Prometheus query language (see the documentation for detailed
// procedures). However, Histograms require the user to pre-define suitable
// buckets, and they are in general less accurate. The Observe method of a
// Histogram has a very low performance overhead in comparison with the Observe
// method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"
// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
// DefSparseBucketsZeroThreshold is the default value for
// SparseBucketsZeroThreshold in the HistogramOpts.
//
// The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation),
// which is a bucket boundary at all possible resolutions.
const DefSparseBucketsZeroThreshold = 2.938735877055719e-39
var errBucketLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in histograms", bucketLabel,
)
// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
if count < 1 {
panic("LinearBuckets needs a positive count")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start += width
}
return buckets
}
// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
// upper bound of 'start' and each following bucket's upper bound is 'factor'
// times the previous bucket's upper bound. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
if count < 1 {
panic("ExponentialBuckets needs a positive count")
}
if start <= 0 {
panic("ExponentialBuckets needs a positive start value")
}
if factor <= 1 {
panic("ExponentialBuckets needs a factor greater than 1")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start *= factor
}
return buckets
}
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(min, max float64, count int) []float64 {
if count < 1 {
panic("ExponentialBucketsRange count needs a positive count")
}
if min <= 0 {
panic("ExponentialBucketsRange min needs to be greater than 0")
}
// Formula for exponential buckets.
// max = min*growthFactor^(bucketCount-1)
// We know max/min and highest bucket. Solve for growthFactor.
growthFactor := math.Pow(max/min, 1.0/float64(count-1))
// Now that we know growthFactor, solve for each bucket.
buckets := make([]float64, count)
for i := 1; i <= count; i++ {
buckets[i-1] = min * math.Pow(growthFactor, float64(i-1))
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Histogram (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Histogram must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Histogram.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
// element in the slice is the upper inclusive bound of a bucket. The
// values must be sorted in strictly increasing order. There is no need
// to add a highest bucket with +Inf bound, it will be added
// implicitly. If Buckets is left as nil or set to a slice of length
// zero, it is replaced by default buckets. The default buckets are
// DefBuckets if no sparse buckets (see below) are used, otherwise the
// default is no buckets. (In other words, if you want to use both
// reguler buckets and sparse buckets, you have to define the regular
// buckets here explicitly.)
Buckets []float64
// If SparseBucketsFactor is greater than one, sparse buckets are used
// (in addition to the regular buckets, if defined above). A histogram
// with sparse buckets will be ingested as a native histogram by a
// Prometheus server with that feature enable. Sparse buckets are
// exponential buckets covering the whole float64 range (with the
// exception of the “zero” bucket, see SparseBucketsZeroThreshold
// below). From any one bucket to the next, the width of the bucket
// grows by a constant factor. SparseBucketsFactor provides an upper
// bound for this factor (exception see below). The smaller
// SparseBucketsFactor, the more buckets will be used and thus the more
// costly the histogram will become. A generally good trade-off between
// cost and accuracy is a value of 1.1 (each bucket is at most 10% wider
// than the previous one), which will result in each power of two
// divided into 8 buckets (e.g. there will be 8 buckets between 1 and 2,
// same as between 2 and 4, and 4 and 8, etc.).
//
// Details about the actually used factor: The factor is calculated as
// 2^(2^n), where n is an integer number between (and including) -8 and
// 4. n is chosen so that the resulting factor is the largest that is
// still smaller or equal to SparseBucketsFactor. Note that the smallest
// possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8) ). If
// SparseBucketsFactor is greater than 1 but smaller than 2^(2^-8), then
// the actually used factor is still 2^(2^-8) even though it is larger
// than the provided SparseBucketsFactor.
SparseBucketsFactor float64
// All observations with an absolute value of less or equal
// SparseBucketsZeroThreshold are accumulated into a “zero” bucket. For
// best results, this should be close to a bucket boundary. This is
// usually the case if picking a power of two. If
// SparseBucketsZeroThreshold is left at zero,
// DefSparseBucketsZeroThreshold is used as the threshold. If it is set
// to a negative value, a threshold of zero is used, i.e. only
// observations of precisely zero will go into the zero
// bucket. (TODO(beorn7): That's obviously weird and just a consequence
// of making the zero value of HistogramOpts meaningful. Has to be
// solved more elegantly in the final version.)
SparseBucketsZeroThreshold float64
// The remaining fields define a strategy to limit the number of
// populated sparse buckets. If SparseBucketsMaxNumber is left at zero,
// the number of buckets is not limited. Otherwise, once the provided
// number is exceeded, the following strategy is enacted: First, if the
// last reset (or the creation) of the histogram is at least
// SparseBucketsMinResetDuration ago, then the whole histogram is reset
// to its initial state (including regular buckets). If less time has
// passed, or if SparseBucketsMinResetDuration is zero, no reset is
// performed. Instead, the zero threshold is increased sufficiently to
// reduce the number of buckets to or below SparseBucketsMaxNumber, but
// not to more than SparseBucketsMaxZeroThreshold. Thus, if
// SparseBucketsMaxZeroThreshold is already at or below the current zero
// threshold, nothing happens at this step. After that, if the number of
// buckets still exceeds SparseBucketsMaxNumber, the resolution of the
// histogram is reduced by doubling the width of the sparse buckets (up
// to a growth factor between one bucket to the next of 2^(2^4) = 65536,
// see above).
SparseBucketsMaxNumber uint32
SparseBucketsMinResetDuration time.Duration
SparseBucketsMaxZeroThreshold float64
}
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
if len(desc.variableLabels) != len(labelValues) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues))
}
for _, n := range desc.variableLabels {
if n == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: MakeLabelPairs(desc, labelValues),
sparseMaxBuckets: opts.SparseBucketsMaxNumber,
sparseMaxZeroThreshold: opts.SparseBucketsMaxZeroThreshold,
sparseMinResetDuration: opts.SparseBucketsMinResetDuration,
lastResetTime: time.Now(),
now: time.Now,
}
if len(h.upperBounds) == 0 && opts.SparseBucketsFactor <= 1 {
h.upperBounds = DefBuckets
}
if opts.SparseBucketsFactor <= 1 {
h.sparseSchema = math.MinInt32 // To mark that there are no sparse buckets.
} else {
switch {
case opts.SparseBucketsZeroThreshold > 0:
h.sparseZeroThreshold = opts.SparseBucketsZeroThreshold
case opts.SparseBucketsZeroThreshold == 0:
h.sparseZeroThreshold = DefSparseBucketsZeroThreshold
} // Leave h.sparseThreshold at 0 otherwise.
h.sparseSchema = pickSparseSchema(opts.SparseBucketsFactor)
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
if upperBound >= h.upperBounds[i+1] {
panic(fmt.Errorf(
"histogram buckets must be in increasing order: %f >= %f",
upperBound, h.upperBounds[i+1],
))
}
} else {
if math.IsInf(upperBound, +1) {
// The +Inf bucket is implicit. Remove it here.
h.upperBounds = h.upperBounds[:i]
}
}
}
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts as well as exemplars:
h.counts[0] = &histogramCounts{
buckets: make([]uint64, len(h.upperBounds)),
sparseZeroThresholdBits: math.Float64bits(h.sparseZeroThreshold),
sparseSchema: h.sparseSchema,
}
h.counts[1] = &histogramCounts{
buckets: make([]uint64, len(h.upperBounds)),
sparseZeroThresholdBits: math.Float64bits(h.sparseZeroThreshold),
sparseSchema: h.sparseSchema,
}
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
}
type histogramCounts struct {
// Order in this struct matters for the alignment required by atomic
// operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG
// sumBits contains the bits of the float64 representing the sum of all
// observations.
sumBits uint64
count uint64
// sparseZeroBucket counts all (positive and negative) observations in
// the zero bucket (with an absolute value less or equal the current
// threshold, see next field.
sparseZeroBucket uint64
// sparseZeroThresholdBits is the bit pattern of the current threshold
// for the zero bucket. It's initially equal to sparseZeroThreshold but
// may change according to the bucket count limitation strategy.
sparseZeroThresholdBits uint64
// sparseSchema may change over time according to the bucket count
// limitation strategy and therefore has to be saved here.
sparseSchema int32
// Number of (positive and negative) sparse buckets.
sparseBucketsNumber uint32
// Regular buckets.
buckets []uint64
// Sparse buckets are implemented with a sync.Map for now. A dedicated
// data structure will likely be more efficient. There are separate maps
// for negative and positive observations. The map's value is an *int64,
// counting observations in that bucket. (Note that we don't use uint64
// as an int64 won't overflow in practice, and working with signed
// numbers from the beginning simplifies the handling of deltas.) The
// map's key is the index of the bucket according to the used
// sparseSchema. Index 0 is for an upper bound of 1.
sparseBucketsPositive, sparseBucketsNegative sync.Map
}
// observe manages the parts of observe that only affects
// histogramCounts. doSparse is true if spare buckets should be done,
// too.
func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) {
if bucket < len(hc.buckets) {
atomic.AddUint64(&hc.buckets[bucket], 1)
}
atomicAddFloat(&hc.sumBits, v)
if doSparse && !math.IsNaN(v) {
var (
sparseKey int
sparseSchema = atomic.LoadInt32(&hc.sparseSchema)
sparseZeroThreshold = math.Float64frombits(atomic.LoadUint64(&hc.sparseZeroThresholdBits))
bucketCreated, isInf bool
)
if math.IsInf(v, 0) {
// Pretend v is MaxFloat64 but later increment sparseKey by one.
if math.IsInf(v, +1) {
v = math.MaxFloat64
} else {
v = -math.MaxFloat64
}
isInf = true
}
frac, exp := math.Frexp(math.Abs(v))
if sparseSchema > 0 {
bounds := sparseBounds[sparseSchema]
sparseKey = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds)
} else {
sparseKey = exp
if frac == 0.5 {
sparseKey--
}
div := 1 << -sparseSchema
sparseKey = (sparseKey + div - 1) / div
}
if isInf {
sparseKey++
}
switch {
case v > sparseZeroThreshold:
bucketCreated = addToSparseBucket(&hc.sparseBucketsPositive, sparseKey, 1)
case v < -sparseZeroThreshold:
bucketCreated = addToSparseBucket(&hc.sparseBucketsNegative, sparseKey, 1)
default:
atomic.AddUint64(&hc.sparseZeroBucket, 1)
}
if bucketCreated {
atomic.AddUint32(&hc.sparseBucketsNumber, 1)
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hc.count, 1)
}
type histogram struct {
// countAndHotIdx enables lock-free writes with use of atomic updates.
// The most significant bit is the hot index [0 or 1] of the count field
// below. Observe calls update the hot one. All remaining bits count the
// number of Observe calls. Observe starts by incrementing this counter,
// and finish by incrementing the count field in the respective
// histogramCounts, as a marker for completion.
//
// Calls of the Write method (which are non-mutating reads from the
// perspective of the histogram) swap the hotcold under the writeMtx
// lock. A cooldown is awaited (while locked) by comparing the number of
// observations with the initiation count. Once they match, then the
// last observation on the now cool one has completed. All cold fields must
// be merged into the new hot before releasing writeMtx.
//
// Fields with atomic access first! See alignment constraint:
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
selfCollector
desc *Desc
// Only used in the Write method and for sparse bucket management.
mtx sync.Mutex
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*histogramCounts
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
sparseSchema int32 // The initial schema. Set to math.MinInt32 if no sparse buckets are used.
sparseZeroThreshold float64 // The initial zero threshold.
sparseMaxZeroThreshold float64
sparseMaxBuckets uint32
sparseMinResetDuration time.Duration
lastResetTime time.Time // Protected by mtx.
now func() time.Time // To mock out time.Now() for testing.
}
func (h *histogram) Desc() *Desc {
return h.desc
}
func (h *histogram) Observe(v float64) {
h.observe(v, h.findBucket(v))
}
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
// For simplicity, we protect this whole method by a mutex. It is not in
// the hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it, if possible at
// all.
h.mtx.Lock()
defer h.mtx.Unlock()
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
// without touching the count bits. See the struct comments for a full
// description of the algorithm.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
// count is contained unchanged in the lower 63 bits.
count := n & ((1 << 63) - 1)
// The most significant bit tells us which counts is hot. The complement
// is thus the cold one.
hotCounts := h.counts[n>>63]
coldCounts := h.counts[(^n)>>63]
waitForCooldown(count, coldCounts)
his := &dto.Histogram{
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
SampleCount: proto.Uint64(count),
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
}
out.Histogram = his
out.Label = h.labelPairs
var cumCount uint64
for i, upperBound := range h.upperBounds {
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
his.Bucket[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
if h.sparseSchema > math.MinInt32 {
his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sparseZeroThresholdBits)))
his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.sparseSchema))
zeroBucket := atomic.LoadUint64(&coldCounts.sparseZeroBucket)
defer func() {
coldCounts.sparseBucketsPositive.Range(addAndReset(&hotCounts.sparseBucketsPositive, &hotCounts.sparseBucketsNumber))
coldCounts.sparseBucketsNegative.Range(addAndReset(&hotCounts.sparseBucketsNegative, &hotCounts.sparseBucketsNumber))
}()
his.ZeroCount = proto.Uint64(zeroBucket)
his.NegativeSpan, his.NegativeDelta = makeSparseBuckets(&coldCounts.sparseBucketsNegative)
his.PositiveSpan, his.PositiveDelta = makeSparseBuckets(&coldCounts.sparseBucketsPositive)
}
addAndResetCounts(hotCounts, coldCounts)
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// Do not add to sparse buckets for NaN observations.
doSparse := h.sparseSchema > math.MinInt32 && !math.IsNaN(v)
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
hotCounts.observe(v, bucket, doSparse)
if doSparse {
h.limitSparseBuckets(hotCounts, v, bucket)
}
}
// limitSparsebuckets applies a strategy to limit the number of populated sparse
// buckets. It's generally best effort, and there are situations where the
// number can go higher (if even the lowest resolution isn't enough to reduce
// the number sufficiently, or if the provided counts aren't fully updated yet
// by a concurrently happening Write call).
func (h *histogram) limitSparseBuckets(counts *histogramCounts, value float64, bucket int) {
if h.sparseMaxBuckets == 0 {
return // No limit configured.
}
if h.sparseMaxBuckets >= atomic.LoadUint32(&counts.sparseBucketsNumber) {
return // Bucket limit not exceeded yet.
}
h.mtx.Lock()
defer h.mtx.Unlock()
// The hot counts might have been swapped just before we acquired the
// lock. Re-fetch the hot counts first...
n := atomic.LoadUint64(&h.countAndHotIdx)
hotIdx := n >> 63
coldIdx := (^n) >> 63
hotCounts := h.counts[hotIdx]
coldCounts := h.counts[coldIdx]
// ...and then check again if we really have to reduce the bucket count.
if h.sparseMaxBuckets >= atomic.LoadUint32(&hotCounts.sparseBucketsNumber) {
return // Bucket limit not exceeded after all.
}
// Try the various strategies in order.
if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) {
return
}
if h.maybeWidenZeroBucket(hotCounts, coldCounts) {
return
}
h.doubleBucketWidth(hotCounts, coldCounts)
}
// maybeReset resests the whole histogram if at least h.sparseMinResetDuration
// has been passed. It returns true if the histogram has been reset. The caller
// must have locked h.mtx.
func (h *histogram) maybeReset(hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int) bool {
// We are using the possibly mocked h.now() rather than
// time.Since(h.lastResetTime) to enable testing.
if h.sparseMinResetDuration == 0 || h.now().Sub(h.lastResetTime) < h.sparseMinResetDuration {
return false
}
// Completely reset coldCounts.
h.resetCounts(cold)
// Repeat the latest observation to not lose it completely.
cold.observe(value, bucket, true)
// Make coldCounts the new hot counts while ressetting countAndHotIdx.
n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1)
count := n & ((1 << 63) - 1)
waitForCooldown(count, hot)
// Finally, reset the formerly hot counts, too.
h.resetCounts(hot)
h.lastResetTime = h.now()
return true
}
// maybeWidenZeroBucket widens the zero bucket until it includes the existing
// buckets closest to the zero bucket (which could be two, if an equidistant
// negative and a positive bucket exists, but usually it's only one bucket to be
// merged into the new wider zero bucket). h.sparseMaxZeroThreshold limits how
// far the zero bucket can be extended, and if that's not enough to include an
// existing bucket, the method returns false. The caller must have locked h.mtx.
func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool {
currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.sparseZeroThresholdBits))
if currentZeroThreshold >= h.sparseMaxZeroThreshold {
return false
}
// Find the key of the bucket closest to zero.
smallestKey := findSmallestKey(&hot.sparseBucketsPositive)
smallestNegativeKey := findSmallestKey(&hot.sparseBucketsNegative)
if smallestNegativeKey < smallestKey {
smallestKey = smallestNegativeKey
}
if smallestKey == math.MaxInt32 {
return false
}
newZeroThreshold := getLe(smallestKey, atomic.LoadInt32(&hot.sparseSchema))
if newZeroThreshold > h.sparseMaxZeroThreshold {
return false // New threshold would exceed the max threshold.
}
atomic.StoreUint64(&cold.sparseZeroThresholdBits, math.Float64bits(newZeroThreshold))
// Remove applicable buckets.
if _, loaded := cold.sparseBucketsNegative.LoadAndDelete(smallestKey); loaded {
atomicDecUint32(&cold.sparseBucketsNumber)
}
if _, loaded := cold.sparseBucketsPositive.LoadAndDelete(smallestKey); loaded {
atomicDecUint32(&cold.sparseBucketsNumber)
}
// Make cold counts the new hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
count := n & ((1 << 63) - 1)
// Swap the pointer names to represent the new roles and make
// the rest less confusing.
hot, cold = cold, hot
waitForCooldown(count, cold)
// Add all the now cold counts to the new hot counts...
addAndResetCounts(hot, cold)
// ...adjust the new zero threshold in the cold counts, too...
atomic.StoreUint64(&cold.sparseZeroThresholdBits, math.Float64bits(newZeroThreshold))
// ...and then merge the newly deleted buckets into the wider zero
// bucket.
mergeAndDeleteOrAddAndReset := func(hotBuckets, coldBuckets *sync.Map) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
key := k.(int)
bucket := v.(*int64)
if key == smallestKey {
// Merge into hot zero bucket...
atomic.AddUint64(&hot.sparseZeroBucket, uint64(atomic.LoadInt64(bucket)))
// ...and delete from cold counts.
coldBuckets.Delete(key)
atomicDecUint32(&cold.sparseBucketsNumber)
} else {
// Add to corresponding hot bucket...
if addToSparseBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
atomic.AddUint32(&hot.sparseBucketsNumber, 1)
}
// ...and reset cold bucket.
atomic.StoreInt64(bucket, 0)
}
return true
}
}
cold.sparseBucketsPositive.Range(mergeAndDeleteOrAddAndReset(&hot.sparseBucketsPositive, &cold.sparseBucketsPositive))
cold.sparseBucketsNegative.Range(mergeAndDeleteOrAddAndReset(&hot.sparseBucketsNegative, &cold.sparseBucketsNegative))
return true
}
// doubleBucketWidth doubles the bucket width (by decrementing the schema
// number). Note that very sparse buckets could lead to a low reduction of the
// bucket count (or even no reduction at all). The method does nothing if the
// schema is already -4.
func (h *histogram) doubleBucketWidth(hot, cold *histogramCounts) {
coldSchema := atomic.LoadInt32(&cold.sparseSchema)
if coldSchema == -4 {
return // Already at lowest resolution.
}
coldSchema--
atomic.StoreInt32(&cold.sparseSchema, coldSchema)
// Play it simple and just delete all cold buckets.
atomic.StoreUint32(&cold.sparseBucketsNumber, 0)
deleteSyncMap(&cold.sparseBucketsNegative)
deleteSyncMap(&cold.sparseBucketsPositive)
// Make coldCounts the new hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
count := n & ((1 << 63) - 1)
// Swap the pointer names to represent the new roles and make
// the rest less confusing.
hot, cold = cold, hot
waitForCooldown(count, cold)
// Add all the now cold counts to the new hot counts...
addAndResetCounts(hot, cold)
// ...adjust the schema in the cold counts, too...
atomic.StoreInt32(&cold.sparseSchema, coldSchema)
// ...and then merge the cold buckets into the wider hot buckets.
merge := func(hotBuckets *sync.Map) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
key := k.(int)
bucket := v.(*int64)
// Adjust key to match the bucket to merge into.
if key > 0 {
key++
}
key /= 2
// Add to corresponding hot bucket.
if addToSparseBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
atomic.AddUint32(&hot.sparseBucketsNumber, 1)
}
return true
}
}
cold.sparseBucketsPositive.Range(merge(&hot.sparseBucketsPositive))
cold.sparseBucketsNegative.Range(merge(&hot.sparseBucketsNegative))
// Play it simple again and just delete all cold buckets.
atomic.StoreUint32(&cold.sparseBucketsNumber, 0)
deleteSyncMap(&cold.sparseBucketsNegative)
deleteSyncMap(&cold.sparseBucketsPositive)
}
func (h *histogram) resetCounts(counts *histogramCounts) {
atomic.StoreUint64(&counts.sumBits, 0)
atomic.StoreUint64(&counts.count, 0)
atomic.StoreUint64(&counts.sparseZeroBucket, 0)
atomic.StoreUint64(&counts.sparseZeroThresholdBits, math.Float64bits(h.sparseZeroThreshold))
atomic.StoreInt32(&counts.sparseSchema, h.sparseSchema)
atomic.StoreUint32(&counts.sparseBucketsNumber, 0)
for i := range h.upperBounds {
atomic.StoreUint64(&counts.buckets[i], 0)
}
deleteSyncMap(&counts.sparseBucketsNegative)
deleteSyncMap(&counts.sparseBucketsPositive)
}
// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, h.now(), l)
if err != nil {
panic(err)
}
h.exemplars[bucket].Store(e)
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
*MetricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &HistogramVec{
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newHistogram(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
// create the new Histogram but leave it at its starting value, a Histogram without
// any observations.
//
// Keeping the Histogram for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
// Histogram will still exist, but it will not be exported anymore, even if a
// Histogram with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
//
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
h, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return h
}
// With works as GetMetricWith but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
//
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *HistogramVec) With(labels Labels) Observer {
h, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return h
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the HistogramVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &HistogramVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
type constHistogram struct {
desc *Desc
count uint64
sum float64
buckets map[float64]uint64
labelPairs []*dto.LabelPair
}
func (h *constHistogram) Desc() *Desc {
return h.desc
}
func (h *constHistogram) Write(out *dto.Metric) error {
his := &dto.Histogram{}
buckets := make([]*dto.Bucket, 0, len(h.buckets))
his.SampleCount = proto.Uint64(h.count)
his.SampleSum = proto.Float64(h.sum)
for upperBound, count := range h.buckets {
buckets = append(buckets, &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(upperBound),
})
}
if len(buckets) > 0 {
sort.Sort(buckSort(buckets))
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
return nil
}
// NewConstHistogram returns a metric representing a Prometheus histogram with
// fixed values for the count, sum, and bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
// bucket. The +Inf bucket is implicit, and its value is equal to the provided count.
//
// NewConstHistogram returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
return nil, err
}
return &constHistogram{
desc: desc,
count: count,
sum: sum,
buckets: buckets,
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstHistogram would have returned an error.
func MustNewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) Metric {
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
if err != nil {
panic(err)
}
return m
}
type buckSort []*dto.Bucket
func (s buckSort) Len() int {
return len(s)
}
func (s buckSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s buckSort) Less(i, j int) bool {
return s[i].GetUpperBound() < s[j].GetUpperBound()
}
// pickSparseschema returns the largest number n between -4 and 8 such that
// 2^(2^-n) is less or equal the provided bucketFactor.
//
// Special cases:
// - bucketFactor <= 1: panics.
// - bucketFactor < 2^(2^-8) (but > 1): still returns 8.
func pickSparseSchema(bucketFactor float64) int32 {
if bucketFactor <= 1 {
panic(fmt.Errorf("bucketFactor %f is <=1", bucketFactor))
}
floor := math.Floor(math.Log2(math.Log2(bucketFactor)))
switch {
case floor <= -8:
return 8
case floor >= 4:
return -4
default:
return -int32(floor)
}
}
func makeSparseBuckets(buckets *sync.Map) ([]*dto.BucketSpan, []int64) {
var ii []int
buckets.Range(func(k, v interface{}) bool {
ii = append(ii, k.(int))
return true
})
sort.Ints(ii)
if len(ii) == 0 {
return nil, nil
}
var (
spans []*dto.BucketSpan
deltas []int64
prevCount int64
nextI int
)
appendDelta := func(count int64) {
*spans[len(spans)-1].Length++
deltas = append(deltas, count-prevCount)
prevCount = count
}
for n, i := range ii {
v, _ := buckets.Load(i)
count := atomic.LoadInt64(v.(*int64))
// Multiple spans with only small gaps in between are probably
// encoded more efficiently as one larger span with a few empty
// buckets. Needs some research to find the sweet spot. For now,
// we assume that gaps of one ore two buckets should not create
// a new span.
iDelta := int32(i - nextI)
if n == 0 || iDelta > 2 {
// We have to create a new span, either because we are
// at the very beginning, or because we have found a gap
// of more than two buckets.
spans = append(spans, &dto.BucketSpan{
Offset: proto.Int32(iDelta),
Length: proto.Uint32(0),
})
} else {
// We have found a small gap (or no gap at all).
// Insert empty buckets as needed.
for j := int32(0); j < iDelta; j++ {
appendDelta(0)
}
}
appendDelta(count)
nextI = i + 1
}
return spans, deltas
}
// addToSparseBucket increments the sparse bucket at key by the provided
// amount. It returns true if a new sparse bucket had to be created for that.
func addToSparseBucket(buckets *sync.Map, key int, increment int64) bool {
if existingBucket, ok := buckets.Load(key); ok {
// Fast path without allocation.
atomic.AddInt64(existingBucket.(*int64), increment)
return false
}
// Bucket doesn't exist yet. Slow path allocating new counter.
newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape.
if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded {
// The bucket was created concurrently in another goroutine.
// Have to increment after all.
atomic.AddInt64(actualBucket.(*int64), increment)
return false
}
return true
}
// addAndReset returns a function to be used with sync.Map.Range of spare
// buckets in coldCounts. It increments the buckets in the provided hotBuckets
// according to the buckets ranged through. It then resets all buckets ranged
// through to 0 (but leaves them in place so that they don't need to get
// recreated on the next scrape).
func addAndReset(hotBuckets *sync.Map, bucketNumber *uint32) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
bucket := v.(*int64)
if addToSparseBucket(hotBuckets, k.(int), atomic.LoadInt64(bucket)) {
atomic.AddUint32(bucketNumber, 1)
}
atomic.StoreInt64(bucket, 0)
return true
}
}
func deleteSyncMap(m *sync.Map) {
m.Range(func(k, v interface{}) bool {
m.Delete(k)
return true
})
}
func findSmallestKey(m *sync.Map) int {
result := math.MaxInt32
m.Range(func(k, v interface{}) bool {
key := k.(int)
if key < result {
result = key
}
return true
})
return result
}
func getLe(key int, schema int32) float64 {
// Here a bit of context about the behavior for the last bucket counting
// regular numbers (called simply "last bucket" below) and the bucket
// counting observations of ±Inf (called "inf bucket" below, with a key
// one higher than that of the "last bucket"):
//
// If we apply the usual formula to the last bucket, its upper bound
// would be calculated as +Inf. The reason is that the max possible
// regular float64 number (math.MaxFloat64) doesn't coincide with one of
// the calculated bucket boundaries. So the calculated boundary has to
// be larger than math.MaxFloat64, and the only float64 larger than
// math.MaxFloat64 is +Inf. However, we want to count actual
// observations of ±Inf in the inf bucket. Therefore, we have to treat
// the upper bound of the last bucket specially and set it to
// math.MaxFloat64. (The upper bound of the inf bucket, with its key
// being one higher than that of the last bucket, naturally comes out as
// +Inf by the usual formula. So that's fine.)
//
// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
// 1024. If there were a float64 number following math.MaxFloat64, it
// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
// of 0.5 and an exp of 1025. However, since frac must be smaller than
// 1, and exp must be smaller than 1025, either representation overflows
// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
// largest possible float64. Q.E.D.) However, the formula for
// calculating the upper bound from the idx and schema of the last
// bucket results in precisely that. It is either frac=1.0 & exp=1024
// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
// by the way, a power of two where the exponent itself is a power of
// two, 2¹⁰ in fact, which coinicides with a bucket boundary in all
// schemas.) So these are the special cases we have to catch below.
if schema < 0 {
exp := key << -schema
if exp == 1024 {
// This is the last bucket before the overflow bucket
// (for ±Inf observations). Return math.MaxFloat64 as
// explained above.
return math.MaxFloat64
}
return math.Ldexp(1, exp)
}
fracIdx := key & ((1 << schema) - 1)
frac := sparseBounds[schema][fracIdx]
exp := (key >> schema) + 1
if frac == 0.5 && exp == 1025 {
// This is the last bucket before the overflow bucket (for ±Inf
// observations). Return math.MaxFloat64 as explained above.
return math.MaxFloat64
}
return math.Ldexp(frac, exp)
}
// waitForCooldown returns after the count field in the provided histogramCounts
// has reached the provided count value.
func waitForCooldown(count uint64, counts *histogramCounts) {
for count != atomic.LoadUint64(&counts.count) {
runtime.Gosched() // Let observations get work done.
}
}
// atomicAddFloat adds the provided float atomically to another float
// represented by the bit pattern the bits pointer is pointing to.
func atomicAddFloat(bits *uint64, v float64) {
for {
loadedBits := atomic.LoadUint64(bits)
newBits := math.Float64bits(math.Float64frombits(loadedBits) + v)
if atomic.CompareAndSwapUint64(bits, loadedBits, newBits) {
break
}
}
}
// atomicDecUint32 atomically decrements the uint32 p points to. See
// https://pkg.go.dev/sync/atomic#AddUint32 to understand how this is done.
func atomicDecUint32(p *uint32) {
atomic.AddUint32(p, ^uint32(0))
}
// addAndResetCounts adds certain fields (count, sum, conventional buckets,
// sparse zero bucket) from the cold counts to the corresponding fields in the
// hot counts. Those fields are then reset to 0 in the cold counts.
func addAndResetCounts(hot, cold *histogramCounts) {
atomic.AddUint64(&hot.count, atomic.LoadUint64(&cold.count))
atomic.StoreUint64(&cold.count, 0)
coldSum := math.Float64frombits(atomic.LoadUint64(&cold.sumBits))
atomicAddFloat(&hot.sumBits, coldSum)
atomic.StoreUint64(&cold.sumBits, 0)
for i := range hot.buckets {
atomic.AddUint64(&hot.buckets[i], atomic.LoadUint64(&cold.buckets[i]))
atomic.StoreUint64(&cold.buckets[i], 0)
}
atomic.AddUint64(&hot.sparseZeroBucket, atomic.LoadUint64(&cold.sparseZeroBucket))
atomic.StoreUint64(&cold.sparseZeroBucket, 0)
}