// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package prometheus import ( "fmt" "math" "runtime" "sort" "sync" "sync/atomic" "time" "github.com/golang/protobuf/proto" dto "github.com/prometheus/client_model/go" ) // A Histogram counts individual observations from an event or sample stream in // configurable buckets. Similar to a summary, it also provides a sum of // observations and an observation count. // // On the Prometheus server, quantiles can be calculated from a Histogram using // the histogram_quantile function in the query language. // // Note that Histograms, in contrast to Summaries, can be aggregated with the // Prometheus query language (see the documentation for detailed // procedures). However, Histograms require the user to pre-define suitable // buckets, and they are in general less accurate. The Observe method of a // Histogram has a very low performance overhead in comparison with the Observe // method of a Summary. // // To create Histogram instances, use NewHistogram. type Histogram interface { Metric Collector // Observe adds a single observation to the histogram. Observe(float64) } // bucketLabel is used for the label that defines the upper bound of a // bucket of a histogram ("le" -> "less or equal"). const bucketLabel = "le" // DefBuckets are the default Histogram buckets. The default buckets are // tailored to broadly measure the response time (in seconds) of a network // service. Most likely, however, you will be required to define buckets // customized to your use case. var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10} // DefSparseBucketsZeroThreshold is the default value for // SparseBucketsZeroThreshold in the HistogramOpts. var DefSparseBucketsZeroThreshold = 1e-128 var errBucketLabelNotAllowed = fmt.Errorf( "%q is not allowed as label name in histograms", bucketLabel, ) // LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest // bucket has an upper bound of 'start'. The final +Inf bucket is not counted // and not included in the returned slice. The returned slice is meant to be // used for the Buckets field of HistogramOpts. // // The function panics if 'count' is zero or negative. func LinearBuckets(start, width float64, count int) []float64 { if count < 1 { panic("LinearBuckets needs a positive count") } buckets := make([]float64, count) for i := range buckets { buckets[i] = start start += width } return buckets } // ExponentialBuckets creates 'count' buckets, where the lowest bucket has an // upper bound of 'start' and each following bucket's upper bound is 'factor' // times the previous bucket's upper bound. The final +Inf bucket is not counted // and not included in the returned slice. The returned slice is meant to be // used for the Buckets field of HistogramOpts. // // The function panics if 'count' is 0 or negative, if 'start' is 0 or negative, // or if 'factor' is less than or equal 1. func ExponentialBuckets(start, factor float64, count int) []float64 { if count < 1 { panic("ExponentialBuckets needs a positive count") } if start <= 0 { panic("ExponentialBuckets needs a positive start value") } if factor <= 1 { panic("ExponentialBuckets needs a factor greater than 1") } buckets := make([]float64, count) for i := range buckets { buckets[i] = start start *= factor } return buckets } // HistogramOpts bundles the options for creating a Histogram metric. It is // mandatory to set Name to a non-empty string. All other fields are optional // and can safely be left at their zero value, although it is strongly // encouraged to set a Help string. type HistogramOpts struct { // Namespace, Subsystem, and Name are components of the fully-qualified // name of the Histogram (created by joining these components with // "_"). Only Name is mandatory, the others merely help structuring the // name. Note that the fully-qualified name of the Histogram must be a // valid Prometheus metric name. Namespace string Subsystem string Name string // Help provides information about this Histogram. // // Metrics with the same fully-qualified name must have the same Help // string. Help string // ConstLabels are used to attach fixed labels to this metric. Metrics // with the same fully-qualified name must have the same label names in // their ConstLabels. // // ConstLabels are only used rarely. In particular, do not use them to // attach the same labels to all your metrics. Those use cases are // better covered by target labels set by the scraping Prometheus // server, or by one specific metric (e.g. a build_info or a // machine_role metric). See also // https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels ConstLabels Labels // Buckets defines the buckets into which observations are counted. Each // element in the slice is the upper inclusive bound of a bucket. The // values must be sorted in strictly increasing order. There is no need // to add a highest bucket with +Inf bound, it will be added // implicitly. If Buckets is left as nil or set to a slice of length // zero, it is replaced by default buckets. The default buckets are // DefBuckets if no sparse buckets (see below) are used, otherwise the // default is no buckets. (In other words, if you want to use both // reguler buckets and sparse buckets, you have to define the regular // buckets here explicitly.) Buckets []float64 // If SparseBucketsResolution is not zero, sparse buckets are used (in // addition to the regular buckets, if defined above). Every power of // ten is divided into the given number of exponential buckets. For // example, if set to 3, the bucket boundaries are approximately […, // 0.1, 0.215, 0.464, 1, 2.15, 4,64, 10, 21.5, 46.4, 100, …] Histograms // can only be properly aggregated if they use the same // resolution. Therefore, it is recommended to use 20 as a resolution, // which is generally expected to be a good tradeoff between resource // usage and accuracy (resulting in a maximum error of quantile values // of about 6%). SparseBucketsResolution uint8 // All observations with an absolute value of less or equal // SparseBucketsZeroThreshold are accumulated into a “zero” bucket. For // best results, this should be close to a bucket boundary. This is // most easily accomplished by picking a power of ten. If // SparseBucketsZeroThreshold is left at zero (or set to a negative // value), DefSparseBucketsZeroThreshold is used as the threshold. SparseBucketsZeroThreshold float64 } // NewHistogram creates a new Histogram based on the provided HistogramOpts. It // panics if the buckets in HistogramOpts are not in strictly increasing order. // // The returned implementation also implements ExemplarObserver. It is safe to // perform the corresponding type assertion. Exemplars are tracked separately // for each bucket. func NewHistogram(opts HistogramOpts) Histogram { return newHistogram( NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, nil, opts.ConstLabels, ), opts, ) } func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram { if len(desc.variableLabels) != len(labelValues) { panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues)) } for _, n := range desc.variableLabels { if n == bucketLabel { panic(errBucketLabelNotAllowed) } } for _, lp := range desc.constLabelPairs { if lp.GetName() == bucketLabel { panic(errBucketLabelNotAllowed) } } h := &histogram{ desc: desc, upperBounds: opts.Buckets, sparseResolution: uint32(opts.SparseBucketsResolution), sparseThreshold: opts.SparseBucketsZeroThreshold, labelPairs: makeLabelPairs(desc, labelValues), counts: [2]*histogramCounts{{}, {}}, now: time.Now, } if len(h.upperBounds) == 0 && opts.SparseBucketsResolution == 0 { h.upperBounds = DefBuckets } if h.sparseThreshold <= 0 { h.sparseThreshold = DefSparseBucketsZeroThreshold } for i, upperBound := range h.upperBounds { if i < len(h.upperBounds)-1 { if upperBound >= h.upperBounds[i+1] { panic(fmt.Errorf( "histogram buckets must be in increasing order: %f >= %f", upperBound, h.upperBounds[i+1], )) } } else { if math.IsInf(upperBound, +1) { // The +Inf bucket is implicit. Remove it here. h.upperBounds = h.upperBounds[:i] } } } // Finally we know the final length of h.upperBounds and can make buckets // for both counts as well as exemplars: h.counts[0].buckets = make([]uint64, len(h.upperBounds)) h.counts[1].buckets = make([]uint64, len(h.upperBounds)) h.exemplars = make([]atomic.Value, len(h.upperBounds)+1) h.init(h) // Init self-collection. return h } type histogramCounts struct { // sumBits contains the bits of the float64 representing the sum of all // observations. sumBits and count have to go first in the struct to // guarantee alignment for atomic operations. // http://golang.org/pkg/sync/atomic/#pkg-note-BUG sumBits uint64 count uint64 buckets []uint64 // sparse buckets are implemented with a sync.Map for this PoC. A // dedicated data structure will likely be more efficient. // There are separate maps for negative and positive observations. // The map's value is a *uint64, counting observations in that bucket. // The map's key is the logarithmic index of the bucket. Index 0 is for an // upper bound of 1. Each increment/decrement by SparseBucketsResolution // multiplies/divides the upper bound by 10. Indices in between are // spaced exponentially as defined in spareBounds. sparseBucketsPositive, sparseBucketsNegative sync.Map // sparseZeroBucket counts all (positive and negative) observations in // the zero bucket (with an absolute value less or equal // SparseBucketsZeroThreshold). sparseZeroBucket uint64 } // observe manages the parts of observe that only affects // histogramCounts. doSparse is true if spare buckets should be done, // too. whichSparse is 0 for the sparseZeroBucket and +1 or -1 for // sparseBucketsPositive or sparseBucketsNegative, respectively. sparseKey is // the key of the sparse bucket to use. func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool, whichSparse int, sparseKey int) { if bucket < len(hc.buckets) { atomic.AddUint64(&hc.buckets[bucket], 1) } for { oldBits := atomic.LoadUint64(&hc.sumBits) newBits := math.Float64bits(math.Float64frombits(oldBits) + v) if atomic.CompareAndSwapUint64(&hc.sumBits, oldBits, newBits) { break } } if doSparse { switch whichSparse { case 0: atomic.AddUint64(&hc.sparseZeroBucket, 1) case +1: addToSparseBucket(&hc.sparseBucketsPositive, sparseKey, 1) case -1: addToSparseBucket(&hc.sparseBucketsNegative, sparseKey, 1) default: panic(fmt.Errorf("invalid value for whichSparse: %d", whichSparse)) } } // Increment count last as we take it as a signal that the observation // is complete. atomic.AddUint64(&hc.count, 1) } func addToSparseBucket(buckets *sync.Map, key int, increment uint64) { if existingBucket, ok := buckets.Load(key); ok { // Fast path without allocation. atomic.AddUint64(existingBucket.(*uint64), increment) return } // Bucket doesn't exist yet. Slow path allocating new counter. newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape. if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded { // The bucket was created concurrently in another goroutine. // Have to increment after all. atomic.AddUint64(actualBucket.(*uint64), increment) } } type histogram struct { // countAndHotIdx enables lock-free writes with use of atomic updates. // The most significant bit is the hot index [0 or 1] of the count field // below. Observe calls update the hot one. All remaining bits count the // number of Observe calls. Observe starts by incrementing this counter, // and finish by incrementing the count field in the respective // histogramCounts, as a marker for completion. // // Calls of the Write method (which are non-mutating reads from the // perspective of the histogram) swap the hot–cold under the writeMtx // lock. A cooldown is awaited (while locked) by comparing the number of // observations with the initiation count. Once they match, then the // last observation on the now cool one has completed. All cool fields must // be merged into the new hot before releasing writeMtx. // // Fields with atomic access first! See alignment constraint: // http://golang.org/pkg/sync/atomic/#pkg-note-BUG countAndHotIdx uint64 selfCollector desc *Desc writeMtx sync.Mutex // Only used in the Write method. // Two counts, one is "hot" for lock-free observations, the other is // "cold" for writing out a dto.Metric. It has to be an array of // pointers to guarantee 64bit alignment of the histogramCounts, see // http://golang.org/pkg/sync/atomic/#pkg-note-BUG. counts [2]*histogramCounts upperBounds []float64 labelPairs []*dto.LabelPair exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar. sparseResolution uint32 // Instead of uint8 to be ready for protobuf encoding. sparseThreshold float64 now func() time.Time // To mock out time.Now() for testing. } func (h *histogram) Desc() *Desc { return h.desc } func (h *histogram) Observe(v float64) { h.observe(v, h.findBucket(v)) } func (h *histogram) ObserveWithExemplar(v float64, e Labels) { i := h.findBucket(v) h.observe(v, i) h.updateExemplar(v, i, e) } func (h *histogram) Write(out *dto.Metric) error { // For simplicity, we protect this whole method by a mutex. It is not in // the hot path, i.e. Observe is called much more often than Write. The // complication of making Write lock-free isn't worth it, if possible at // all. h.writeMtx.Lock() defer h.writeMtx.Unlock() // Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0) // without touching the count bits. See the struct comments for a full // description of the algorithm. n := atomic.AddUint64(&h.countAndHotIdx, 1<<63) // count is contained unchanged in the lower 63 bits. count := n & ((1 << 63) - 1) // The most significant bit tells us which counts is hot. The complement // is thus the cold one. hotCounts := h.counts[n>>63] coldCounts := h.counts[(^n)>>63] // Await cooldown. for count != atomic.LoadUint64(&coldCounts.count) { runtime.Gosched() // Let observations get work done. } his := &dto.Histogram{ Bucket: make([]*dto.Bucket, len(h.upperBounds)), SampleCount: proto.Uint64(count), SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))), SbResolution: &h.sparseResolution, SbZeroThreshold: &h.sparseThreshold, } out.Histogram = his out.Label = h.labelPairs var cumCount uint64 for i, upperBound := range h.upperBounds { cumCount += atomic.LoadUint64(&coldCounts.buckets[i]) his.Bucket[i] = &dto.Bucket{ CumulativeCount: proto.Uint64(cumCount), UpperBound: proto.Float64(upperBound), } if e := h.exemplars[i].Load(); e != nil { his.Bucket[i].Exemplar = e.(*dto.Exemplar) } } // If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly. if e := h.exemplars[len(h.upperBounds)].Load(); e != nil { b := &dto.Bucket{ CumulativeCount: proto.Uint64(count), UpperBound: proto.Float64(math.Inf(1)), Exemplar: e.(*dto.Exemplar), } his.Bucket = append(his.Bucket, b) } // Add all the cold counts to the new hot counts and reset the cold counts. atomic.AddUint64(&hotCounts.count, count) atomic.StoreUint64(&coldCounts.count, 0) for { oldBits := atomic.LoadUint64(&hotCounts.sumBits) newBits := math.Float64bits(math.Float64frombits(oldBits) + his.GetSampleSum()) if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) { atomic.StoreUint64(&coldCounts.sumBits, 0) break } } for i := range h.upperBounds { atomic.AddUint64(&hotCounts.buckets[i], atomic.LoadUint64(&coldCounts.buckets[i])) atomic.StoreUint64(&coldCounts.buckets[i], 0) } if h.sparseResolution != 0 { zeroBucket := atomic.LoadUint64(&coldCounts.sparseZeroBucket) defer func() { atomic.AddUint64(&hotCounts.sparseZeroBucket, zeroBucket) atomic.StoreUint64(&coldCounts.sparseZeroBucket, 0) coldCounts.sparseBucketsPositive.Range(addAndReset(&hotCounts.sparseBucketsPositive)) coldCounts.sparseBucketsNegative.Range(addAndReset(&hotCounts.sparseBucketsNegative)) }() his.SbZeroCount = proto.Uint64(zeroBucket) his.SbNegative = makeSparseBuckets(&coldCounts.sparseBucketsNegative) his.SbPositive = makeSparseBuckets(&coldCounts.sparseBucketsPositive) } return nil } func makeSparseBuckets(buckets *sync.Map) *dto.SparseBuckets { var ii []int buckets.Range(func(k, v interface{}) bool { ii = append(ii, k.(int)) return true }) sort.Ints(ii) if len(ii) == 0 { return nil } sbs := dto.SparseBuckets{} var prevCount uint64 var nextI int for n, i := range ii { v, _ := buckets.Load(i) count := atomic.LoadUint64(v.(*uint64)) if n == 0 || i-nextI != 0 { sbs.Span = append(sbs.Span, &dto.SparseBuckets_Span{ Offset: proto.Int(i - nextI), Length: proto.Uint32(1), }) } else { *sbs.Span[len(sbs.Span)-1].Length++ } sbs.Delta = append(sbs.Delta, int64(count)-int64(prevCount)) // TODO(beorn7): Do proper overflow handling. nextI, prevCount = i+1, count } return &sbs } // addAndReset returns a function to be used with sync.Map.Range of spare // buckets in coldCounts. It increments the buckets in the provided hotBuckets // according to the buckets ranged through. It then resets all buckets ranged // through to 0 (but leaves them in place so that they don't need to get // recreated on the next scrape). func addAndReset(hotBuckets *sync.Map) func(k, v interface{}) bool { return func(k, v interface{}) bool { bucket := v.(*uint64) addToSparseBucket(hotBuckets, k.(int), atomic.LoadUint64(bucket)) atomic.StoreUint64(bucket, 0) return true } } // findBucket returns the index of the bucket for the provided value, or // len(h.upperBounds) for the +Inf bucket. func (h *histogram) findBucket(v float64) int { // TODO(beorn7): For small numbers of buckets (<30), a linear search is // slightly faster than the binary search. If we really care, we could // switch from one search strategy to the other depending on the number // of buckets. // // Microbenchmarks (BenchmarkHistogramNoLabels): // 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op // 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op // 300 buckets: 154 ns/op linear - binary 61.6 ns/op return sort.SearchFloat64s(h.upperBounds, v) } // observe is the implementation for Observe without the findBucket part. func (h *histogram) observe(v float64, bucket int) { doSparse := h.sparseResolution != 0 var whichSparse, sparseKey int if doSparse { switch { case v > h.sparseThreshold: whichSparse = +1 case v < -h.sparseThreshold: whichSparse = -1 } // TODO(beorn7): This sometimes gives inaccurate results for // floats that are actual powers of 10, e.g. math.Log10(0.1) is // calculated as -0.9999999999999999 rather than -1 and thus // yields a key unexpectedly one off. Maybe special-case precise // powers of 10. // TODO(beorn7): This needs special-casing for ±Inf and NaN. sparseKey = int(math.Ceil(math.Log10(math.Abs(v)) * float64(h.sparseResolution))) } // We increment h.countAndHotIdx so that the counter in the lower // 63 bits gets incremented. At the same time, we get the new value // back, which we can use to find the currently-hot counts. n := atomic.AddUint64(&h.countAndHotIdx, 1) h.counts[n>>63].observe(v, bucket, doSparse, whichSparse, sparseKey) } // updateExemplar replaces the exemplar for the provided bucket. With empty // labels, it's a no-op. It panics if any of the labels is invalid. func (h *histogram) updateExemplar(v float64, bucket int, l Labels) { if l == nil { return } e, err := newExemplar(v, h.now(), l) if err != nil { panic(err) } h.exemplars[bucket].Store(e) } // HistogramVec is a Collector that bundles a set of Histograms that all share the // same Desc, but have different values for their variable labels. This is used // if you want to count the same thing partitioned by various dimensions // (e.g. HTTP request latencies, partitioned by status code and method). Create // instances with NewHistogramVec. type HistogramVec struct { *metricVec } // NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and // partitioned by the given label names. func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec { desc := NewDesc( BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), opts.Help, labelNames, opts.ConstLabels, ) return &HistogramVec{ metricVec: newMetricVec(desc, func(lvs ...string) Metric { return newHistogram(desc, opts, lvs...) }), } } // GetMetricWithLabelValues returns the Histogram for the given slice of label // values (same order as the VariableLabels in Desc). If that combination of // label values is accessed for the first time, a new Histogram is created. // // It is possible to call this method without using the returned Histogram to only // create the new Histogram but leave it at its starting value, a Histogram without // any observations. // // Keeping the Histogram for later use is possible (and should be considered if // performance is critical), but keep in mind that Reset, DeleteLabelValues and // Delete can be used to delete the Histogram from the HistogramVec. In that case, the // Histogram will still exist, but it will not be exported anymore, even if a // Histogram with the same label values is created later. See also the CounterVec // example. // // An error is returned if the number of label values is not the same as the // number of VariableLabels in Desc (minus any curried labels). // // Note that for more than one label value, this method is prone to mistakes // caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as // an alternative to avoid that type of mistake. For higher label numbers, the // latter has a much more readable (albeit more verbose) syntax, but it comes // with a performance overhead (for creating and processing the Labels map). // See also the GaugeVec example. func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) { metric, err := v.metricVec.getMetricWithLabelValues(lvs...) if metric != nil { return metric.(Observer), err } return nil, err } // GetMetricWith returns the Histogram for the given Labels map (the label names // must match those of the VariableLabels in Desc). If that label map is // accessed for the first time, a new Histogram is created. Implications of // creating a Histogram without using it and keeping the Histogram for later use // are the same as for GetMetricWithLabelValues. // // An error is returned if the number and names of the Labels are inconsistent // with those of the VariableLabels in Desc (minus any curried labels). // // This method is used for the same purpose as // GetMetricWithLabelValues(...string). See there for pros and cons of the two // methods. func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) { metric, err := v.metricVec.getMetricWith(labels) if metric != nil { return metric.(Observer), err } return nil, err } // WithLabelValues works as GetMetricWithLabelValues, but panics where // GetMetricWithLabelValues would have returned an error. Not returning an // error allows shortcuts like // myVec.WithLabelValues("404", "GET").Observe(42.21) func (v *HistogramVec) WithLabelValues(lvs ...string) Observer { h, err := v.GetMetricWithLabelValues(lvs...) if err != nil { panic(err) } return h } // With works as GetMetricWith but panics where GetMetricWithLabels would have // returned an error. Not returning an error allows shortcuts like // myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21) func (v *HistogramVec) With(labels Labels) Observer { h, err := v.GetMetricWith(labels) if err != nil { panic(err) } return h } // CurryWith returns a vector curried with the provided labels, i.e. the // returned vector has those labels pre-set for all labeled operations performed // on it. The cardinality of the curried vector is reduced accordingly. The // order of the remaining labels stays the same (just with the curried labels // taken out of the sequence – which is relevant for the // (GetMetric)WithLabelValues methods). It is possible to curry a curried // vector, but only with labels not yet used for currying before. // // The metrics contained in the HistogramVec are shared between the curried and // uncurried vectors. They are just accessed differently. Curried and uncurried // vectors behave identically in terms of collection. Only one must be // registered with a given registry (usually the uncurried version). The Reset // method deletes all metrics, even if called on a curried vector. func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) { vec, err := v.curryWith(labels) if vec != nil { return &HistogramVec{vec}, err } return nil, err } // MustCurryWith works as CurryWith but panics where CurryWith would have // returned an error. func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec { vec, err := v.CurryWith(labels) if err != nil { panic(err) } return vec } type constHistogram struct { desc *Desc count uint64 sum float64 buckets map[float64]uint64 labelPairs []*dto.LabelPair } func (h *constHistogram) Desc() *Desc { return h.desc } func (h *constHistogram) Write(out *dto.Metric) error { his := &dto.Histogram{} buckets := make([]*dto.Bucket, 0, len(h.buckets)) his.SampleCount = proto.Uint64(h.count) his.SampleSum = proto.Float64(h.sum) for upperBound, count := range h.buckets { buckets = append(buckets, &dto.Bucket{ CumulativeCount: proto.Uint64(count), UpperBound: proto.Float64(upperBound), }) } if len(buckets) > 0 { sort.Sort(buckSort(buckets)) } his.Bucket = buckets out.Histogram = his out.Label = h.labelPairs return nil } // NewConstHistogram returns a metric representing a Prometheus histogram with // fixed values for the count, sum, and bucket counts. As those parameters // cannot be changed, the returned value does not implement the Histogram // interface (but only the Metric interface). Users of this package will not // have much use for it in regular operations. However, when implementing custom // Collectors, it is useful as a throw-away metric that is generated on the fly // to send it to Prometheus in the Collect method. // // buckets is a map of upper bounds to cumulative counts, excluding the +Inf // bucket. // // NewConstHistogram returns an error if the length of labelValues is not // consistent with the variable labels in Desc or if Desc is invalid. func NewConstHistogram( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, labelValues ...string, ) (Metric, error) { if desc.err != nil { return nil, desc.err } if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil { return nil, err } return &constHistogram{ desc: desc, count: count, sum: sum, buckets: buckets, labelPairs: makeLabelPairs(desc, labelValues), }, nil } // MustNewConstHistogram is a version of NewConstHistogram that panics where // NewConstMetric would have returned an error. func MustNewConstHistogram( desc *Desc, count uint64, sum float64, buckets map[float64]uint64, labelValues ...string, ) Metric { m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...) if err != nil { panic(err) } return m } type buckSort []*dto.Bucket func (s buckSort) Len() int { return len(s) } func (s buckSort) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s buckSort) Less(i, j int) bool { return s[i].GetUpperBound() < s[j].GetUpperBound() }