// Copyright 2014 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package text import ( "bufio" "bytes" "fmt" "io" "math" "strconv" "strings" dto "github.com/prometheus/client_model/go" "code.google.com/p/goprotobuf/proto" "github.com/prometheus/client_golang/model" ) // A stateFn is a function that represents a state in a state machine. By // executing it, the state is progressed to the next state. The stateFn returns // another stateFn, which represents the new state. The end state is represented // by nil. type stateFn func() stateFn // ParseError signals errors while parsing the simple and flat text-based // exchange format. type ParseError struct { Line int Msg string } // Error implements the error interface. func (e ParseError) Error() string { return fmt.Sprintf("text format parsing error in line %d: %s", e.Line, e.Msg) } // Parser is used to parse the simple and flat text-based exchange format. Its // nil value is ready to use. type Parser struct { metricFamiliesByName map[string]*dto.MetricFamily buf *bufio.Reader // Where the parsed input is read through. err error // Most recent error. lineCount int // Tracks the line count for error messages. currentByte byte // The most recent byte read. currentToken bytes.Buffer // Re-used each time a token has to be gathered from multiple bytes. currentMF *dto.MetricFamily currentMetric *dto.Metric currentLabelPair *dto.LabelPair // The remaining member variables are only used for summaries/histograms. currentLabels map[string]string // All labels including '__name__' but excluding 'quantile'/'le' // Summary specific. summaries map[uint64]*dto.Metric // Key is created with LabelsToSignature. currentQuantile float64 // Histogram specific. histograms map[uint64]*dto.Metric // Key is created with LabelsToSignature. currentBucket float64 // These tell us if the currently processed line ends on '_count' or // '_sum' respectively and belong to a summary/histogram, representing the sample // count and sum of that summary/histogram. currentIsSummaryCount, currentIsSummarySum bool currentIsHistogramCount, currentIsHistogramSum bool } // TextToMetricFamilies reads 'in' as the simple and flat text-based exchange // format and creates MetricFamily proto messages. It returns the MetricFamily // proto messages in a map where the metric names are the keys, along with any // error encountered. // // If the input contains duplicate metrics (i.e. lines with the same metric name // and exactly the same label set), the resulting MetricFamily will contain // duplicate Metric proto messages. Similar is true for duplicate label // names. Checks for duplicates have to be performed separately, if required. // // Summaries are a rather special beast. You would probably not use them in the // simple text format anyway. This method can deal with summaries if they are // presented in exactly the way the text.Create function creates them. // // This method must not be called concurrently. If you want to parse different // input concurrently, instantiate a separate Parser for each goroutine. func (p *Parser) TextToMetricFamilies(in io.Reader) (map[string]*dto.MetricFamily, error) { p.reset(in) for nextState := p.startOfLine; nextState != nil; nextState = nextState() { // Magic happens here... } // Get rid of empty metric families. for k, mf := range p.metricFamiliesByName { if len(mf.GetMetric()) == 0 { delete(p.metricFamiliesByName, k) } } return p.metricFamiliesByName, p.err } func (p *Parser) reset(in io.Reader) { p.metricFamiliesByName = map[string]*dto.MetricFamily{} if p.buf == nil { p.buf = bufio.NewReader(in) } else { p.buf.Reset(in) } p.err = nil p.lineCount = 0 if p.summaries == nil || len(p.summaries) > 0 { p.summaries = map[uint64]*dto.Metric{} } if p.histograms == nil || len(p.histograms) > 0 { p.histograms = map[uint64]*dto.Metric{} } p.currentQuantile = math.NaN() p.currentBucket = math.NaN() } // startOfLine represents the state where the next byte read from p.buf is the // start of a line (or whitespace leading up to it). func (p *Parser) startOfLine() stateFn { p.lineCount++ if p.skipBlankTab(); p.err != nil { // End of input reached. This is the only case where // that is not an error but a signal that we are done. p.err = nil return nil } switch p.currentByte { case '#': return p.startComment case '\n': return p.startOfLine // Empty line, start the next one. } return p.readingMetricName } // startComment represents the state where the next byte read from p.buf is the // start of a comment (or whitespace leading up to it). func (p *Parser) startComment() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte == '\n' { return p.startOfLine } if p.readTokenUntilWhitespace(); p.err != nil { return nil // Unexpected end of input. } // If we have hit the end of line already, there is nothing left // to do. This is not considered a syntax error. if p.currentByte == '\n' { return p.startOfLine } keyword := p.currentToken.String() if keyword != "HELP" && keyword != "TYPE" { // Generic comment, ignore by fast forwarding to end of line. for p.currentByte != '\n' { if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil { return nil // Unexpected end of input. } } return p.startOfLine } // There is something. Next has to be a metric name. if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.readTokenAsMetricName(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte == '\n' { // At the end of the line already. // Again, this is not considered a syntax error. return p.startOfLine } if !isBlankOrTab(p.currentByte) { p.parseError("invalid metric name in comment") return nil } p.setOrCreateCurrentMF() if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte == '\n' { // At the end of the line already. // Again, this is not considered a syntax error. return p.startOfLine } switch keyword { case "HELP": return p.readingHelp case "TYPE": return p.readingType } panic(fmt.Sprintf("code error: unexpected keyword %q", keyword)) } // readingMetricName represents the state where the last byte read (now in // p.currentByte) is the first byte of a metric name. func (p *Parser) readingMetricName() stateFn { if p.readTokenAsMetricName(); p.err != nil { return nil } if p.currentToken.Len() == 0 { p.parseError("invalid metric name") return nil } p.setOrCreateCurrentMF() // Now is the time to fix the type if it hasn't happened yet. if p.currentMF.Type == nil { p.currentMF.Type = dto.MetricType_UNTYPED.Enum() } p.currentMetric = &dto.Metric{} // Do not append the newly created currentMetric to // currentMF.Metric right now. First wait if this is a summary, // and the metric exists already, which we can only know after // having read all the labels. if p.skipBlankTabIfCurrentBlankTab(); p.err != nil { return nil // Unexpected end of input. } return p.readingLabels } // readingLabels represents the state where the last byte read (now in // p.currentByte) is either the first byte of the label set (i.e. a '{'), or the // first byte of the value (otherwise). func (p *Parser) readingLabels() stateFn { // Summaries/histograms are special. We have to reset the // currentLabels map, currentQuantile and currentBucket before starting to // read labels. if p.currentMF.GetType() == dto.MetricType_SUMMARY || p.currentMF.GetType() == dto.MetricType_HISTOGRAM { p.currentLabels = map[string]string{} p.currentLabels[string(model.MetricNameLabel)] = p.currentMF.GetName() p.currentQuantile = math.NaN() p.currentBucket = math.NaN() } if p.currentByte != '{' { return p.readingValue } return p.startLabelName } // startLabelName represents the state where the next byte read from p.buf is // the start of a label name (or whitespace leading up to it). func (p *Parser) startLabelName() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte == '}' { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } return p.readingValue } if p.readTokenAsLabelName(); p.err != nil { return nil // Unexpected end of input. } if p.currentToken.Len() == 0 { p.parseError(fmt.Sprintf("invalid label name for metric %q", p.currentMF.GetName())) return nil } p.currentLabelPair = &dto.LabelPair{Name: proto.String(p.currentToken.String())} if p.currentLabelPair.GetName() == string(model.MetricNameLabel) { p.parseError(fmt.Sprintf("label name %q is reserved", model.MetricNameLabel)) return nil } // Special summary/histogram treatment. Don't add 'quantile' and 'le' // labels to 'real' labels. if !(p.currentMF.GetType() == dto.MetricType_SUMMARY && p.currentLabelPair.GetName() == "quantile") && !(p.currentMF.GetType() == dto.MetricType_HISTOGRAM && p.currentLabelPair.GetName() == "le") { p.currentMetric.Label = append(p.currentMetric.Label, p.currentLabelPair) } if p.skipBlankTabIfCurrentBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte != '=' { p.parseError(fmt.Sprintf("expected '=' after label name, found %q", p.currentByte)) return nil } return p.startLabelValue } // startLabelValue represents the state where the next byte read from p.buf is // the start of a (quoted) label value (or whitespace leading up to it). func (p *Parser) startLabelValue() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.currentByte != '"' { p.parseError(fmt.Sprintf("expected '\"' at start of label value, found %q", p.currentByte)) return nil } if p.readTokenAsLabelValue(); p.err != nil { return nil } p.currentLabelPair.Value = proto.String(p.currentToken.String()) // Special treatment of summaries: // - Quantile labels are special, will result in dto.Quantile later. // - Other labels have to be added to currentLabels for signature calculation. if p.currentMF.GetType() == dto.MetricType_SUMMARY { if p.currentLabelPair.GetName() == "quantile" { if p.currentQuantile, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected float as value for 'quantile' label, got %q", p.currentLabelPair.GetValue())) return nil } } else { p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue() } } // Similar special treatment of histograms. if p.currentMF.GetType() == dto.MetricType_HISTOGRAM { if p.currentLabelPair.GetName() == "le" { if p.currentBucket, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected float as value for 'le' label, got %q", p.currentLabelPair.GetValue())) return nil } } else { p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue() } } if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } switch p.currentByte { case ',': return p.startLabelName case '}': if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } return p.readingValue default: p.parseError(fmt.Sprintf("unexpected end of label value %q", p.currentLabelPair.Value)) return nil } } // readingValue represents the state where the last byte read (now in // p.currentByte) is the first byte of the sample value (i.e. a float). func (p *Parser) readingValue() stateFn { // When we are here, we have read all the labels, so for the // special case of a summary/histogram, we can finally find out // if the metric already exists. if p.currentMF.GetType() == dto.MetricType_SUMMARY { signature := model.LabelsToSignature(p.currentLabels) if summary := p.summaries[signature]; summary != nil { p.currentMetric = summary } else { p.summaries[signature] = p.currentMetric p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric) } } else if p.currentMF.GetType() == dto.MetricType_HISTOGRAM { signature := model.LabelsToSignature(p.currentLabels) if histogram := p.histograms[signature]; histogram != nil { p.currentMetric = histogram } else { p.histograms[signature] = p.currentMetric p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric) } } else { p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric) } if p.readTokenUntilWhitespace(); p.err != nil { return nil // Unexpected end of input. } value, err := strconv.ParseFloat(p.currentToken.String(), 64) if err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected float as value, got %q", p.currentToken.String())) return nil } switch p.currentMF.GetType() { case dto.MetricType_COUNTER: p.currentMetric.Counter = &dto.Counter{Value: proto.Float64(value)} case dto.MetricType_GAUGE: p.currentMetric.Gauge = &dto.Gauge{Value: proto.Float64(value)} case dto.MetricType_UNTYPED: p.currentMetric.Untyped = &dto.Untyped{Value: proto.Float64(value)} case dto.MetricType_SUMMARY: // *sigh* if p.currentMetric.Summary == nil { p.currentMetric.Summary = &dto.Summary{} } switch { case p.currentIsSummaryCount: p.currentMetric.Summary.SampleCount = proto.Uint64(uint64(value)) case p.currentIsSummarySum: p.currentMetric.Summary.SampleSum = proto.Float64(value) case !math.IsNaN(p.currentQuantile): p.currentMetric.Summary.Quantile = append( p.currentMetric.Summary.Quantile, &dto.Quantile{ Quantile: proto.Float64(p.currentQuantile), Value: proto.Float64(value), }, ) } case dto.MetricType_HISTOGRAM: // *sigh* if p.currentMetric.Histogram == nil { p.currentMetric.Histogram = &dto.Histogram{} } switch { case p.currentIsHistogramCount: p.currentMetric.Histogram.SampleCount = proto.Uint64(uint64(value)) case p.currentIsHistogramSum: p.currentMetric.Histogram.SampleSum = proto.Float64(value) case !math.IsNaN(p.currentBucket): p.currentMetric.Histogram.Bucket = append( p.currentMetric.Histogram.Bucket, &dto.Bucket{ UpperBound: proto.Float64(p.currentBucket), CumulativeCount: proto.Uint64(uint64(value)), }, ) } default: p.err = fmt.Errorf("unexpected type for metric name %q", p.currentMF.GetName()) } if p.currentByte == '\n' { return p.startOfLine } return p.startTimestamp } // startTimestamp represents the state where the next byte read from p.buf is // the start of the timestamp (or whitespace leading up to it). func (p *Parser) startTimestamp() stateFn { if p.skipBlankTab(); p.err != nil { return nil // Unexpected end of input. } if p.readTokenUntilWhitespace(); p.err != nil { return nil // Unexpected end of input. } timestamp, err := strconv.ParseInt(p.currentToken.String(), 10, 64) if err != nil { // Create a more helpful error message. p.parseError(fmt.Sprintf("expected integer as timestamp, got %q", p.currentToken.String())) return nil } p.currentMetric.TimestampMs = proto.Int64(timestamp) if p.readTokenUntilNewline(false); p.err != nil { return nil // Unexpected end of input. } if p.currentToken.Len() > 0 { p.parseError(fmt.Sprintf("spurious string after timestamp: %q", p.currentToken.String())) return nil } return p.startOfLine } // readingHelp represents the state where the last byte read (now in // p.currentByte) is the first byte of the docstring after 'HELP'. func (p *Parser) readingHelp() stateFn { if p.currentMF.Help != nil { p.parseError(fmt.Sprintf("second HELP line for metric name %q", p.currentMF.GetName())) return nil } // Rest of line is the docstring. if p.readTokenUntilNewline(true); p.err != nil { return nil // Unexpected end of input. } p.currentMF.Help = proto.String(p.currentToken.String()) return p.startOfLine } // readingType represents the state where the last byte read (now in // p.currentByte) is the first byte of the type hint after 'HELP'. func (p *Parser) readingType() stateFn { if p.currentMF.Type != nil { p.parseError(fmt.Sprintf("second TYPE line for metric name %q, or TYPE reported after samples", p.currentMF.GetName())) return nil } // Rest of line is the type. if p.readTokenUntilNewline(false); p.err != nil { return nil // Unexpected end of input. } metricType, ok := dto.MetricType_value[strings.ToUpper(p.currentToken.String())] if !ok { p.parseError(fmt.Sprintf("unknown metric type %q", p.currentToken.String())) return nil } p.currentMF.Type = dto.MetricType(metricType).Enum() return p.startOfLine } // parseError sets p.err to a ParseError at the current line with the given // message. func (p *Parser) parseError(msg string) { p.err = ParseError{ Line: p.lineCount, Msg: msg, } } // skipBlankTab reads (and discards) bytes from p.buf until it encounters a byte // that is neither ' ' nor '\t'. That byte is left in p.currentByte. func (p *Parser) skipBlankTab() { for { if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil || !isBlankOrTab(p.currentByte) { return } } } // skipBlankTabIfCurrentBlankTab works exactly as skipBlankTab but doesn't do // anything if p.currentByte is neither ' ' nor '\t'. func (p *Parser) skipBlankTabIfCurrentBlankTab() { if isBlankOrTab(p.currentByte) { p.skipBlankTab() } } // readTokenUntilWhitespace copies bytes from p.buf into p.currentToken. The // first byte considered is the byte already read (now in p.currentByte). The // first whitespace byte encountered is still copied into p.currentByte, but not // into p.currentToken. func (p *Parser) readTokenUntilWhitespace() { p.currentToken.Reset() for p.err == nil && !isBlankOrTab(p.currentByte) && p.currentByte != '\n' { p.currentToken.WriteByte(p.currentByte) p.currentByte, p.err = p.buf.ReadByte() } } // readTokenUntilNewline copies bytes from p.buf into p.currentToken. The first // byte considered is the byte already read (now in p.currentByte). The first // newline byte encountered is still copied into p.currentByte, but not into // p.currentToken. If recognizeEscapeSequence is true, two escape sequences are // recognized: '\\' tranlates into '\', and '\n' into a line-feed character. All // other escape sequences are invalid and cause an error. func (p *Parser) readTokenUntilNewline(recognizeEscapeSequence bool) { p.currentToken.Reset() escaped := false for p.err == nil { if recognizeEscapeSequence && escaped { switch p.currentByte { case '\\': p.currentToken.WriteByte(p.currentByte) case 'n': p.currentToken.WriteByte('\n') default: p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte)) return } escaped = false } else { switch p.currentByte { case '\n': return case '\\': escaped = true default: p.currentToken.WriteByte(p.currentByte) } } p.currentByte, p.err = p.buf.ReadByte() } } // readTokenAsMetricName copies a metric name from p.buf into p.currentToken. // The first byte considered is the byte already read (now in p.currentByte). // The first byte not part of a metric name is still copied into p.currentByte, // but not into p.currentToken. func (p *Parser) readTokenAsMetricName() { p.currentToken.Reset() if !isValidMetricNameStart(p.currentByte) { return } for { p.currentToken.WriteByte(p.currentByte) p.currentByte, p.err = p.buf.ReadByte() if p.err != nil || !isValidMetricNameContinuation(p.currentByte) { return } } } // readTokenAsLabelName copies a label name from p.buf into p.currentToken. // The first byte considered is the byte already read (now in p.currentByte). // The first byte not part of a label name is still copied into p.currentByte, // but not into p.currentToken. func (p *Parser) readTokenAsLabelName() { p.currentToken.Reset() if !isValidLabelNameStart(p.currentByte) { return } for { p.currentToken.WriteByte(p.currentByte) p.currentByte, p.err = p.buf.ReadByte() if p.err != nil || !isValidLabelNameContinuation(p.currentByte) { return } } } // readTokenAsLabelValue copies a label value from p.buf into p.currentToken. // In contrast to the other 'readTokenAs...' functions, which start with the // last read byte in p.currentByte, this method ignores p.currentByte and starts // with reading a new byte from p.buf. The first byte not part of a label value // is still copied into p.currentByte, but not into p.currentToken. func (p *Parser) readTokenAsLabelValue() { p.currentToken.Reset() escaped := false for { if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil { return } if escaped { switch p.currentByte { case '"', '\\': p.currentToken.WriteByte(p.currentByte) case 'n': p.currentToken.WriteByte('\n') default: p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte)) return } escaped = false continue } switch p.currentByte { case '"': return case '\n': p.parseError(fmt.Sprintf("label value %q contains unescaped new-line", p.currentToken.String())) return case '\\': escaped = true default: p.currentToken.WriteByte(p.currentByte) } } } func (p *Parser) setOrCreateCurrentMF() { p.currentIsSummaryCount = false p.currentIsSummarySum = false p.currentIsHistogramCount = false p.currentIsHistogramSum = false name := p.currentToken.String() if p.currentMF = p.metricFamiliesByName[name]; p.currentMF != nil { return } // Try out if this is a _sum or _count for a summary/histogram. summaryName := summaryMetricName(name) if p.currentMF = p.metricFamiliesByName[summaryName]; p.currentMF != nil { if p.currentMF.GetType() == dto.MetricType_SUMMARY { if isCount(name) { p.currentIsSummaryCount = true } if isSum(name) { p.currentIsSummarySum = true } return } } histogramName := histogramMetricName(name) if p.currentMF = p.metricFamiliesByName[histogramName]; p.currentMF != nil { if p.currentMF.GetType() == dto.MetricType_HISTOGRAM { if isCount(name) { p.currentIsHistogramCount = true } if isSum(name) { p.currentIsHistogramSum = true } return } } p.currentMF = &dto.MetricFamily{Name: proto.String(name)} p.metricFamiliesByName[name] = p.currentMF } func isValidLabelNameStart(b byte) bool { return (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') || b == '_' } func isValidLabelNameContinuation(b byte) bool { return isValidLabelNameStart(b) || (b >= '0' && b <= '9') } func isValidMetricNameStart(b byte) bool { return isValidLabelNameStart(b) || b == ':' } func isValidMetricNameContinuation(b byte) bool { return isValidLabelNameContinuation(b) || b == ':' } func isBlankOrTab(b byte) bool { return b == ' ' || b == '\t' } func isCount(name string) bool { return len(name) > 6 && name[len(name)-6:] == "_count" } func isSum(name string) bool { return len(name) > 4 && name[len(name)-4:] == "_sum" } func isBucket(name string) bool { return len(name) > 7 && name[len(name)-7:] == "_bucket" } func summaryMetricName(name string) string { switch { case isCount(name): return name[:len(name)-6] case isSum(name): return name[:len(name)-4] default: return name } } func histogramMetricName(name string) string { switch { case isCount(name): return name[:len(name)-6] case isSum(name): return name[:len(name)-4] case isBucket(name): return name[:len(name)-7] default: return name } }