package brotli import "encoding/binary" /* NOLINT(build/header_guard) */ /* Copyright 2016 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* A (forgetful) hash table to the data seen by the compressor, to help create backward references to previous data. Hashes are stored in chains which are bucketed to groups. Group of chains share a storage "bank". When more than "bank size" chain nodes are added, oldest nodes are replaced; this way several chains may share a tail. */ func (*H42) HashTypeLength() uint { return 4 } func (*H42) StoreLookahead() uint { return 4 } /* HashBytes is the function that chooses the bucket to place the address in.*/ func HashBytesH42(data []byte) uint { var h uint32 = binary.LittleEndian.Uint32(data) * kHashMul32 /* The higher bits contain more mixture from the multiplication, so we take our results from there. */ return uint(h >> (32 - 15)) } type SlotH42 struct { delta uint16 next uint16 } type BankH42 struct { slots [1 << 9]SlotH42 } type H42 struct { HasherCommon addr [1 << 15]uint32 head [1 << 15]uint16 tiny_hash [65536]byte banks [512]BankH42 free_slot_idx [512]uint16 max_hops uint } func SelfH42(handle HasherHandle) *H42 { return handle.(*H42) } func (h *H42) Initialize(params *BrotliEncoderParams) { var tmp uint if params.quality > 6 { tmp = 7 } else { tmp = 8 } h.max_hops = tmp << uint(params.quality-4) } func (h *H42) Prepare(one_shot bool, input_size uint, data []byte) { var partial_prepare_threshold uint = (1 << 15) >> 6 /* Partial preparation is 100 times slower (per socket). */ if one_shot && input_size <= partial_prepare_threshold { var i uint for i = 0; i < input_size; i++ { var bucket uint = HashBytesH42(data[i:]) /* See InitEmpty comment. */ h.addr[bucket] = 0xCCCCCCCC h.head[bucket] = 0xCCCC } } else { /* Fill |addr| array with 0xCCCCCCCC value. Because of wrapping, position processed by hasher never reaches 3GB + 64M; this makes all new chains to be terminated after the first node. */ var i int for i = 0; i < len(h.addr); i++ { h.addr[i] = 0xCCCCCCCC } h.head = [1 << 15]uint16{} } h.tiny_hash = [65536]byte{} h.free_slot_idx = [512]uint16{} } /* Look at 4 bytes at &data[ix & mask]. Compute a hash from these, and prepend node to corresponding chain; also update tiny_hash for current position. */ func (h *H42) Store(data []byte, mask uint, ix uint) { var key uint = HashBytesH42(data[ix&mask:]) var bank uint = key & (512 - 1) var idx uint idx = uint(h.free_slot_idx[bank]) & ((1 << 9) - 1) h.free_slot_idx[bank]++ var delta uint = ix - uint(h.addr[key]) h.tiny_hash[uint16(ix)] = byte(key) if delta > 0xFFFF { delta = 0xFFFF } h.banks[bank].slots[idx].delta = uint16(delta) h.banks[bank].slots[idx].next = h.head[key] h.addr[key] = uint32(ix) h.head[key] = uint16(idx) } func (h *H42) StoreRange(data []byte, mask uint, ix_start uint, ix_end uint) { var i uint for i = ix_start; i < ix_end; i++ { h.Store(data, mask, i) } } func (h *H42) StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ring_buffer_mask uint) { if num_bytes >= h.HashTypeLength()-1 && position >= 3 { /* Prepare the hashes for three last bytes of the last write. These could not be calculated before, since they require knowledge of both the previous and the current block. */ h.Store(ringbuffer, ring_buffer_mask, position-3) h.Store(ringbuffer, ring_buffer_mask, position-2) h.Store(ringbuffer, ring_buffer_mask, position-1) } } func (*H42) PrepareDistanceCache(distance_cache []int) { PrepareDistanceCache(distance_cache, 16) } /* Find a longest backward match of &data[cur_ix] up to the length of max_length and stores the position cur_ix in the hash table. REQUIRES: PrepareDistanceCacheH42 must be invoked for current distance cache values; if this method is invoked repeatedly with the same distance cache values, it is enough to invoke PrepareDistanceCacheH42 once. Does not look for matches longer than max_length. Does not look for matches further away than max_backward. Writes the best match into |out|. |out|->score is updated only if a better match is found. */ func (h *H42) FindLongestMatch(dictionary *BrotliEncoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *HasherSearchResult) { var cur_ix_masked uint = cur_ix & ring_buffer_mask var min_score uint = out.score var best_score uint = out.score var best_len uint = out.len var i uint var key uint = HashBytesH42(data[cur_ix_masked:]) var tiny_hash byte = byte(key) /* Don't accept a short copy from far away. */ out.len = 0 out.len_code_delta = 0 /* Try last distance first. */ for i = 0; i < 16; i++ { var backward uint = uint(distance_cache[i]) var prev_ix uint = (cur_ix - backward) /* For distance code 0 we want to consider 2-byte matches. */ if i > 0 && h.tiny_hash[uint16(prev_ix)] != tiny_hash { continue } if prev_ix >= cur_ix || backward > max_backward { continue } prev_ix &= ring_buffer_mask { var len uint = FindMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len >= 2 { var score uint = BackwardReferenceScoreUsingLastDistance(uint(len)) if best_score < score { if i != 0 { score -= BackwardReferencePenaltyUsingLastDistance(i) } if best_score < score { best_score = score best_len = uint(len) out.len = best_len out.distance = backward out.score = best_score } } } } } { var bank uint = key & (512 - 1) var backward uint = 0 var hops uint = h.max_hops var delta uint = cur_ix - uint(h.addr[key]) var slot uint = uint(h.head[key]) for { tmp8 := hops hops-- if tmp8 == 0 { break } var prev_ix uint var last uint = slot backward += delta if backward > max_backward { break } prev_ix = (cur_ix - backward) & ring_buffer_mask slot = uint(h.banks[bank].slots[last].next) delta = uint(h.banks[bank].slots[last].delta) if cur_ix_masked+best_len > ring_buffer_mask || prev_ix+best_len > ring_buffer_mask || data[cur_ix_masked+best_len] != data[prev_ix+best_len] { continue } { var len uint = FindMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len >= 4 { /* Comparing for >= 3 does not change the semantics, but just saves for a few unnecessary binary logarithms in backward reference score, since we are not interested in such short matches. */ var score uint = BackwardReferenceScore(uint(len), backward) if best_score < score { best_score = score best_len = uint(len) out.len = best_len out.distance = backward out.score = best_score } } } } h.Store(data, ring_buffer_mask, cur_ix) } if out.score == min_score { SearchInStaticDictionary(dictionary, h, data[cur_ix_masked:], max_length, max_backward+gap, max_distance, out, false) } }