brotli/h54.go

201 lines
6.1 KiB
Go
Raw Normal View History

package brotli
2019-03-09 06:45:16 +03:00
import "encoding/binary"
/* NOLINT(build/header_guard) */
/* Copyright 2010 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
func (*H54) HashTypeLength() uint {
return 8
}
func (*H54) StoreLookahead() uint {
return 8
}
/* HashBytes is the function that chooses the bucket to place
the address in. The HashLongestMatch and H54
classes have separate, different implementations of hashing. */
func HashBytesH54(data []byte) uint32 {
2019-03-09 06:45:16 +03:00
var h uint64 = ((binary.LittleEndian.Uint64(data) << (64 - 8*7)) * kHashMul64)
/* The higher bits contain more mixture from the multiplication,
so we take our results from there. */
return uint32(h >> (64 - 20))
}
/* A (forgetful) hash table to the data seen by the compressor, to
help create backward references to previous data.
This is a hash map of fixed size ((1 << 20)). Starting from the
given index, 4 buckets are used to store values of a key. */
type H54 struct {
HasherCommon
buckets_ [(1 << 20) + 4]uint32
}
func SelfH54(handle HasherHandle) *H54 {
return handle.(*H54)
}
func (*H54) Initialize(params *BrotliEncoderParams) {
}
func (h *H54) Prepare(one_shot bool, input_size uint, data []byte) {
var partial_prepare_threshold uint = (4 << 20) >> 7
/* Partial preparation is 100 times slower (per socket). */
if one_shot && input_size <= partial_prepare_threshold {
var i uint
for i = 0; i < input_size; i++ {
var key uint32 = HashBytesH54(data[i:])
for i := 0; i < int(4); i++ {
h.buckets_[key:][i] = 0
}
}
} else {
/* It is not strictly necessary to fill this buffer here, but
not filling will make the results of the compression stochastic
(but correct). This is because random data would cause the
system to find accidentally good backward references here and there. */
h.buckets_ = [(1 << 20) + 4]uint32{}
}
}
/* Look at 5 bytes at &data[ix & mask].
Compute a hash from these, and store the value somewhere within
[ix .. ix+3]. */
func (h *H54) Store(data []byte, mask uint, ix uint) {
var key uint32 = HashBytesH54(data[ix&mask:])
var off uint32 = uint32(ix>>3) % 4
/* Wiggle the value with the bucket sweep range. */
h.buckets_[key+off] = uint32(ix)
}
func (h *H54) StoreRange(data []byte, mask uint, ix_start uint, ix_end uint) {
var i uint
for i = ix_start; i < ix_end; i++ {
h.Store(data, mask, i)
}
}
func (h *H54) StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ringbuffer_mask uint) {
if num_bytes >= h.HashTypeLength()-1 && position >= 3 {
/* Prepare the hashes for three last bytes of the last write.
These could not be calculated before, since they require knowledge
of both the previous and the current block. */
h.Store(ringbuffer, ringbuffer_mask, position-3)
h.Store(ringbuffer, ringbuffer_mask, position-2)
h.Store(ringbuffer, ringbuffer_mask, position-1)
}
}
func (*H54) PrepareDistanceCache(distance_cache []int) {
}
/* Find a longest backward match of &data[cur_ix & ring_buffer_mask]
up to the length of max_length and stores the position cur_ix in the
hash table.
Does not look for matches longer than max_length.
Does not look for matches further away than max_backward.
Writes the best match into |out|.
|out|->score is updated only if a better match is found. */
func (h *H54) FindLongestMatch(dictionary *BrotliEncoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *HasherSearchResult) {
var best_len_in uint = out.len
var cur_ix_masked uint = cur_ix & ring_buffer_mask
var key uint32 = HashBytesH54(data[cur_ix_masked:])
var compare_char int = int(data[cur_ix_masked+best_len_in])
var best_score uint = out.score
var best_len uint = best_len_in
var cached_backward uint = uint(distance_cache[0])
var prev_ix uint = cur_ix - cached_backward
var bucket []uint32
out.len_code_delta = 0
if prev_ix < cur_ix {
prev_ix &= uint(uint32(ring_buffer_mask))
if compare_char == int(data[prev_ix+best_len]) {
var len uint = FindMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length)
if len >= 4 {
var score uint = BackwardReferenceScoreUsingLastDistance(uint(len))
if best_score < score {
best_score = score
best_len = uint(len)
out.len = uint(len)
out.distance = cached_backward
out.score = best_score
compare_char = int(data[cur_ix_masked+best_len])
if 4 == 1 {
h.buckets_[key] = uint32(cur_ix)
return
}
}
}
}
}
if 4 == 1 {
var backward uint
var len uint
/* Only one to look for, don't bother to prepare for a loop. */
prev_ix = uint(h.buckets_[key])
h.buckets_[key] = uint32(cur_ix)
backward = cur_ix - prev_ix
prev_ix &= uint(uint32(ring_buffer_mask))
if compare_char != int(data[prev_ix+best_len_in]) {
return
}
if backward == 0 || backward > max_backward {
return
}
len = FindMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length)
if len >= 4 {
var score uint = BackwardReferenceScore(uint(len), backward)
if best_score < score {
out.len = uint(len)
out.distance = backward
out.score = score
return
}
}
} else {
bucket = h.buckets_[key:]
var i int
prev_ix = uint(bucket[0])
bucket = bucket[1:]
for i = 0; i < 4; (func() { i++; tmp9 := bucket; bucket = bucket[1:]; prev_ix = uint(tmp9[0]) })() {
var backward uint = cur_ix - prev_ix
var len uint
prev_ix &= uint(uint32(ring_buffer_mask))
if compare_char != int(data[prev_ix+best_len]) {
continue
}
if backward == 0 || backward > max_backward {
continue
}
len = FindMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length)
if len >= 4 {
var score uint = BackwardReferenceScore(uint(len), backward)
if best_score < score {
best_score = score
best_len = uint(len)
out.len = best_len
out.distance = backward
out.score = score
compare_char = int(data[cur_ix_masked+best_len])
}
}
}
}
h.buckets_[key+uint32((cur_ix>>3)%4)] = uint32(cur_ix)
}