// MIT License // Copyright (c) 2018 Andy Pan // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. package ants import ( "math" "sync" "sync/atomic" "time" ) type sig struct{} type f func() error // Pool accept the tasks from client,it limits the total // of goroutines to a given number by recycling goroutines. type Pool struct { // capacity of the pool. capacity int32 // running is the number of the currently running goroutines. running int32 // expiryDuration set the expired time (second) of every worker. expiryDuration time.Duration // freeSignal is used to notice pool there are available // workers which can be sent to work. freeSignal chan sig // workers is a slice that store the available workers. workers []*Worker // release is used to notice the pool to closed itself. release chan sig // lock for synchronous operation lock sync.Mutex once sync.Once } func (p *Pool) periodicallyPurge() { heartbeat := time.NewTicker(p.expiryDuration) for range heartbeat.C { currentTime := time.Now() p.lock.Lock() idleWorkers := p.workers if len(idleWorkers) == 0 && p.Running() == 0 && len(p.release) > 0 { p.lock.Unlock() return } n := 0 for i, w := range idleWorkers { if currentTime.Sub(w.recycleTime) <= p.expiryDuration { break } n = i <-p.freeSignal w.task <- nil idleWorkers[i] = nil } if n > 0 { n++ p.workers = idleWorkers[n:] } p.lock.Unlock() } } // NewPool generates a instance of ants pool func NewPool(size int) (*Pool, error) { return NewTimingPool(size, DefaultCleanIntervalTime) } // NewTimingPool generates a instance of ants pool with a custom timed task func NewTimingPool(size, expiry int) (*Pool, error) { if size <= 0 { return nil, ErrInvalidPoolSize } if expiry <= 0 { return nil, ErrInvalidPoolExpiry } p := &Pool{ capacity: int32(size), freeSignal: make(chan sig, math.MaxInt32), release: make(chan sig, 1), expiryDuration: time.Duration(expiry) * time.Second, } go p.periodicallyPurge() return p, nil } //------------------------------------------------------------------------- // Submit submit a task to pool func (p *Pool) Submit(task f) error { if len(p.release) > 0 { return ErrPoolClosed } w := p.getWorker() w.task <- task return nil } // Running returns the number of the currently running goroutines func (p *Pool) Running() int { return int(atomic.LoadInt32(&p.running)) } // Free returns the available goroutines to work func (p *Pool) Free() int { return int(atomic.LoadInt32(&p.capacity) - atomic.LoadInt32(&p.running)) } // Cap returns the capacity of this pool func (p *Pool) Cap() int { return int(atomic.LoadInt32(&p.capacity)) } // ReSize change the capacity of this pool func (p *Pool) ReSize(size int) { if size == p.Cap() { return } atomic.StoreInt32(&p.capacity, int32(size)) diff := p.Running() - size if diff > 0 { for i := 0; i < diff; i++ { p.getWorker().task <- nil } } } // Release Closed this pool func (p *Pool) Release() error { p.once.Do(func() { p.release <- sig{} p.lock.Lock() idleWorkers := p.workers for i, w := range idleWorkers { <-p.freeSignal w.task <- nil idleWorkers[i] = nil } p.workers = nil p.lock.Unlock() }) return nil } //------------------------------------------------------------------------- // incrRunning increases the number of the currently running goroutines func (p *Pool) incrRunning() { atomic.AddInt32(&p.running, 1) } // decrRunning decreases the number of the currently running goroutines func (p *Pool) decrRunning() { atomic.AddInt32(&p.running, -1) } // getWorker returns a available worker to run the tasks. func (p *Pool) getWorker() *Worker { var w *Worker waiting := false p.lock.Lock() idleWorkers := p.workers n := len(idleWorkers) - 1 if n < 0 { waiting = p.Running() >= p.Cap() } else { <-p.freeSignal w = idleWorkers[n] idleWorkers[n] = nil p.workers = idleWorkers[:n] } p.lock.Unlock() if waiting { <-p.freeSignal p.lock.Lock() idleWorkers = p.workers l := len(idleWorkers) - 1 w = idleWorkers[l] idleWorkers[l] = nil p.workers = idleWorkers[:l] p.lock.Unlock() } else if w == nil { w = &Worker{ pool: p, task: make(chan f, 1), } w.run() p.incrRunning() } return w } // putWorker puts a worker back into free pool, recycling the goroutines. func (p *Pool) putWorker(worker *Worker) { worker.recycleTime = time.Now() p.lock.Lock() p.workers = append(p.workers, worker) p.lock.Unlock() p.freeSignal <- sig{} }