ants/pool_func.go

443 lines
11 KiB
Go

// MIT License
// Copyright (c) 2018 Andy Pan
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package ants
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/panjf2000/ants/v2/internal"
)
// PoolWithFunc accepts the tasks from client,
// it limits the total of goroutines to a given number by recycling goroutines.
type PoolWithFunc struct {
// capacity of the pool.
capacity int32
// running is the number of the currently running goroutines.
running int32
// lock for protecting the worker queue.
lock sync.Locker
// workers is a slice that store the available workers.
workers []*goWorkerWithFunc
// state is used to notice the pool to closed itself.
state int32
// cond for waiting to get an idle worker.
cond *sync.Cond
// poolFunc is the function for processing tasks.
poolFunc func(interface{})
// workerCache speeds up the obtainment of a usable worker in function:retrieveWorker.
workerCache sync.Pool
// waiting is the number of the goroutines already been blocked on pool.Invoke(), protected by pool.lock
waiting int32
purgeDone int32
stopPurge context.CancelFunc
ticktockDone int32
stopTicktock context.CancelFunc
now atomic.Value
options *Options
}
// purgeStaleWorkers clears stale workers periodically, it runs in an individual goroutine, as a scavenger.
func (p *PoolWithFunc) purgeStaleWorkers(ctx context.Context) {
ticker := time.NewTicker(p.options.ExpiryDuration)
defer func() {
ticker.Stop()
atomic.StoreInt32(&p.purgeDone, 1)
}()
var expiredWorkers []*goWorkerWithFunc
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
}
if p.IsClosed() {
break
}
criticalTime := time.Now().Add(-p.options.ExpiryDuration)
p.lock.Lock()
idleWorkers := p.workers
n := len(idleWorkers)
l, r, mid := 0, n-1, 0
for l <= r {
mid = (l + r) / 2
if criticalTime.Before(idleWorkers[mid].recycleTime) {
r = mid - 1
} else {
l = mid + 1
}
}
i := r + 1
expiredWorkers = append(expiredWorkers[:0], idleWorkers[:i]...)
if i > 0 {
m := copy(idleWorkers, idleWorkers[i:])
for i := m; i < n; i++ {
idleWorkers[i] = nil
}
p.workers = idleWorkers[:m]
}
p.lock.Unlock()
// Notify obsolete workers to stop.
// This notification must be outside the p.lock, since w.task
// may be blocking and may consume a lot of time if many workers
// are located on non-local CPUs.
for i, w := range expiredWorkers {
w.args <- nil
expiredWorkers[i] = nil
}
// There might be a situation where all workers have been cleaned up(no worker is running),
// or another case where the pool capacity has been Tuned up,
// while some invokers still get stuck in "p.cond.Wait()",
// then it ought to wake all those invokers.
if p.Running() == 0 || (p.Waiting() > 0 && p.Free() > 0) {
p.cond.Broadcast()
}
}
}
// ticktock is a goroutine that updates the current time in the pool regularly.
func (p *PoolWithFunc) ticktock(ctx context.Context) {
ticker := time.NewTicker(nowTimeUpdateInterval)
defer func() {
ticker.Stop()
atomic.StoreInt32(&p.ticktockDone, 1)
}()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
}
if p.IsClosed() {
break
}
p.now.Store(time.Now())
}
}
func (p *PoolWithFunc) goPurge() {
// Start a goroutine to clean up expired workers periodically.
var ctx context.Context
ctx, p.stopPurge = context.WithCancel(context.Background())
if !p.options.DisablePurge {
go p.purgeStaleWorkers(ctx)
}
}
func (p *PoolWithFunc) goTicktock() {
p.now.Store(time.Now())
var ctx context.Context
ctx, p.stopTicktock = context.WithCancel(context.Background())
go p.ticktock(ctx)
}
func (p *PoolWithFunc) nowTime() time.Time {
return p.now.Load().(time.Time)
}
// NewPoolWithFunc generates an instance of ants pool with a specific function.
func NewPoolWithFunc(size int, pf func(interface{}), options ...Option) (*PoolWithFunc, error) {
if size <= 0 {
size = -1
}
if pf == nil {
return nil, ErrLackPoolFunc
}
opts := loadOptions(options...)
if !opts.DisablePurge {
if expiry := opts.ExpiryDuration; expiry < 0 {
return nil, ErrInvalidPoolExpiry
} else if expiry == 0 {
opts.ExpiryDuration = DefaultCleanIntervalTime
}
}
if opts.Logger == nil {
opts.Logger = defaultLogger
}
p := &PoolWithFunc{
capacity: int32(size),
poolFunc: pf,
lock: internal.NewSpinLock(),
options: opts,
}
p.workerCache.New = func() interface{} {
return &goWorkerWithFunc{
pool: p,
args: make(chan interface{}, workerChanCap),
}
}
if p.options.PreAlloc {
if size == -1 {
return nil, ErrInvalidPreAllocSize
}
p.workers = make([]*goWorkerWithFunc, 0, size)
}
p.cond = sync.NewCond(p.lock)
p.goPurge()
p.goTicktock()
return p, nil
}
//---------------------------------------------------------------------------
// Invoke submits a task to pool.
//
// Note that you are allowed to call Pool.Invoke() from the current Pool.Invoke(),
// but what calls for special attention is that you will get blocked with the latest
// Pool.Invoke() call once the current Pool runs out of its capacity, and to avoid this,
// you should instantiate a PoolWithFunc with ants.WithNonblocking(true).
func (p *PoolWithFunc) Invoke(args interface{}) error {
if p.IsClosed() {
return ErrPoolClosed
}
var w *goWorkerWithFunc
if w = p.retrieveWorker(); w == nil {
return ErrPoolOverload
}
w.args <- args
return nil
}
// Running returns the number of workers currently running.
func (p *PoolWithFunc) Running() int {
return int(atomic.LoadInt32(&p.running))
}
// Free returns the number of available goroutines to work, -1 indicates this pool is unlimited.
func (p *PoolWithFunc) Free() int {
c := p.Cap()
if c < 0 {
return -1
}
return c - p.Running()
}
// Waiting returns the number of tasks which are waiting be executed.
func (p *PoolWithFunc) Waiting() int {
return int(atomic.LoadInt32(&p.waiting))
}
// Cap returns the capacity of this pool.
func (p *PoolWithFunc) Cap() int {
return int(atomic.LoadInt32(&p.capacity))
}
// Tune changes the capacity of this pool, note that it is noneffective to the infinite or pre-allocation pool.
func (p *PoolWithFunc) Tune(size int) {
capacity := p.Cap()
if capacity == -1 || size <= 0 || size == capacity || p.options.PreAlloc {
return
}
atomic.StoreInt32(&p.capacity, int32(size))
if size > capacity {
if size-capacity == 1 {
p.cond.Signal()
return
}
p.cond.Broadcast()
}
}
// IsClosed indicates whether the pool is closed.
func (p *PoolWithFunc) IsClosed() bool {
return atomic.LoadInt32(&p.state) == CLOSED
}
// Release closes this pool and releases the worker queue.
func (p *PoolWithFunc) Release() {
if !atomic.CompareAndSwapInt32(&p.state, OPENED, CLOSED) {
return
}
p.lock.Lock()
idleWorkers := p.workers
for _, w := range idleWorkers {
w.args <- nil
}
p.workers = nil
p.lock.Unlock()
// There might be some callers waiting in retrieveWorker(), so we need to wake them up to prevent
// those callers blocking infinitely.
p.cond.Broadcast()
}
// ReleaseTimeout is like Release but with a timeout, it waits all workers to exit before timing out.
func (p *PoolWithFunc) ReleaseTimeout(timeout time.Duration) error {
if p.IsClosed() || p.stopPurge == nil || p.stopTicktock == nil {
return ErrPoolClosed
}
p.stopPurge()
p.stopPurge = nil
p.stopTicktock()
p.stopTicktock = nil
p.Release()
endTime := time.Now().Add(timeout)
for time.Now().Before(endTime) {
if p.Running() == 0 &&
(p.options.DisablePurge || atomic.LoadInt32(&p.purgeDone) == 1) &&
atomic.LoadInt32(&p.ticktockDone) == 1 {
return nil
}
time.Sleep(10 * time.Millisecond)
}
return ErrTimeout
}
// Reboot reboots a closed pool.
func (p *PoolWithFunc) Reboot() {
if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) {
atomic.StoreInt32(&p.purgeDone, 0)
p.goPurge()
atomic.StoreInt32(&p.ticktockDone, 0)
p.goTicktock()
}
}
//---------------------------------------------------------------------------
func (p *PoolWithFunc) addRunning(delta int) {
atomic.AddInt32(&p.running, int32(delta))
}
func (p *PoolWithFunc) addWaiting(delta int) {
atomic.AddInt32(&p.waiting, int32(delta))
}
// retrieveWorker returns an available worker to run the tasks.
func (p *PoolWithFunc) retrieveWorker() (w *goWorkerWithFunc) {
spawnWorker := func() {
w = p.workerCache.Get().(*goWorkerWithFunc)
w.run()
}
p.lock.Lock()
idleWorkers := p.workers
n := len(idleWorkers) - 1
if n >= 0 { // first try to fetch the worker from the queue
w = idleWorkers[n]
idleWorkers[n] = nil
p.workers = idleWorkers[:n]
p.lock.Unlock()
} else if capacity := p.Cap(); capacity == -1 || capacity > p.Running() {
// if the worker queue is empty and we don't run out of the pool capacity,
// then just spawn a new worker goroutine.
p.lock.Unlock()
spawnWorker()
} else { // otherwise, we'll have to keep them blocked and wait for at least one worker to be put back into pool.
if p.options.Nonblocking {
p.lock.Unlock()
return
}
retry:
if p.options.MaxBlockingTasks != 0 && p.Waiting() >= p.options.MaxBlockingTasks {
p.lock.Unlock()
return
}
p.addWaiting(1)
p.cond.Wait() // block and wait for an available worker
p.addWaiting(-1)
if p.IsClosed() {
p.lock.Unlock()
return
}
var nw int
if nw = p.Running(); nw == 0 { // awakened by the scavenger
p.lock.Unlock()
spawnWorker()
return
}
l := len(p.workers) - 1
if l < 0 {
if nw < p.Cap() {
p.lock.Unlock()
spawnWorker()
return
}
goto retry
}
w = p.workers[l]
p.workers[l] = nil
p.workers = p.workers[:l]
p.lock.Unlock()
}
return
}
// revertWorker puts a worker back into free pool, recycling the goroutines.
func (p *PoolWithFunc) revertWorker(worker *goWorkerWithFunc) bool {
if capacity := p.Cap(); (capacity > 0 && p.Running() > capacity) || p.IsClosed() {
p.cond.Broadcast()
return false
}
worker.recycleTime = p.nowTime()
p.lock.Lock()
// To avoid memory leaks, add a double check in the lock scope.
// Issue: https://github.com/panjf2000/ants/issues/113
if p.IsClosed() {
p.lock.Unlock()
return false
}
p.workers = append(p.workers, worker)
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
p.cond.Signal()
p.lock.Unlock()
return true
}