ants/pool.go

358 lines
9.5 KiB
Go

// MIT License
// Copyright (c) 2018 Andy Pan
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package ants
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/panjf2000/ants/v2/internal"
)
// Pool accepts the tasks from client, it limits the total of goroutines to a given number by recycling goroutines.
type Pool struct {
// capacity of the pool, a negative value means that the capacity of pool is limitless, an infinite pool is used to
// avoid potential issue of endless blocking caused by nested usage of a pool: submitting a task to pool
// which submits a new task to the same pool.
capacity int32
// running is the number of the currently running goroutines.
running int32
// lock for protecting the worker queue.
lock sync.Locker
// workers is a slice that store the available workers.
workers workerArray
// state is used to notice the pool to closed itself.
state int32
// cond for waiting to get an idle worker.
cond *sync.Cond
// workerCache speeds up the obtainment of a usable worker in function:retrieveWorker.
workerCache sync.Pool
// waiting is the number of goroutines already been blocked on pool.Submit(), protected by pool.lock
waiting int32
heartbeatDone int32
stopHeartbeat context.CancelFunc
options *Options
}
// purgePeriodically clears expired workers periodically which runs in an individual goroutine, as a scavenger.
func (p *Pool) purgePeriodically(ctx context.Context) {
heartbeat := time.NewTicker(p.options.ExpiryDuration)
defer func() {
heartbeat.Stop()
atomic.StoreInt32(&p.heartbeatDone, 1)
}()
for {
select {
case <-heartbeat.C:
case <-ctx.Done():
return
}
if p.IsClosed() {
break
}
p.lock.Lock()
expiredWorkers := p.workers.retrieveExpiry(p.options.ExpiryDuration)
p.lock.Unlock()
// Notify obsolete workers to stop.
// This notification must be outside the p.lock, since w.task
// may be blocking and may consume a lot of time if many workers
// are located on non-local CPUs.
for i := range expiredWorkers {
expiredWorkers[i].task <- nil
expiredWorkers[i] = nil
}
// There might be a situation where all workers have been cleaned up(no worker is running),
// or another case where the pool capacity has been Tuned up,
// while some invokers still get stuck in "p.cond.Wait()",
// then it ought to wake all those invokers.
if p.Running() == 0 || (p.Waiting() > 0 && p.Free() > 0) {
p.cond.Broadcast()
}
}
}
// NewPool generates an instance of ants pool.
func NewPool(size int, options ...Option) (*Pool, error) {
opts := loadOptions(options...)
if size <= 0 {
size = -1
}
if expiry := opts.ExpiryDuration; expiry < 0 {
return nil, ErrInvalidPoolExpiry
} else if expiry == 0 {
opts.ExpiryDuration = DefaultCleanIntervalTime
}
if opts.Logger == nil {
opts.Logger = defaultLogger
}
p := &Pool{
capacity: int32(size),
lock: internal.NewSpinLock(),
options: opts,
}
p.workerCache.New = func() interface{} {
return &goWorker{
pool: p,
task: make(chan func(), workerChanCap),
}
}
if p.options.PreAlloc {
if size == -1 {
return nil, ErrInvalidPreAllocSize
}
p.workers = newWorkerArray(loopQueueType, size)
} else {
p.workers = newWorkerArray(stackType, 0)
}
p.cond = sync.NewCond(p.lock)
// Start a goroutine to clean up expired workers periodically.
var ctx context.Context
ctx, p.stopHeartbeat = context.WithCancel(context.Background())
go p.purgePeriodically(ctx)
return p, nil
}
// ---------------------------------------------------------------------------
// Submit submits a task to this pool.
//
// Note that you are allowed to call Pool.Submit() from the current Pool.Submit(),
// but what calls for special attention is that you will get blocked with the latest
// Pool.Submit() call once the current Pool runs out of its capacity, and to avoid this,
// you should instantiate a Pool with ants.WithNonblocking(true).
func (p *Pool) Submit(task func()) error {
if p.IsClosed() {
return ErrPoolClosed
}
var w *goWorker
if w = p.retrieveWorker(); w == nil {
return ErrPoolOverload
}
w.task <- task
return nil
}
// Running returns the number of workers currently running.
func (p *Pool) Running() int {
return int(atomic.LoadInt32(&p.running))
}
// Free returns the number of available goroutines to work, -1 indicates this pool is unlimited.
func (p *Pool) Free() int {
c := p.Cap()
if c < 0 {
return -1
}
return c - p.Running()
}
// Waiting returns the number of tasks which are waiting be executed.
func (p *Pool) Waiting() int {
return int(atomic.LoadInt32(&p.waiting))
}
// Cap returns the capacity of this pool.
func (p *Pool) Cap() int {
return int(atomic.LoadInt32(&p.capacity))
}
// Tune changes the capacity of this pool, note that it is noneffective to the infinite or pre-allocation pool.
func (p *Pool) Tune(size int) {
capacity := p.Cap()
if capacity == -1 || size <= 0 || size == capacity || p.options.PreAlloc {
return
}
atomic.StoreInt32(&p.capacity, int32(size))
if size > capacity {
if size-capacity == 1 {
p.cond.Signal()
return
}
p.cond.Broadcast()
}
}
// IsClosed indicates whether the pool is closed.
func (p *Pool) IsClosed() bool {
return atomic.LoadInt32(&p.state) == CLOSED
}
// Release closes this pool and releases the worker queue.
func (p *Pool) Release() {
if !atomic.CompareAndSwapInt32(&p.state, OPENED, CLOSED) {
return
}
p.lock.Lock()
p.workers.reset()
p.lock.Unlock()
// There might be some callers waiting in retrieveWorker(), so we need to wake them up to prevent
// those callers blocking infinitely.
p.cond.Broadcast()
}
// ReleaseTimeout is like Release but with a timeout, it waits all workers to exit before timing out.
func (p *Pool) ReleaseTimeout(timeout time.Duration) error {
if p.IsClosed() || p.stopHeartbeat == nil {
return ErrPoolClosed
}
p.stopHeartbeat()
p.stopHeartbeat = nil
p.Release()
endTime := time.Now().Add(timeout)
for time.Now().Before(endTime) {
if p.Running() == 0 && atomic.LoadInt32(&p.heartbeatDone) == 1 {
return nil
}
time.Sleep(10 * time.Millisecond)
}
return ErrTimeout
}
// Reboot reboots a closed pool.
func (p *Pool) Reboot() {
if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) {
atomic.StoreInt32(&p.heartbeatDone, 0)
var ctx context.Context
ctx, p.stopHeartbeat = context.WithCancel(context.Background())
go p.purgePeriodically(ctx)
}
}
// ---------------------------------------------------------------------------
func (p *Pool) addRunning(delta int) {
atomic.AddInt32(&p.running, int32(delta))
}
func (p *Pool) addWaiting(delta int) {
atomic.AddInt32(&p.waiting, int32(delta))
}
// retrieveWorker returns an available worker to run the tasks.
func (p *Pool) retrieveWorker() (w *goWorker) {
spawnWorker := func() {
w = p.workerCache.Get().(*goWorker)
w.run()
}
p.lock.Lock()
w = p.workers.detach()
if w != nil { // first try to fetch the worker from the queue
p.lock.Unlock()
} else if capacity := p.Cap(); capacity == -1 || capacity > p.Running() {
// if the worker queue is empty and we don't run out of the pool capacity,
// then just spawn a new worker goroutine.
p.lock.Unlock()
spawnWorker()
} else { // otherwise, we'll have to keep them blocked and wait for at least one worker to be put back into pool.
if p.options.Nonblocking {
p.lock.Unlock()
return
}
retry:
if p.options.MaxBlockingTasks != 0 && p.Waiting() >= p.options.MaxBlockingTasks {
p.lock.Unlock()
return
}
p.addWaiting(1)
p.cond.Wait() // block and wait for an available worker
p.addWaiting(-1)
if p.IsClosed() {
p.lock.Unlock()
return
}
var nw int
if nw = p.Running(); nw == 0 { // awakened by the scavenger
p.lock.Unlock()
spawnWorker()
return
}
if w = p.workers.detach(); w == nil {
if nw < p.Cap() {
p.lock.Unlock()
spawnWorker()
return
}
goto retry
}
p.lock.Unlock()
}
return
}
// revertWorker puts a worker back into free pool, recycling the goroutines.
func (p *Pool) revertWorker(worker *goWorker) bool {
if capacity := p.Cap(); (capacity > 0 && p.Running() > capacity) || p.IsClosed() {
p.cond.Broadcast()
return false
}
worker.recycleTime = time.Now()
p.lock.Lock()
// To avoid memory leaks, add a double check in the lock scope.
// Issue: https://github.com/panjf2000/ants/issues/113
if p.IsClosed() {
p.lock.Unlock()
return false
}
err := p.workers.insert(worker)
if err != nil {
p.lock.Unlock()
return false
}
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
p.cond.Signal()
p.lock.Unlock()
return true
}