package brotli import "encoding/binary" /* NOLINT(build/header_guard) */ /* Copyright 2010 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* For BUCKET_SWEEP == 1, enabling the dictionary lookup makes compression a little faster (0.5% - 1%) and it compresses 0.15% better on small text and HTML inputs. */ func (*hashLongestMatchQuickly) HashTypeLength() uint { return 8 } func (*hashLongestMatchQuickly) StoreLookahead() uint { return 8 } /* HashBytes is the function that chooses the bucket to place the address in. The HashLongestMatch and hashLongestMatchQuickly classes have separate, different implementations of hashing. */ func (h *hashLongestMatchQuickly) HashBytes(data []byte) uint32 { var hash uint64 = ((binary.LittleEndian.Uint64(data) << (64 - 8*h.hashLen)) * kHashMul64) /* The higher bits contain more mixture from the multiplication, so we take our results from there. */ return uint32(hash >> (64 - h.bucketBits)) } /* A (forgetful) hash table to the data seen by the compressor, to help create backward references to previous data. This is a hash map of fixed size (1 << 16). Starting from the given index, 1 buckets are used to store values of a key. */ type hashLongestMatchQuickly struct { hasherCommon bucketBits uint bucketSweep int hashLen uint useDictionary bool buckets []uint32 } func (h *hashLongestMatchQuickly) Initialize(params *encoderParams) { h.buckets = make([]uint32, 1<> 7 /* Partial preparation is 100 times slower (per socket). */ if one_shot && input_size <= partial_prepare_threshold { var i uint for i = 0; i < input_size; i++ { var key uint32 = h.HashBytes(data[i:]) for j := 0; j < h.bucketSweep; j++ { h.buckets[key+uint32(j)] = 0 } } } else { /* It is not strictly necessary to fill this buffer here, but not filling will make the results of the compression stochastic (but correct). This is because random data would cause the system to find accidentally good backward references here and there. */ for i := range h.buckets { h.buckets[i] = 0 } } } /* Look at 5 bytes at &data[ix & mask]. Compute a hash from these, and store the value somewhere within [ix .. ix+3]. */ func (h *hashLongestMatchQuickly) Store(data []byte, mask uint, ix uint) { var key uint32 = h.HashBytes(data[ix&mask:]) var off uint32 = uint32(ix>>3) % uint32(h.bucketSweep) /* Wiggle the value with the bucket sweep range. */ h.buckets[key+off] = uint32(ix) } func (h *hashLongestMatchQuickly) StoreRange(data []byte, mask uint, ix_start uint, ix_end uint) { var i uint for i = ix_start; i < ix_end; i++ { h.Store(data, mask, i) } } func (h *hashLongestMatchQuickly) StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ringbuffer_mask uint) { if num_bytes >= h.HashTypeLength()-1 && position >= 3 { /* Prepare the hashes for three last bytes of the last write. These could not be calculated before, since they require knowledge of both the previous and the current block. */ h.Store(ringbuffer, ringbuffer_mask, position-3) h.Store(ringbuffer, ringbuffer_mask, position-2) h.Store(ringbuffer, ringbuffer_mask, position-1) } } func (*hashLongestMatchQuickly) PrepareDistanceCache(distance_cache []int) { } /* Find a longest backward match of &data[cur_ix & ring_buffer_mask] up to the length of max_length and stores the position cur_ix in the hash table. Does not look for matches longer than max_length. Does not look for matches further away than max_backward. Writes the best match into |out|. |out|->score is updated only if a better match is found. */ func (h *hashLongestMatchQuickly) FindLongestMatch(dictionary *encoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *hasherSearchResult) { var best_len_in uint = out.len var cur_ix_masked uint = cur_ix & ring_buffer_mask var key uint32 = h.HashBytes(data[cur_ix_masked:]) var compare_char int = int(data[cur_ix_masked+best_len_in]) var min_score uint = out.score var best_score uint = out.score var best_len uint = best_len_in var cached_backward uint = uint(distance_cache[0]) var prev_ix uint = cur_ix - cached_backward var bucket []uint32 out.len_code_delta = 0 if prev_ix < cur_ix { prev_ix &= uint(uint32(ring_buffer_mask)) if compare_char == int(data[prev_ix+best_len]) { var len uint = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len >= 4 { var score uint = backwardReferenceScoreUsingLastDistance(uint(len)) if best_score < score { best_score = score best_len = uint(len) out.len = uint(len) out.distance = cached_backward out.score = best_score compare_char = int(data[cur_ix_masked+best_len]) if h.bucketSweep == 1 { h.buckets[key] = uint32(cur_ix) return } } } } } if h.bucketSweep == 1 { var backward uint var len uint /* Only one to look for, don't bother to prepare for a loop. */ prev_ix = uint(h.buckets[key]) h.buckets[key] = uint32(cur_ix) backward = cur_ix - prev_ix prev_ix &= uint(uint32(ring_buffer_mask)) if compare_char != int(data[prev_ix+best_len_in]) { return } if backward == 0 || backward > max_backward { return } len = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len >= 4 { var score uint = backwardReferenceScore(uint(len), backward) if best_score < score { out.len = uint(len) out.distance = backward out.score = score return } } } else { bucket = h.buckets[key:] var i int prev_ix = uint(bucket[0]) bucket = bucket[1:] for i = 0; i < h.bucketSweep; (func() { i++; tmp3 := bucket; bucket = bucket[1:]; prev_ix = uint(tmp3[0]) })() { var backward uint = cur_ix - prev_ix var len uint prev_ix &= uint(uint32(ring_buffer_mask)) if compare_char != int(data[prev_ix+best_len]) { continue } if backward == 0 || backward > max_backward { continue } len = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length) if len >= 4 { var score uint = backwardReferenceScore(uint(len), backward) if best_score < score { best_score = score best_len = uint(len) out.len = best_len out.distance = backward out.score = score compare_char = int(data[cur_ix_masked+best_len]) } } } } if h.useDictionary && min_score == out.score { searchInStaticDictionary(dictionary, h, data[cur_ix_masked:], max_length, max_backward+gap, max_distance, out, true) } h.buckets[key+uint32((cur_ix>>3)%uint(h.bucketSweep))] = uint32(cur_ix) }