tile38/vendor/github.com/nats-io/nats.go/nats.go

4681 lines
122 KiB
Go

// Copyright 2012-2021 The NATS Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A Go client for the NATS messaging system (https://nats.io).
package nats
import (
"bufio"
"bytes"
"crypto/tls"
"crypto/x509"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"io/ioutil"
"math/rand"
"net"
"net/http"
"net/textproto"
"net/url"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/nats-io/nats.go/util"
"github.com/nats-io/nkeys"
"github.com/nats-io/nuid"
)
// Default Constants
const (
Version = "1.11.0"
DefaultURL = "nats://127.0.0.1:4222"
DefaultPort = 4222
DefaultMaxReconnect = 60
DefaultReconnectWait = 2 * time.Second
DefaultReconnectJitter = 100 * time.Millisecond
DefaultReconnectJitterTLS = time.Second
DefaultTimeout = 2 * time.Second
DefaultPingInterval = 2 * time.Minute
DefaultMaxPingOut = 2
DefaultMaxChanLen = 64 * 1024 // 64k
DefaultReconnectBufSize = 8 * 1024 * 1024 // 8MB
RequestChanLen = 8
DefaultDrainTimeout = 30 * time.Second
LangString = "go"
)
const (
// STALE_CONNECTION is for detection and proper handling of stale connections.
STALE_CONNECTION = "stale connection"
// PERMISSIONS_ERR is for when nats server subject authorization has failed.
PERMISSIONS_ERR = "permissions violation"
// AUTHORIZATION_ERR is for when nats server user authorization has failed.
AUTHORIZATION_ERR = "authorization violation"
// AUTHENTICATION_EXPIRED_ERR is for when nats server user authorization has expired.
AUTHENTICATION_EXPIRED_ERR = "user authentication expired"
)
// Errors
var (
ErrConnectionClosed = errors.New("nats: connection closed")
ErrConnectionDraining = errors.New("nats: connection draining")
ErrDrainTimeout = errors.New("nats: draining connection timed out")
ErrConnectionReconnecting = errors.New("nats: connection reconnecting")
ErrSecureConnRequired = errors.New("nats: secure connection required")
ErrSecureConnWanted = errors.New("nats: secure connection not available")
ErrBadSubscription = errors.New("nats: invalid subscription")
ErrTypeSubscription = errors.New("nats: invalid subscription type")
ErrBadSubject = errors.New("nats: invalid subject")
ErrBadQueueName = errors.New("nats: invalid queue name")
ErrSlowConsumer = errors.New("nats: slow consumer, messages dropped")
ErrTimeout = errors.New("nats: timeout")
ErrBadTimeout = errors.New("nats: timeout invalid")
ErrAuthorization = errors.New("nats: authorization violation")
ErrAuthExpired = errors.New("nats: authentication expired")
ErrNoServers = errors.New("nats: no servers available for connection")
ErrJsonParse = errors.New("nats: connect message, json parse error")
ErrChanArg = errors.New("nats: argument needs to be a channel type")
ErrMaxPayload = errors.New("nats: maximum payload exceeded")
ErrMaxMessages = errors.New("nats: maximum messages delivered")
ErrSyncSubRequired = errors.New("nats: illegal call on an async subscription")
ErrMultipleTLSConfigs = errors.New("nats: multiple tls.Configs not allowed")
ErrNoInfoReceived = errors.New("nats: protocol exception, INFO not received")
ErrReconnectBufExceeded = errors.New("nats: outbound buffer limit exceeded")
ErrInvalidConnection = errors.New("nats: invalid connection")
ErrInvalidMsg = errors.New("nats: invalid message or message nil")
ErrInvalidArg = errors.New("nats: invalid argument")
ErrInvalidContext = errors.New("nats: invalid context")
ErrNoDeadlineContext = errors.New("nats: context requires a deadline")
ErrNoEchoNotSupported = errors.New("nats: no echo option not supported by this server")
ErrClientIDNotSupported = errors.New("nats: client ID not supported by this server")
ErrUserButNoSigCB = errors.New("nats: user callback defined without a signature handler")
ErrNkeyButNoSigCB = errors.New("nats: nkey defined without a signature handler")
ErrNoUserCB = errors.New("nats: user callback not defined")
ErrNkeyAndUser = errors.New("nats: user callback and nkey defined")
ErrNkeysNotSupported = errors.New("nats: nkeys not supported by the server")
ErrStaleConnection = errors.New("nats: " + STALE_CONNECTION)
ErrTokenAlreadySet = errors.New("nats: token and token handler both set")
ErrMsgNotBound = errors.New("nats: message is not bound to subscription/connection")
ErrMsgNoReply = errors.New("nats: message does not have a reply")
ErrClientIPNotSupported = errors.New("nats: client IP not supported by this server")
ErrDisconnected = errors.New("nats: server is disconnected")
ErrHeadersNotSupported = errors.New("nats: headers not supported by this server")
ErrBadHeaderMsg = errors.New("nats: message could not decode headers")
ErrNoResponders = errors.New("nats: no responders available for request")
ErrNoContextOrTimeout = errors.New("nats: no context or timeout given")
ErrDirectModeRequired = errors.New("nats: direct access requires direct pull or push")
ErrPullModeNotAllowed = errors.New("nats: pull based not supported")
ErrJetStreamNotEnabled = errors.New("nats: jetstream not enabled")
ErrJetStreamBadPre = errors.New("nats: jetstream api prefix not valid")
ErrNoStreamResponse = errors.New("nats: no response from stream")
ErrNotJSMessage = errors.New("nats: not a jetstream message")
ErrInvalidStreamName = errors.New("nats: invalid stream name")
ErrInvalidDurableName = errors.New("nats: invalid durable name")
ErrNoMatchingStream = errors.New("nats: no stream matches subject")
ErrSubjectMismatch = errors.New("nats: subject does not match consumer")
ErrContextAndTimeout = errors.New("nats: context and timeout can not both be set")
ErrInvalidJSAck = errors.New("nats: invalid jetstream publish response")
ErrMultiStreamUnsupported = errors.New("nats: multiple streams are not supported")
ErrStreamNameRequired = errors.New("nats: stream name is required")
ErrConsumerConfigRequired = errors.New("nats: consumer configuration is required")
ErrStreamSnapshotConfigRequired = errors.New("nats: stream snapshot configuration is required")
ErrDeliverSubjectRequired = errors.New("nats: deliver subject is required")
)
func init() {
rand.Seed(time.Now().UnixNano())
}
// GetDefaultOptions returns default configuration options for the client.
func GetDefaultOptions() Options {
return Options{
AllowReconnect: true,
MaxReconnect: DefaultMaxReconnect,
ReconnectWait: DefaultReconnectWait,
ReconnectJitter: DefaultReconnectJitter,
ReconnectJitterTLS: DefaultReconnectJitterTLS,
Timeout: DefaultTimeout,
PingInterval: DefaultPingInterval,
MaxPingsOut: DefaultMaxPingOut,
SubChanLen: DefaultMaxChanLen,
ReconnectBufSize: DefaultReconnectBufSize,
DrainTimeout: DefaultDrainTimeout,
}
}
// DEPRECATED: Use GetDefaultOptions() instead.
// DefaultOptions is not safe for use by multiple clients.
// For details see #308.
var DefaultOptions = GetDefaultOptions()
// Status represents the state of the connection.
type Status int
const (
DISCONNECTED = Status(iota)
CONNECTED
CLOSED
RECONNECTING
CONNECTING
DRAINING_SUBS
DRAINING_PUBS
)
// ConnHandler is used for asynchronous events such as
// disconnected and closed connections.
type ConnHandler func(*Conn)
// ConnErrHandler is used to process asynchronous events like
// disconnected connection with the error (if any).
type ConnErrHandler func(*Conn, error)
// ErrHandler is used to process asynchronous errors encountered
// while processing inbound messages.
type ErrHandler func(*Conn, *Subscription, error)
// UserJWTHandler is used to fetch and return the account signed
// JWT for this user.
type UserJWTHandler func() (string, error)
// SignatureHandler is used to sign a nonce from the server while
// authenticating with nkeys. The user should sign the nonce and
// return the raw signature. The client will base64 encode this to
// send to the server.
type SignatureHandler func([]byte) ([]byte, error)
// AuthTokenHandler is used to generate a new token.
type AuthTokenHandler func() string
// ReconnectDelayHandler is used to get from the user the desired
// delay the library should pause before attempting to reconnect
// again. Note that this is invoked after the library tried the
// whole list of URLs and failed to reconnect.
type ReconnectDelayHandler func(attempts int) time.Duration
// asyncCB is used to preserve order for async callbacks.
type asyncCB struct {
f func()
next *asyncCB
}
type asyncCallbacksHandler struct {
mu sync.Mutex
cond *sync.Cond
head *asyncCB
tail *asyncCB
}
// Option is a function on the options for a connection.
type Option func(*Options) error
// CustomDialer can be used to specify any dialer, not necessarily
// a *net.Dialer.
type CustomDialer interface {
Dial(network, address string) (net.Conn, error)
}
// Options can be used to create a customized connection.
type Options struct {
// Url represents a single NATS server url to which the client
// will be connecting. If the Servers option is also set, it
// then becomes the first server in the Servers array.
Url string
// Servers is a configured set of servers which this client
// will use when attempting to connect.
Servers []string
// NoRandomize configures whether we will randomize the
// server pool.
NoRandomize bool
// NoEcho configures whether the server will echo back messages
// that are sent on this connection if we also have matching subscriptions.
// Note this is supported on servers >= version 1.2. Proto 1 or greater.
NoEcho bool
// Name is an optional name label which will be sent to the server
// on CONNECT to identify the client.
Name string
// Verbose signals the server to send an OK ack for commands
// successfully processed by the server.
Verbose bool
// Pedantic signals the server whether it should be doing further
// validation of subjects.
Pedantic bool
// Secure enables TLS secure connections that skip server
// verification by default. NOT RECOMMENDED.
Secure bool
// TLSConfig is a custom TLS configuration to use for secure
// transports.
TLSConfig *tls.Config
// AllowReconnect enables reconnection logic to be used when we
// encounter a disconnect from the current server.
AllowReconnect bool
// MaxReconnect sets the number of reconnect attempts that will be
// tried before giving up. If negative, then it will never give up
// trying to reconnect.
MaxReconnect int
// ReconnectWait sets the time to backoff after attempting a reconnect
// to a server that we were already connected to previously.
ReconnectWait time.Duration
// CustomReconnectDelayCB is invoked after the library tried every
// URL in the server list and failed to reconnect. It passes to the
// user the current number of attempts. This function returns the
// amount of time the library will sleep before attempting to reconnect
// again. It is strongly recommended that this value contains some
// jitter to prevent all connections to attempt reconnecting at the same time.
CustomReconnectDelayCB ReconnectDelayHandler
// ReconnectJitter sets the upper bound for a random delay added to
// ReconnectWait during a reconnect when no TLS is used.
// Note that any jitter is capped with ReconnectJitterMax.
ReconnectJitter time.Duration
// ReconnectJitterTLS sets the upper bound for a random delay added to
// ReconnectWait during a reconnect when TLS is used.
// Note that any jitter is capped with ReconnectJitterMax.
ReconnectJitterTLS time.Duration
// Timeout sets the timeout for a Dial operation on a connection.
Timeout time.Duration
// DrainTimeout sets the timeout for a Drain Operation to complete.
DrainTimeout time.Duration
// FlusherTimeout is the maximum time to wait for write operations
// to the underlying connection to complete (including the flusher loop).
FlusherTimeout time.Duration
// PingInterval is the period at which the client will be sending ping
// commands to the server, disabled if 0 or negative.
PingInterval time.Duration
// MaxPingsOut is the maximum number of pending ping commands that can
// be awaiting a response before raising an ErrStaleConnection error.
MaxPingsOut int
// ClosedCB sets the closed handler that is called when a client will
// no longer be connected.
ClosedCB ConnHandler
// DisconnectedCB sets the disconnected handler that is called
// whenever the connection is disconnected.
// Will not be called if DisconnectedErrCB is set
// DEPRECATED. Use DisconnectedErrCB which passes error that caused
// the disconnect event.
DisconnectedCB ConnHandler
// DisconnectedErrCB sets the disconnected error handler that is called
// whenever the connection is disconnected.
// Disconnected error could be nil, for instance when user explicitly closes the connection.
// DisconnectedCB will not be called if DisconnectedErrCB is set
DisconnectedErrCB ConnErrHandler
// ReconnectedCB sets the reconnected handler called whenever
// the connection is successfully reconnected.
ReconnectedCB ConnHandler
// DiscoveredServersCB sets the callback that is invoked whenever a new
// server has joined the cluster.
DiscoveredServersCB ConnHandler
// AsyncErrorCB sets the async error handler (e.g. slow consumer errors)
AsyncErrorCB ErrHandler
// ReconnectBufSize is the size of the backing bufio during reconnect.
// Once this has been exhausted publish operations will return an error.
ReconnectBufSize int
// SubChanLen is the size of the buffered channel used between the socket
// Go routine and the message delivery for SyncSubscriptions.
// NOTE: This does not affect AsyncSubscriptions which are
// dictated by PendingLimits()
SubChanLen int
// UserJWT sets the callback handler that will fetch a user's JWT.
UserJWT UserJWTHandler
// Nkey sets the public nkey that will be used to authenticate
// when connecting to the server. UserJWT and Nkey are mutually exclusive
// and if defined, UserJWT will take precedence.
Nkey string
// SignatureCB designates the function used to sign the nonce
// presented from the server.
SignatureCB SignatureHandler
// User sets the username to be used when connecting to the server.
User string
// Password sets the password to be used when connecting to a server.
Password string
// Token sets the token to be used when connecting to a server.
Token string
// TokenHandler designates the function used to generate the token to be used when connecting to a server.
TokenHandler AuthTokenHandler
// Dialer allows a custom net.Dialer when forming connections.
// DEPRECATED: should use CustomDialer instead.
Dialer *net.Dialer
// CustomDialer allows to specify a custom dialer (not necessarily
// a *net.Dialer).
CustomDialer CustomDialer
// UseOldRequestStyle forces the old method of Requests that utilize
// a new Inbox and a new Subscription for each request.
UseOldRequestStyle bool
// NoCallbacksAfterClientClose allows preventing the invocation of
// callbacks after Close() is called. Client won't receive notifications
// when Close is invoked by user code. Default is to invoke the callbacks.
NoCallbacksAfterClientClose bool
// LameDuckModeHandler sets the callback to invoke when the server notifies
// the connection that it entered lame duck mode, that is, going to
// gradually disconnect all its connections before shuting down. This is
// often used in deployments when upgrading NATS Servers.
LameDuckModeHandler ConnHandler
// RetryOnFailedConnect sets the connection in reconnecting state right
// away if it can't connect to a server in the initial set. The
// MaxReconnect and ReconnectWait options are used for this process,
// similarly to when an established connection is disconnected.
// If a ReconnectHandler is set, it will be invoked when the connection
// is established, and if a ClosedHandler is set, it will be invoked if
// it fails to connect (after exhausting the MaxReconnect attempts).
RetryOnFailedConnect bool
}
const (
// Scratch storage for assembling protocol headers
scratchSize = 512
// The size of the bufio reader/writer on top of the socket.
defaultBufSize = 32768
// The buffered size of the flush "kick" channel
flushChanSize = 1
// Default server pool size
srvPoolSize = 4
// NUID size
nuidSize = 22
// Default port used if none is specified in given URL(s)
defaultPortString = "4222"
)
// A Conn represents a bare connection to a nats-server.
// It can send and receive []byte payloads.
// The connection is safe to use in multiple Go routines concurrently.
type Conn struct {
// Keep all members for which we use atomic at the beginning of the
// struct and make sure they are all 64bits (or use padding if necessary).
// atomic.* functions crash on 32bit machines if operand is not aligned
// at 64bit. See https://github.com/golang/go/issues/599
Statistics
mu sync.RWMutex
// Opts holds the configuration of the Conn.
// Modifying the configuration of a running Conn is a race.
Opts Options
wg sync.WaitGroup
srvPool []*srv
current *srv
urls map[string]struct{} // Keep track of all known URLs (used by processInfo)
conn net.Conn
bw *bufio.Writer
pending *bytes.Buffer
fch chan struct{}
info serverInfo
ssid int64
subsMu sync.RWMutex
subs map[int64]*Subscription
ach *asyncCallbacksHandler
pongs []chan struct{}
scratch [scratchSize]byte
status Status
initc bool // true if the connection is performing the initial connect
err error
ps *parseState
ptmr *time.Timer
pout int
ar bool // abort reconnect
rqch chan struct{}
// New style response handler
respSub string // The wildcard subject
respScanf string // The scanf template to extract mux token
respMux *Subscription // A single response subscription
respMap map[string]chan *Msg // Request map for the response msg channels
respRand *rand.Rand // Used for generating suffix
}
// Subscription represents interest in a given subject.
type Subscription struct {
mu sync.Mutex
sid int64
// Subject that represents this subscription. This can be different
// than the received subject inside a Msg if this is a wildcard.
Subject string
// Optional queue group name. If present, all subscriptions with the
// same name will form a distributed queue, and each message will
// only be processed by one member of the group.
Queue string
// For holding information about a JetStream consumer.
jsi *jsSub
delivered uint64
max uint64
conn *Conn
mcb MsgHandler
mch chan *Msg
closed bool
sc bool
connClosed bool
// Type of Subscription
typ SubscriptionType
// Async linked list
pHead *Msg
pTail *Msg
pCond *sync.Cond
// Pending stats, async subscriptions, high-speed etc.
pMsgs int
pBytes int
pMsgsMax int
pBytesMax int
pMsgsLimit int
pBytesLimit int
dropped int
}
// Msg represents a message delivered by NATS. This structure is used
// by Subscribers and PublishMsg().
type Msg struct {
Subject string
Reply string
Header http.Header
Data []byte
Sub *Subscription
next *Msg
barrier *barrierInfo
ackd uint32
}
func (m *Msg) headerBytes() ([]byte, error) {
var hdr []byte
if len(m.Header) == 0 {
return hdr, nil
}
var b bytes.Buffer
_, err := b.WriteString(hdrLine)
if err != nil {
return nil, ErrBadHeaderMsg
}
err = m.Header.Write(&b)
if err != nil {
return nil, ErrBadHeaderMsg
}
_, err = b.WriteString(crlf)
if err != nil {
return nil, ErrBadHeaderMsg
}
return b.Bytes(), nil
}
type barrierInfo struct {
refs int64
f func()
}
// Tracks various stats received and sent on this connection,
// including counts for messages and bytes.
type Statistics struct {
InMsgs uint64
OutMsgs uint64
InBytes uint64
OutBytes uint64
Reconnects uint64
}
// Tracks individual backend servers.
type srv struct {
url *url.URL
didConnect bool
reconnects int
lastErr error
isImplicit bool
tlsName string
}
// The INFO block received from the server.
type serverInfo struct {
ID string `json:"server_id"`
Name string `json:"server_name"`
Proto int `json:"proto"`
Host string `json:"host"`
Port int `json:"port"`
Headers bool `json:"headers"`
AuthRequired bool `json:"auth_required,omitempty"`
TLSRequired bool `json:"tls_required,omitempty"`
TLSAvailable bool `json:"tls_available,omitempty"`
MaxPayload int64 `json:"max_payload"`
CID uint64 `json:"client_id,omitempty"`
ClientIP string `json:"client_ip,omitempty"`
Nonce string `json:"nonce,omitempty"`
Cluster string `json:"cluster,omitempty"`
ConnectURLs []string `json:"connect_urls,omitempty"`
LameDuckMode bool `json:"ldm,omitempty"`
}
const (
// clientProtoZero is the original client protocol from 2009.
// http://nats.io/documentation/internals/nats-protocol/
/* clientProtoZero */ _ = iota
// clientProtoInfo signals a client can receive more then the original INFO block.
// This can be used to update clients on other cluster members, etc.
clientProtoInfo
)
type connectInfo struct {
Verbose bool `json:"verbose"`
Pedantic bool `json:"pedantic"`
UserJWT string `json:"jwt,omitempty"`
Nkey string `json:"nkey,omitempty"`
Signature string `json:"sig,omitempty"`
User string `json:"user,omitempty"`
Pass string `json:"pass,omitempty"`
Token string `json:"auth_token,omitempty"`
TLS bool `json:"tls_required"`
Name string `json:"name"`
Lang string `json:"lang"`
Version string `json:"version"`
Protocol int `json:"protocol"`
Echo bool `json:"echo"`
Headers bool `json:"headers"`
NoResponders bool `json:"no_responders"`
}
// MsgHandler is a callback function that processes messages delivered to
// asynchronous subscribers.
type MsgHandler func(msg *Msg)
// Connect will attempt to connect to the NATS system.
// The url can contain username/password semantics. e.g. nats://derek:pass@localhost:4222
// Comma separated arrays are also supported, e.g. urlA, urlB.
// Options start with the defaults but can be overridden.
func Connect(url string, options ...Option) (*Conn, error) {
opts := GetDefaultOptions()
opts.Servers = processUrlString(url)
for _, opt := range options {
if opt != nil {
if err := opt(&opts); err != nil {
return nil, err
}
}
}
return opts.Connect()
}
// Options that can be passed to Connect.
// Name is an Option to set the client name.
func Name(name string) Option {
return func(o *Options) error {
o.Name = name
return nil
}
}
// Secure is an Option to enable TLS secure connections that skip server verification by default.
// Pass a TLS Configuration for proper TLS.
// NOTE: This should NOT be used in a production setting.
func Secure(tls ...*tls.Config) Option {
return func(o *Options) error {
o.Secure = true
// Use of variadic just simplifies testing scenarios. We only take the first one.
if len(tls) > 1 {
return ErrMultipleTLSConfigs
}
if len(tls) == 1 {
o.TLSConfig = tls[0]
}
return nil
}
}
// RootCAs is a helper option to provide the RootCAs pool from a list of filenames.
// If Secure is not already set this will set it as well.
func RootCAs(file ...string) Option {
return func(o *Options) error {
pool := x509.NewCertPool()
for _, f := range file {
rootPEM, err := ioutil.ReadFile(f)
if err != nil || rootPEM == nil {
return fmt.Errorf("nats: error loading or parsing rootCA file: %v", err)
}
ok := pool.AppendCertsFromPEM(rootPEM)
if !ok {
return fmt.Errorf("nats: failed to parse root certificate from %q", f)
}
}
if o.TLSConfig == nil {
o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
o.TLSConfig.RootCAs = pool
o.Secure = true
return nil
}
}
// ClientCert is a helper option to provide the client certificate from a file.
// If Secure is not already set this will set it as well.
func ClientCert(certFile, keyFile string) Option {
return func(o *Options) error {
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return fmt.Errorf("nats: error loading client certificate: %v", err)
}
cert.Leaf, err = x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fmt.Errorf("nats: error parsing client certificate: %v", err)
}
if o.TLSConfig == nil {
o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
o.TLSConfig.Certificates = []tls.Certificate{cert}
o.Secure = true
return nil
}
}
// NoReconnect is an Option to turn off reconnect behavior.
func NoReconnect() Option {
return func(o *Options) error {
o.AllowReconnect = false
return nil
}
}
// DontRandomize is an Option to turn off randomizing the server pool.
func DontRandomize() Option {
return func(o *Options) error {
o.NoRandomize = true
return nil
}
}
// NoEcho is an Option to turn off messages echoing back from a server.
// Note this is supported on servers >= version 1.2. Proto 1 or greater.
func NoEcho() Option {
return func(o *Options) error {
o.NoEcho = true
return nil
}
}
// ReconnectWait is an Option to set the wait time between reconnect attempts.
func ReconnectWait(t time.Duration) Option {
return func(o *Options) error {
o.ReconnectWait = t
return nil
}
}
// MaxReconnects is an Option to set the maximum number of reconnect attempts.
func MaxReconnects(max int) Option {
return func(o *Options) error {
o.MaxReconnect = max
return nil
}
}
// ReconnectJitter is an Option to set the upper bound of a random delay added ReconnectWait.
func ReconnectJitter(jitter, jitterForTLS time.Duration) Option {
return func(o *Options) error {
o.ReconnectJitter = jitter
o.ReconnectJitterTLS = jitterForTLS
return nil
}
}
// CustomReconnectDelay is an Option to set the CustomReconnectDelayCB option.
// See CustomReconnectDelayCB Option for more details.
func CustomReconnectDelay(cb ReconnectDelayHandler) Option {
return func(o *Options) error {
o.CustomReconnectDelayCB = cb
return nil
}
}
// PingInterval is an Option to set the period for client ping commands.
func PingInterval(t time.Duration) Option {
return func(o *Options) error {
o.PingInterval = t
return nil
}
}
// MaxPingsOutstanding is an Option to set the maximum number of ping requests
// that can go un-answered by the server before closing the connection.
func MaxPingsOutstanding(max int) Option {
return func(o *Options) error {
o.MaxPingsOut = max
return nil
}
}
// ReconnectBufSize sets the buffer size of messages kept while busy reconnecting.
func ReconnectBufSize(size int) Option {
return func(o *Options) error {
o.ReconnectBufSize = size
return nil
}
}
// Timeout is an Option to set the timeout for Dial on a connection.
func Timeout(t time.Duration) Option {
return func(o *Options) error {
o.Timeout = t
return nil
}
}
// FlusherTimeout is an Option to set the write (and flush) timeout on a connection.
func FlusherTimeout(t time.Duration) Option {
return func(o *Options) error {
o.FlusherTimeout = t
return nil
}
}
// DrainTimeout is an Option to set the timeout for draining a connection.
func DrainTimeout(t time.Duration) Option {
return func(o *Options) error {
o.DrainTimeout = t
return nil
}
}
// DisconnectErrHandler is an Option to set the disconnected error handler.
func DisconnectErrHandler(cb ConnErrHandler) Option {
return func(o *Options) error {
o.DisconnectedErrCB = cb
return nil
}
}
// DisconnectHandler is an Option to set the disconnected handler.
// DEPRECATED: Use DisconnectErrHandler.
func DisconnectHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.DisconnectedCB = cb
return nil
}
}
// ReconnectHandler is an Option to set the reconnected handler.
func ReconnectHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.ReconnectedCB = cb
return nil
}
}
// ClosedHandler is an Option to set the closed handler.
func ClosedHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.ClosedCB = cb
return nil
}
}
// DiscoveredServersHandler is an Option to set the new servers handler.
func DiscoveredServersHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.DiscoveredServersCB = cb
return nil
}
}
// ErrorHandler is an Option to set the async error handler.
func ErrorHandler(cb ErrHandler) Option {
return func(o *Options) error {
o.AsyncErrorCB = cb
return nil
}
}
// UserInfo is an Option to set the username and password to
// use when not included directly in the URLs.
func UserInfo(user, password string) Option {
return func(o *Options) error {
o.User = user
o.Password = password
return nil
}
}
// Token is an Option to set the token to use
// when a token is not included directly in the URLs
// and when a token handler is not provided.
func Token(token string) Option {
return func(o *Options) error {
if o.TokenHandler != nil {
return ErrTokenAlreadySet
}
o.Token = token
return nil
}
}
// TokenHandler is an Option to set the token handler to use
// when a token is not included directly in the URLs
// and when a token is not set.
func TokenHandler(cb AuthTokenHandler) Option {
return func(o *Options) error {
if o.Token != "" {
return ErrTokenAlreadySet
}
o.TokenHandler = cb
return nil
}
}
// UserCredentials is a convenience function that takes a filename
// for a user's JWT and a filename for the user's private Nkey seed.
func UserCredentials(userOrChainedFile string, seedFiles ...string) Option {
userCB := func() (string, error) {
return userFromFile(userOrChainedFile)
}
var keyFile string
if len(seedFiles) > 0 {
keyFile = seedFiles[0]
} else {
keyFile = userOrChainedFile
}
sigCB := func(nonce []byte) ([]byte, error) {
return sigHandler(nonce, keyFile)
}
return UserJWT(userCB, sigCB)
}
// UserJWT will set the callbacks to retrieve the user's JWT and
// the signature callback to sign the server nonce. This an the Nkey
// option are mutually exclusive.
func UserJWT(userCB UserJWTHandler, sigCB SignatureHandler) Option {
return func(o *Options) error {
if userCB == nil {
return ErrNoUserCB
}
if sigCB == nil {
return ErrUserButNoSigCB
}
o.UserJWT = userCB
o.SignatureCB = sigCB
return nil
}
}
// Nkey will set the public Nkey and the signature callback to
// sign the server nonce.
func Nkey(pubKey string, sigCB SignatureHandler) Option {
return func(o *Options) error {
o.Nkey = pubKey
o.SignatureCB = sigCB
if pubKey != "" && sigCB == nil {
return ErrNkeyButNoSigCB
}
return nil
}
}
// SyncQueueLen will set the maximum queue len for the internal
// channel used for SubscribeSync().
func SyncQueueLen(max int) Option {
return func(o *Options) error {
o.SubChanLen = max
return nil
}
}
// Dialer is an Option to set the dialer which will be used when
// attempting to establish a connection.
// DEPRECATED: Should use CustomDialer instead.
func Dialer(dialer *net.Dialer) Option {
return func(o *Options) error {
o.Dialer = dialer
return nil
}
}
// SetCustomDialer is an Option to set a custom dialer which will be
// used when attempting to establish a connection. If both Dialer
// and CustomDialer are specified, CustomDialer takes precedence.
func SetCustomDialer(dialer CustomDialer) Option {
return func(o *Options) error {
o.CustomDialer = dialer
return nil
}
}
// UseOldRequestStyle is an Option to force usage of the old Request style.
func UseOldRequestStyle() Option {
return func(o *Options) error {
o.UseOldRequestStyle = true
return nil
}
}
// NoCallbacksAfterClientClose is an Option to disable callbacks when user code
// calls Close(). If close is initiated by any other condition, callbacks
// if any will be invoked.
func NoCallbacksAfterClientClose() Option {
return func(o *Options) error {
o.NoCallbacksAfterClientClose = true
return nil
}
}
// LameDuckModeHandler sets the callback to invoke when the server notifies
// the connection that it entered lame duck mode, that is, going to
// gradually disconnect all its connections before shuting down. This is
// often used in deployments when upgrading NATS Servers.
func LameDuckModeHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.LameDuckModeHandler = cb
return nil
}
}
// RetryOnFailedConnect sets the connection in reconnecting state right away
// if it can't connect to a server in the initial set.
// See RetryOnFailedConnect option for more details.
func RetryOnFailedConnect(retry bool) Option {
return func(o *Options) error {
o.RetryOnFailedConnect = retry
return nil
}
}
// Handler processing
// SetDisconnectHandler will set the disconnect event handler.
// DEPRECATED: Use SetDisconnectErrHandler
func (nc *Conn) SetDisconnectHandler(dcb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.DisconnectedCB = dcb
}
// SetDisconnectErrHandler will set the disconnect event handler.
func (nc *Conn) SetDisconnectErrHandler(dcb ConnErrHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.DisconnectedErrCB = dcb
}
// SetReconnectHandler will set the reconnect event handler.
func (nc *Conn) SetReconnectHandler(rcb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.ReconnectedCB = rcb
}
// SetDiscoveredServersHandler will set the discovered servers handler.
func (nc *Conn) SetDiscoveredServersHandler(dscb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.DiscoveredServersCB = dscb
}
// SetClosedHandler will set the reconnect event handler.
func (nc *Conn) SetClosedHandler(cb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.ClosedCB = cb
}
// SetErrorHandler will set the async error handler.
func (nc *Conn) SetErrorHandler(cb ErrHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.AsyncErrorCB = cb
}
// Process the url string argument to Connect.
// Return an array of urls, even if only one.
func processUrlString(url string) []string {
urls := strings.Split(url, ",")
for i, s := range urls {
urls[i] = strings.TrimSpace(s)
}
return urls
}
// Connect will attempt to connect to a NATS server with multiple options.
func (o Options) Connect() (*Conn, error) {
nc := &Conn{Opts: o}
// Some default options processing.
if nc.Opts.MaxPingsOut == 0 {
nc.Opts.MaxPingsOut = DefaultMaxPingOut
}
// Allow old default for channel length to work correctly.
if nc.Opts.SubChanLen == 0 {
nc.Opts.SubChanLen = DefaultMaxChanLen
}
// Default ReconnectBufSize
if nc.Opts.ReconnectBufSize == 0 {
nc.Opts.ReconnectBufSize = DefaultReconnectBufSize
}
// Ensure that Timeout is not 0
if nc.Opts.Timeout == 0 {
nc.Opts.Timeout = DefaultTimeout
}
// Check first for user jwt callback being defined and nkey.
if nc.Opts.UserJWT != nil && nc.Opts.Nkey != "" {
return nil, ErrNkeyAndUser
}
// Check if we have an nkey but no signature callback defined.
if nc.Opts.Nkey != "" && nc.Opts.SignatureCB == nil {
return nil, ErrNkeyButNoSigCB
}
// Allow custom Dialer for connecting using DialTimeout by default
if nc.Opts.Dialer == nil {
nc.Opts.Dialer = &net.Dialer{
Timeout: nc.Opts.Timeout,
}
}
if err := nc.setupServerPool(); err != nil {
return nil, err
}
// Create the async callback handler.
nc.ach = &asyncCallbacksHandler{}
nc.ach.cond = sync.NewCond(&nc.ach.mu)
// Set a default error handler that will print to stderr.
if nc.Opts.AsyncErrorCB == nil {
nc.Opts.AsyncErrorCB = defaultErrHandler
}
if err := nc.connect(); err != nil {
return nil, err
}
// Spin up the async cb dispatcher on success
go nc.ach.asyncCBDispatcher()
return nc, nil
}
func defaultErrHandler(nc *Conn, sub *Subscription, err error) {
var cid uint64
if nc != nil {
nc.mu.RLock()
cid = nc.info.CID
nc.mu.RUnlock()
}
var errStr string
if sub != nil {
errStr = fmt.Sprintf("%s on connection [%d] for subscription on %q\n", err.Error(), cid, sub.Subject)
} else {
errStr = fmt.Sprintf("%s on connection [%d]\n", err.Error(), cid)
}
os.Stderr.WriteString(errStr)
}
const (
_CRLF_ = "\r\n"
_EMPTY_ = ""
_SPC_ = " "
_PUB_P_ = "PUB "
_HPUB_P_ = "HPUB "
)
const (
_OK_OP_ = "+OK"
_ERR_OP_ = "-ERR"
_PONG_OP_ = "PONG"
_INFO_OP_ = "INFO"
)
const (
connectProto = "CONNECT %s" + _CRLF_
pingProto = "PING" + _CRLF_
pongProto = "PONG" + _CRLF_
subProto = "SUB %s %s %d" + _CRLF_
unsubProto = "UNSUB %d %s" + _CRLF_
okProto = _OK_OP_ + _CRLF_
)
// Return the currently selected server
func (nc *Conn) currentServer() (int, *srv) {
for i, s := range nc.srvPool {
if s == nil {
continue
}
if s == nc.current {
return i, s
}
}
return -1, nil
}
// Pop the current server and put onto the end of the list. Select head of list as long
// as number of reconnect attempts under MaxReconnect.
func (nc *Conn) selectNextServer() (*srv, error) {
i, s := nc.currentServer()
if i < 0 {
return nil, ErrNoServers
}
sp := nc.srvPool
num := len(sp)
copy(sp[i:num-1], sp[i+1:num])
maxReconnect := nc.Opts.MaxReconnect
if maxReconnect < 0 || s.reconnects < maxReconnect {
nc.srvPool[num-1] = s
} else {
nc.srvPool = sp[0 : num-1]
}
if len(nc.srvPool) <= 0 {
nc.current = nil
return nil, ErrNoServers
}
nc.current = nc.srvPool[0]
return nc.srvPool[0], nil
}
// Will assign the correct server to nc.current
func (nc *Conn) pickServer() error {
nc.current = nil
if len(nc.srvPool) <= 0 {
return ErrNoServers
}
for _, s := range nc.srvPool {
if s != nil {
nc.current = s
return nil
}
}
return ErrNoServers
}
const tlsScheme = "tls"
// Create the server pool using the options given.
// We will place a Url option first, followed by any
// Server Options. We will randomize the server pool unless
// the NoRandomize flag is set.
func (nc *Conn) setupServerPool() error {
nc.srvPool = make([]*srv, 0, srvPoolSize)
nc.urls = make(map[string]struct{}, srvPoolSize)
// Create srv objects from each url string in nc.Opts.Servers
// and add them to the pool.
for _, urlString := range nc.Opts.Servers {
if err := nc.addURLToPool(urlString, false, false); err != nil {
return err
}
}
// Randomize if allowed to
if !nc.Opts.NoRandomize {
nc.shufflePool(0)
}
// Normally, if this one is set, Options.Servers should not be,
// but we always allowed that, so continue to do so.
if nc.Opts.Url != _EMPTY_ {
// Add to the end of the array
if err := nc.addURLToPool(nc.Opts.Url, false, false); err != nil {
return err
}
// Then swap it with first to guarantee that Options.Url is tried first.
last := len(nc.srvPool) - 1
if last > 0 {
nc.srvPool[0], nc.srvPool[last] = nc.srvPool[last], nc.srvPool[0]
}
} else if len(nc.srvPool) <= 0 {
// Place default URL if pool is empty.
if err := nc.addURLToPool(DefaultURL, false, false); err != nil {
return err
}
}
// Check for Scheme hint to move to TLS mode.
for _, srv := range nc.srvPool {
if srv.url.Scheme == tlsScheme {
// FIXME(dlc), this is for all in the pool, should be case by case.
nc.Opts.Secure = true
if nc.Opts.TLSConfig == nil {
nc.Opts.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
}
}
return nc.pickServer()
}
// Helper function to return scheme
func (nc *Conn) connScheme() string {
if nc.Opts.Secure {
return tlsScheme
}
return "nats"
}
// Return true iff u.Hostname() is an IP address.
func hostIsIP(u *url.URL) bool {
return net.ParseIP(u.Hostname()) != nil
}
// addURLToPool adds an entry to the server pool
func (nc *Conn) addURLToPool(sURL string, implicit, saveTLSName bool) error {
if !strings.Contains(sURL, "://") {
sURL = fmt.Sprintf("%s://%s", nc.connScheme(), sURL)
}
var (
u *url.URL
err error
)
for i := 0; i < 2; i++ {
u, err = url.Parse(sURL)
if err != nil {
return err
}
if u.Port() != "" {
break
}
// In case given URL is of the form "localhost:", just add
// the port number at the end, otherwise, add ":4222".
if sURL[len(sURL)-1] != ':' {
sURL += ":"
}
sURL += defaultPortString
}
var tlsName string
if implicit {
curl := nc.current.url
// Check to see if we do not have a url.User but current connected
// url does. If so copy over.
if u.User == nil && curl.User != nil {
u.User = curl.User
}
// We are checking to see if we have a secure connection and are
// adding an implicit server that just has an IP. If so we will remember
// the current hostname we are connected to.
if saveTLSName && hostIsIP(u) {
tlsName = curl.Hostname()
}
}
s := &srv{url: u, isImplicit: implicit, tlsName: tlsName}
nc.srvPool = append(nc.srvPool, s)
nc.urls[u.Host] = struct{}{}
return nil
}
// shufflePool swaps randomly elements in the server pool
// The `offset` value indicates that the shuffling should start at
// this offset and leave the elements from [0..offset) intact.
func (nc *Conn) shufflePool(offset int) {
if len(nc.srvPool) <= offset+1 {
return
}
source := rand.NewSource(time.Now().UnixNano())
r := rand.New(source)
for i := offset; i < len(nc.srvPool); i++ {
j := offset + r.Intn(i+1-offset)
nc.srvPool[i], nc.srvPool[j] = nc.srvPool[j], nc.srvPool[i]
}
}
func (nc *Conn) newBuffer() *bufio.Writer {
var w io.Writer = nc.conn
if nc.Opts.FlusherTimeout > 0 {
w = &timeoutWriter{conn: nc.conn, timeout: nc.Opts.FlusherTimeout}
}
return bufio.NewWriterSize(w, defaultBufSize)
}
// createConn will connect to the server and wrap the appropriate
// bufio structures. It will do the right thing when an existing
// connection is in place.
func (nc *Conn) createConn() (err error) {
if nc.Opts.Timeout < 0 {
return ErrBadTimeout
}
if _, cur := nc.currentServer(); cur == nil {
return ErrNoServers
}
// We will auto-expand host names if they resolve to multiple IPs
hosts := []string{}
u := nc.current.url
if net.ParseIP(u.Hostname()) == nil {
addrs, _ := net.LookupHost(u.Hostname())
for _, addr := range addrs {
hosts = append(hosts, net.JoinHostPort(addr, u.Port()))
}
}
// Fall back to what we were given.
if len(hosts) == 0 {
hosts = append(hosts, u.Host)
}
// CustomDialer takes precedence. If not set, use Opts.Dialer which
// is set to a default *net.Dialer (in Connect()) if not explicitly
// set by the user.
dialer := nc.Opts.CustomDialer
if dialer == nil {
// We will copy and shorten the timeout if we have multiple hosts to try.
copyDialer := *nc.Opts.Dialer
copyDialer.Timeout = copyDialer.Timeout / time.Duration(len(hosts))
dialer = &copyDialer
}
if len(hosts) > 1 && !nc.Opts.NoRandomize {
rand.Shuffle(len(hosts), func(i, j int) {
hosts[i], hosts[j] = hosts[j], hosts[i]
})
}
for _, host := range hosts {
nc.conn, err = dialer.Dial("tcp", host)
if err == nil {
break
}
}
if err != nil {
return err
}
if nc.pending != nil && nc.bw != nil {
// Move to pending buffer.
nc.bw.Flush()
}
nc.bw = nc.newBuffer()
return nil
}
// makeTLSConn will wrap an existing Conn using TLS
func (nc *Conn) makeTLSConn() error {
// Allow the user to configure their own tls.Config structure.
var tlsCopy *tls.Config
if nc.Opts.TLSConfig != nil {
tlsCopy = util.CloneTLSConfig(nc.Opts.TLSConfig)
} else {
tlsCopy = &tls.Config{}
}
// If its blank we will override it with the current host
if tlsCopy.ServerName == _EMPTY_ {
if nc.current.tlsName != _EMPTY_ {
tlsCopy.ServerName = nc.current.tlsName
} else {
h, _, _ := net.SplitHostPort(nc.current.url.Host)
tlsCopy.ServerName = h
}
}
nc.conn = tls.Client(nc.conn, tlsCopy)
conn := nc.conn.(*tls.Conn)
if err := conn.Handshake(); err != nil {
return err
}
nc.bw = nc.newBuffer()
return nil
}
// waitForExits will wait for all socket watcher Go routines to
// be shutdown before proceeding.
func (nc *Conn) waitForExits() {
// Kick old flusher forcefully.
select {
case nc.fch <- struct{}{}:
default:
}
// Wait for any previous go routines.
nc.wg.Wait()
}
// ConnectedUrl reports the connected server's URL
func (nc *Conn) ConnectedUrl() string {
if nc == nil {
return _EMPTY_
}
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.current.url.String()
}
// ConnectedAddr returns the connected server's IP
func (nc *Conn) ConnectedAddr() string {
if nc == nil {
return _EMPTY_
}
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.conn.RemoteAddr().String()
}
// ConnectedServerId reports the connected server's Id
func (nc *Conn) ConnectedServerId() string {
if nc == nil {
return _EMPTY_
}
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.info.ID
}
// ConnectedServerName reports the connected server's name
func (nc *Conn) ConnectedServerName() string {
if nc == nil {
return _EMPTY_
}
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.info.Name
}
// ConnectedClusterName reports the connected server's cluster name if any
func (nc *Conn) ConnectedClusterName() string {
if nc == nil {
return _EMPTY_
}
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.info.Cluster
}
// Low level setup for structs, etc
func (nc *Conn) setup() {
nc.subs = make(map[int64]*Subscription)
nc.pongs = make([]chan struct{}, 0, 8)
nc.fch = make(chan struct{}, flushChanSize)
nc.rqch = make(chan struct{})
// Setup scratch outbound buffer for PUB/HPUB
pub := nc.scratch[:len(_HPUB_P_)]
copy(pub, _HPUB_P_)
}
// Process a connected connection and initialize properly.
func (nc *Conn) processConnectInit() error {
// Set our deadline for the whole connect process
nc.conn.SetDeadline(time.Now().Add(nc.Opts.Timeout))
defer nc.conn.SetDeadline(time.Time{})
// Set our status to connecting.
nc.status = CONNECTING
// Process the INFO protocol received from the server
err := nc.processExpectedInfo()
if err != nil {
return err
}
// Send the CONNECT protocol along with the initial PING protocol.
// Wait for the PONG response (or any error that we get from the server).
err = nc.sendConnect()
if err != nil {
return err
}
// Reset the number of PING sent out
nc.pout = 0
// Start or reset Timer
if nc.Opts.PingInterval > 0 {
if nc.ptmr == nil {
nc.ptmr = time.AfterFunc(nc.Opts.PingInterval, nc.processPingTimer)
} else {
nc.ptmr.Reset(nc.Opts.PingInterval)
}
}
// Start the readLoop and flusher go routines, we will wait on both on a reconnect event.
nc.wg.Add(2)
go nc.readLoop()
go nc.flusher()
return nil
}
// Main connect function. Will connect to the nats-server
func (nc *Conn) connect() error {
var returnedErr error
// Create actual socket connection
// For first connect we walk all servers in the pool and try
// to connect immediately.
nc.mu.Lock()
defer nc.mu.Unlock()
nc.initc = true
// The pool may change inside the loop iteration due to INFO protocol.
for i := 0; i < len(nc.srvPool); i++ {
nc.current = nc.srvPool[i]
if err := nc.createConn(); err == nil {
// This was moved out of processConnectInit() because
// that function is now invoked from doReconnect() too.
nc.setup()
err = nc.processConnectInit()
if err == nil {
nc.current.didConnect = true
nc.current.reconnects = 0
nc.current.lastErr = nil
returnedErr = nil
break
} else {
returnedErr = err
nc.mu.Unlock()
nc.close(DISCONNECTED, false, err)
nc.mu.Lock()
// Do not reset nc.current here since it would prevent
// RetryOnFailedConnect to work should this be the last server
// to try before starting doReconnect().
}
} else {
// Cancel out default connection refused, will trigger the
// No servers error conditional
if strings.Contains(err.Error(), "connection refused") {
returnedErr = nil
}
}
}
if returnedErr == nil && nc.status != CONNECTED {
returnedErr = ErrNoServers
}
if returnedErr == nil {
nc.initc = false
} else if nc.Opts.RetryOnFailedConnect {
nc.setup()
nc.status = RECONNECTING
nc.pending = new(bytes.Buffer)
if nc.bw == nil {
nc.bw = nc.newBuffer()
}
nc.bw.Reset(nc.pending)
go nc.doReconnect(ErrNoServers)
returnedErr = nil
} else {
nc.current = nil
}
return returnedErr
}
// This will check to see if the connection should be
// secure. This can be dictated from either end and should
// only be called after the INIT protocol has been received.
func (nc *Conn) checkForSecure() error {
// Check to see if we need to engage TLS
o := nc.Opts
// Check for mismatch in setups
if o.Secure && !nc.info.TLSRequired && !nc.info.TLSAvailable {
return ErrSecureConnWanted
} else if nc.info.TLSRequired && !o.Secure {
// Switch to Secure since server needs TLS.
o.Secure = true
}
// Need to rewrap with bufio
if o.Secure {
if err := nc.makeTLSConn(); err != nil {
return err
}
}
return nil
}
// processExpectedInfo will look for the expected first INFO message
// sent when a connection is established. The lock should be held entering.
func (nc *Conn) processExpectedInfo() error {
c := &control{}
// Read the protocol
err := nc.readOp(c)
if err != nil {
return err
}
// The nats protocol should send INFO first always.
if c.op != _INFO_OP_ {
return ErrNoInfoReceived
}
// Parse the protocol
if err := nc.processInfo(c.args); err != nil {
return err
}
if nc.Opts.Nkey != "" && nc.info.Nonce == "" {
return ErrNkeysNotSupported
}
return nc.checkForSecure()
}
// Sends a protocol control message by queuing into the bufio writer
// and kicking the flush Go routine. These writes are protected.
func (nc *Conn) sendProto(proto string) {
nc.mu.Lock()
nc.bw.WriteString(proto)
nc.kickFlusher()
nc.mu.Unlock()
}
// Generate a connect protocol message, issuing user/password if
// applicable. The lock is assumed to be held upon entering.
func (nc *Conn) connectProto() (string, error) {
o := nc.Opts
var nkey, sig, user, pass, token, ujwt string
u := nc.current.url.User
if u != nil {
// if no password, assume username is authToken
if _, ok := u.Password(); !ok {
token = u.Username()
} else {
user = u.Username()
pass, _ = u.Password()
}
} else {
// Take from options (possibly all empty strings)
user = o.User
pass = o.Password
token = o.Token
nkey = o.Nkey
}
// Look for user jwt.
if o.UserJWT != nil {
if jwt, err := o.UserJWT(); err != nil {
return _EMPTY_, err
} else {
ujwt = jwt
}
if nkey != _EMPTY_ {
return _EMPTY_, ErrNkeyAndUser
}
}
if ujwt != _EMPTY_ || nkey != _EMPTY_ {
if o.SignatureCB == nil {
if ujwt == _EMPTY_ {
return _EMPTY_, ErrNkeyButNoSigCB
}
return _EMPTY_, ErrUserButNoSigCB
}
sigraw, err := o.SignatureCB([]byte(nc.info.Nonce))
if err != nil {
return _EMPTY_, err
}
sig = base64.RawURLEncoding.EncodeToString(sigraw)
}
if nc.Opts.TokenHandler != nil {
if token != _EMPTY_ {
return _EMPTY_, ErrTokenAlreadySet
}
token = nc.Opts.TokenHandler()
}
// If our server does not support headers then we can't do them or no responders.
hdrs := nc.info.Headers
cinfo := connectInfo{o.Verbose, o.Pedantic, ujwt, nkey, sig, user, pass, token,
o.Secure, o.Name, LangString, Version, clientProtoInfo, !o.NoEcho, hdrs, hdrs}
b, err := json.Marshal(cinfo)
if err != nil {
return _EMPTY_, ErrJsonParse
}
// Check if NoEcho is set and we have a server that supports it.
if o.NoEcho && nc.info.Proto < 1 {
return _EMPTY_, ErrNoEchoNotSupported
}
return fmt.Sprintf(connectProto, b), nil
}
// normalizeErr removes the prefix -ERR, trim spaces and remove the quotes.
func normalizeErr(line string) string {
s := strings.TrimSpace(strings.TrimPrefix(line, _ERR_OP_))
s = strings.TrimLeft(strings.TrimRight(s, "'"), "'")
return s
}
// Send a connect protocol message to the server, issue user/password if
// applicable. Will wait for a flush to return from the server for error
// processing.
func (nc *Conn) sendConnect() error {
// Construct the CONNECT protocol string
cProto, err := nc.connectProto()
if err != nil {
return err
}
// Write the protocol into the buffer
_, err = nc.bw.WriteString(cProto)
if err != nil {
return err
}
// Add to the buffer the PING protocol
_, err = nc.bw.WriteString(pingProto)
if err != nil {
return err
}
// Flush the buffer
err = nc.bw.Flush()
if err != nil {
return err
}
// We don't want to read more than we need here, otherwise
// we would need to transfer the excess read data to the readLoop.
// Since in normal situations we just are looking for a PONG\r\n,
// reading byte-by-byte here is ok.
proto, err := nc.readProto()
if err != nil {
return err
}
// If opts.Verbose is set, handle +OK
if nc.Opts.Verbose && proto == okProto {
// Read the rest now...
proto, err = nc.readProto()
if err != nil {
return err
}
}
// We expect a PONG
if proto != pongProto {
// But it could be something else, like -ERR
// Since we no longer use ReadLine(), trim the trailing "\r\n"
proto = strings.TrimRight(proto, "\r\n")
// If it's a server error...
if strings.HasPrefix(proto, _ERR_OP_) {
// Remove -ERR, trim spaces and quotes, and convert to lower case.
proto = normalizeErr(proto)
// Check if this is an auth error
if authErr := checkAuthError(strings.ToLower(proto)); authErr != nil {
// This will schedule an async error if we are in reconnect,
// and keep track of the auth error for the current server.
// If we have got the same error twice, this sets nc.ar to true to
// indicate that the reconnect should be aborted (will be checked
// in doReconnect()).
nc.processAuthError(authErr)
}
return errors.New("nats: " + proto)
}
// Notify that we got an unexpected protocol.
return fmt.Errorf("nats: expected '%s', got '%s'", _PONG_OP_, proto)
}
// This is where we are truly connected.
nc.status = CONNECTED
return nil
}
// reads a protocol one byte at a time.
func (nc *Conn) readProto() (string, error) {
var (
_buf = [10]byte{}
buf = _buf[:0]
b = [1]byte{}
protoEnd = byte('\n')
)
for {
if _, err := nc.conn.Read(b[:1]); err != nil {
// Do not report EOF error
if err == io.EOF {
return string(buf), nil
}
return "", err
}
buf = append(buf, b[0])
if b[0] == protoEnd {
return string(buf), nil
}
}
}
// A control protocol line.
type control struct {
op, args string
}
// Read a control line and process the intended op.
func (nc *Conn) readOp(c *control) error {
br := bufio.NewReaderSize(nc.conn, defaultBufSize)
line, err := br.ReadString('\n')
if err != nil {
return err
}
parseControl(line, c)
return nil
}
// Parse a control line from the server.
func parseControl(line string, c *control) {
toks := strings.SplitN(line, _SPC_, 2)
if len(toks) == 1 {
c.op = strings.TrimSpace(toks[0])
c.args = _EMPTY_
} else if len(toks) == 2 {
c.op, c.args = strings.TrimSpace(toks[0]), strings.TrimSpace(toks[1])
} else {
c.op = _EMPTY_
}
}
// flushReconnectPending will push the pending items that were
// gathered while we were in a RECONNECTING state to the socket.
func (nc *Conn) flushReconnectPendingItems() {
if nc.pending == nil {
return
}
if nc.pending.Len() > 0 {
nc.bw.Write(nc.pending.Bytes())
}
}
// Stops the ping timer if set.
// Connection lock is held on entry.
func (nc *Conn) stopPingTimer() {
if nc.ptmr != nil {
nc.ptmr.Stop()
}
}
// Try to reconnect using the option parameters.
// This function assumes we are allowed to reconnect.
func (nc *Conn) doReconnect(err error) {
// We want to make sure we have the other watchers shutdown properly
// here before we proceed past this point.
nc.waitForExits()
// FIXME(dlc) - We have an issue here if we have
// outstanding flush points (pongs) and they were not
// sent out, but are still in the pipe.
// Hold the lock manually and release where needed below,
// can't do defer here.
nc.mu.Lock()
// Clear any queued pongs, e.g. pending flush calls.
nc.clearPendingFlushCalls()
// Clear any errors.
nc.err = nil
// Perform appropriate callback if needed for a disconnect.
// DisconnectedErrCB has priority over deprecated DisconnectedCB
if !nc.initc {
if nc.Opts.DisconnectedErrCB != nil {
nc.ach.push(func() { nc.Opts.DisconnectedErrCB(nc, err) })
} else if nc.Opts.DisconnectedCB != nil {
nc.ach.push(func() { nc.Opts.DisconnectedCB(nc) })
}
}
// This is used to wait on go routines exit if we start them in the loop
// but an error occurs after that.
waitForGoRoutines := false
var rt *time.Timer
// Channel used to kick routine out of sleep when conn is closed.
rqch := nc.rqch
// Counter that is increased when the whole list of servers has been tried.
var wlf int
var jitter time.Duration
var rw time.Duration
// If a custom reconnect delay handler is set, this takes precedence.
crd := nc.Opts.CustomReconnectDelayCB
if crd == nil {
rw = nc.Opts.ReconnectWait
// TODO: since we sleep only after the whole list has been tried, we can't
// rely on individual *srv to know if it is a TLS or non-TLS url.
// We have to pick which type of jitter to use, for now, we use these hints:
jitter = nc.Opts.ReconnectJitter
if nc.Opts.Secure || nc.Opts.TLSConfig != nil {
jitter = nc.Opts.ReconnectJitterTLS
}
}
for i := 0; len(nc.srvPool) > 0; {
cur, err := nc.selectNextServer()
if err != nil {
nc.err = err
break
}
doSleep := i+1 >= len(nc.srvPool)
nc.mu.Unlock()
if !doSleep {
i++
// Release the lock to give a chance to a concurrent nc.Close() to break the loop.
runtime.Gosched()
} else {
i = 0
var st time.Duration
if crd != nil {
wlf++
st = crd(wlf)
} else {
st = rw
if jitter > 0 {
st += time.Duration(rand.Int63n(int64(jitter)))
}
}
if rt == nil {
rt = time.NewTimer(st)
} else {
rt.Reset(st)
}
select {
case <-rqch:
rt.Stop()
case <-rt.C:
}
}
// If the readLoop, etc.. go routines were started, wait for them to complete.
if waitForGoRoutines {
nc.waitForExits()
waitForGoRoutines = false
}
nc.mu.Lock()
// Check if we have been closed first.
if nc.isClosed() {
break
}
// Mark that we tried a reconnect
cur.reconnects++
// Try to create a new connection
err = nc.createConn()
// Not yet connected, retry...
// Continue to hold the lock
if err != nil {
nc.err = nil
continue
}
// We are reconnected
nc.Reconnects++
// Process connect logic
if nc.err = nc.processConnectInit(); nc.err != nil {
// Check if we should abort reconnect. If so, break out
// of the loop and connection will be closed.
if nc.ar {
break
}
nc.status = RECONNECTING
// Reset the buffered writer to the pending buffer
// (was set to a buffered writer on nc.conn in createConn)
nc.bw.Reset(nc.pending)
continue
}
// Clear possible lastErr under the connection lock after
// a successful processConnectInit().
nc.current.lastErr = nil
// Clear out server stats for the server we connected to..
cur.didConnect = true
cur.reconnects = 0
// Send existing subscription state
nc.resendSubscriptions()
// Now send off and clear pending buffer
nc.flushReconnectPendingItems()
// Flush the buffer
nc.err = nc.bw.Flush()
if nc.err != nil {
nc.status = RECONNECTING
// Reset the buffered writer to the pending buffer (bytes.Buffer).
nc.bw.Reset(nc.pending)
// Stop the ping timer (if set)
nc.stopPingTimer()
// Since processConnectInit() returned without error, the
// go routines were started, so wait for them to return
// on the next iteration (after releasing the lock).
waitForGoRoutines = true
continue
}
// Done with the pending buffer
nc.pending = nil
// This is where we are truly connected.
nc.status = CONNECTED
// If we are here with a retry on failed connect, indicate that the
// initial connect is now complete.
nc.initc = false
// Queue up the reconnect callback.
if nc.Opts.ReconnectedCB != nil {
nc.ach.push(func() { nc.Opts.ReconnectedCB(nc) })
}
// Release lock here, we will return below.
nc.mu.Unlock()
// Make sure to flush everything
nc.Flush()
return
}
// Call into close.. We have no servers left..
if nc.err == nil {
nc.err = ErrNoServers
}
nc.mu.Unlock()
nc.close(CLOSED, true, nil)
}
// processOpErr handles errors from reading or parsing the protocol.
// The lock should not be held entering this function.
func (nc *Conn) processOpErr(err error) {
nc.mu.Lock()
if nc.isConnecting() || nc.isClosed() || nc.isReconnecting() {
nc.mu.Unlock()
return
}
if nc.Opts.AllowReconnect && nc.status == CONNECTED {
// Set our new status
nc.status = RECONNECTING
// Stop ping timer if set
nc.stopPingTimer()
if nc.conn != nil {
nc.bw.Flush()
nc.conn.Close()
nc.conn = nil
}
// Create pending buffer before reconnecting.
nc.pending = new(bytes.Buffer)
nc.bw.Reset(nc.pending)
go nc.doReconnect(err)
nc.mu.Unlock()
return
}
nc.status = DISCONNECTED
nc.err = err
nc.mu.Unlock()
nc.close(CLOSED, true, nil)
}
// dispatch is responsible for calling any async callbacks
func (ac *asyncCallbacksHandler) asyncCBDispatcher() {
for {
ac.mu.Lock()
// Protect for spurious wakeups. We should get out of the
// wait only if there is an element to pop from the list.
for ac.head == nil {
ac.cond.Wait()
}
cur := ac.head
ac.head = cur.next
if cur == ac.tail {
ac.tail = nil
}
ac.mu.Unlock()
// This signals that the dispatcher has been closed and all
// previous callbacks have been dispatched.
if cur.f == nil {
return
}
// Invoke callback outside of handler's lock
cur.f()
}
}
// Add the given function to the tail of the list and
// signals the dispatcher.
func (ac *asyncCallbacksHandler) push(f func()) {
ac.pushOrClose(f, false)
}
// Signals that we are closing...
func (ac *asyncCallbacksHandler) close() {
ac.pushOrClose(nil, true)
}
// Add the given function to the tail of the list and
// signals the dispatcher.
func (ac *asyncCallbacksHandler) pushOrClose(f func(), close bool) {
ac.mu.Lock()
defer ac.mu.Unlock()
// Make sure that library is not calling push with nil function,
// since this is used to notify the dispatcher that it should stop.
if !close && f == nil {
panic("pushing a nil callback")
}
cb := &asyncCB{f: f}
if ac.tail != nil {
ac.tail.next = cb
} else {
ac.head = cb
}
ac.tail = cb
if close {
ac.cond.Broadcast()
} else {
ac.cond.Signal()
}
}
// readLoop() will sit on the socket reading and processing the
// protocol from the server. It will dispatch appropriately based
// on the op type.
func (nc *Conn) readLoop() {
// Release the wait group on exit
defer nc.wg.Done()
// Create a parseState if needed.
nc.mu.Lock()
if nc.ps == nil {
nc.ps = &parseState{}
}
conn := nc.conn
nc.mu.Unlock()
if conn == nil {
return
}
// Stack based buffer.
b := make([]byte, defaultBufSize)
for {
if n, err := conn.Read(b); err != nil {
nc.processOpErr(err)
break
} else if err = nc.parse(b[:n]); err != nil {
nc.processOpErr(err)
break
}
}
// Clear the parseState here..
nc.mu.Lock()
nc.ps = nil
nc.mu.Unlock()
}
// waitForMsgs waits on the conditional shared with readLoop and processMsg.
// It is used to deliver messages to asynchronous subscribers.
func (nc *Conn) waitForMsgs(s *Subscription) {
var closed bool
var delivered, max uint64
// Used to account for adjustments to sub.pBytes when we wrap back around.
msgLen := -1
for {
s.mu.Lock()
// Do accounting for last msg delivered here so we only lock once
// and drain state trips after callback has returned.
if msgLen >= 0 {
s.pMsgs--
s.pBytes -= msgLen
msgLen = -1
}
if s.pHead == nil && !s.closed {
s.pCond.Wait()
}
// Pop the msg off the list
m := s.pHead
if m != nil {
s.pHead = m.next
if s.pHead == nil {
s.pTail = nil
}
if m.barrier != nil {
s.mu.Unlock()
if atomic.AddInt64(&m.barrier.refs, -1) == 0 {
m.barrier.f()
}
continue
}
msgLen = len(m.Data)
}
mcb := s.mcb
max = s.max
closed = s.closed
if !s.closed {
s.delivered++
delivered = s.delivered
}
s.mu.Unlock()
if closed {
break
}
// Deliver the message.
if m != nil && (max == 0 || delivered <= max) {
mcb(m)
}
// If we have hit the max for delivered msgs, remove sub.
if max > 0 && delivered >= max {
nc.mu.Lock()
nc.removeSub(s)
nc.mu.Unlock()
break
}
}
// Check for barrier messages
s.mu.Lock()
for m := s.pHead; m != nil; m = s.pHead {
if m.barrier != nil {
s.mu.Unlock()
if atomic.AddInt64(&m.barrier.refs, -1) == 0 {
m.barrier.f()
}
s.mu.Lock()
}
s.pHead = m.next
}
s.mu.Unlock()
}
// processMsg is called by parse and will place the msg on the
// appropriate channel/pending queue for processing. If the channel is full,
// or the pending queue is over the pending limits, the connection is
// considered a slow consumer.
func (nc *Conn) processMsg(data []byte) {
// Stats
atomic.AddUint64(&nc.InMsgs, 1)
atomic.AddUint64(&nc.InBytes, uint64(len(data)))
// Don't lock the connection to avoid server cutting us off if the
// flusher is holding the connection lock, trying to send to the server
// that is itself trying to send data to us.
nc.subsMu.RLock()
sub := nc.subs[nc.ps.ma.sid]
nc.subsMu.RUnlock()
if sub == nil {
return
}
// Copy them into string
subj := string(nc.ps.ma.subject)
reply := string(nc.ps.ma.reply)
// Doing message create outside of the sub's lock to reduce contention.
// It's possible that we end-up not using the message, but that's ok.
// FIXME(dlc): Need to copy, should/can do COW?
msgPayload := make([]byte, len(data))
copy(msgPayload, data)
// Check if we have headers encoded here.
var h http.Header
var err error
if nc.ps.ma.hdr > 0 {
hbuf := msgPayload[:nc.ps.ma.hdr]
msgPayload = msgPayload[nc.ps.ma.hdr:]
h, err = decodeHeadersMsg(hbuf)
if err != nil {
// We will pass the message through but send async error.
nc.mu.Lock()
nc.err = ErrBadHeaderMsg
if nc.Opts.AsyncErrorCB != nil {
nc.ach.push(func() { nc.Opts.AsyncErrorCB(nc, sub, ErrBadHeaderMsg) })
}
nc.mu.Unlock()
}
}
// FIXME(dlc): Should we recycle these containers?
m := &Msg{Header: h, Data: msgPayload, Subject: subj, Reply: reply, Sub: sub}
sub.mu.Lock()
// Check if closed.
if sub.closed {
sub.mu.Unlock()
return
}
// Subscription internal stats (applicable only for non ChanSubscription's)
if sub.typ != ChanSubscription {
sub.pMsgs++
if sub.pMsgs > sub.pMsgsMax {
sub.pMsgsMax = sub.pMsgs
}
sub.pBytes += len(m.Data)
if sub.pBytes > sub.pBytesMax {
sub.pBytesMax = sub.pBytes
}
// Check for a Slow Consumer
if (sub.pMsgsLimit > 0 && sub.pMsgs > sub.pMsgsLimit) ||
(sub.pBytesLimit > 0 && sub.pBytes > sub.pBytesLimit) {
goto slowConsumer
}
}
// We have two modes of delivery. One is the channel, used by channel
// subscribers and syncSubscribers, the other is a linked list for async.
if sub.mch != nil {
select {
case sub.mch <- m:
default:
goto slowConsumer
}
} else {
// Push onto the async pList
if sub.pHead == nil {
sub.pHead = m
sub.pTail = m
if sub.pCond != nil {
sub.pCond.Signal()
}
} else {
sub.pTail.next = m
sub.pTail = m
}
}
// Clear SlowConsumer status.
sub.sc = false
sub.mu.Unlock()
return
slowConsumer:
sub.dropped++
sc := !sub.sc
sub.sc = true
// Undo stats from above
if sub.typ != ChanSubscription {
sub.pMsgs--
sub.pBytes -= len(m.Data)
}
sub.mu.Unlock()
if sc {
// Now we need connection's lock and we may end-up in the situation
// that we were trying to avoid, except that in this case, the client
// is already experiencing client-side slow consumer situation.
nc.mu.Lock()
nc.err = ErrSlowConsumer
if nc.Opts.AsyncErrorCB != nil {
nc.ach.push(func() { nc.Opts.AsyncErrorCB(nc, sub, ErrSlowConsumer) })
}
nc.mu.Unlock()
}
}
// processPermissionsViolation is called when the server signals a subject
// permissions violation on either publish or subscribe.
func (nc *Conn) processPermissionsViolation(err string) {
nc.mu.Lock()
// create error here so we can pass it as a closure to the async cb dispatcher.
e := errors.New("nats: " + err)
nc.err = e
if nc.Opts.AsyncErrorCB != nil {
nc.ach.push(func() { nc.Opts.AsyncErrorCB(nc, nil, e) })
}
nc.mu.Unlock()
}
// processAuthError generally processing for auth errors. We want to do retries
// unless we get the same error again. This allows us for instance to swap credentials
// and have the app reconnect, but if nothing is changing we should bail.
// This function will return true if the connection should be closed, false otherwise.
// Connection lock is held on entry
func (nc *Conn) processAuthError(err error) bool {
nc.err = err
if !nc.initc && nc.Opts.AsyncErrorCB != nil {
nc.ach.push(func() { nc.Opts.AsyncErrorCB(nc, nil, err) })
}
// We should give up if we tried twice on this server and got the
// same error.
if nc.current.lastErr == err {
nc.ar = true
} else {
nc.current.lastErr = err
}
return nc.ar
}
// flusher is a separate Go routine that will process flush requests for the write
// bufio. This allows coalescing of writes to the underlying socket.
func (nc *Conn) flusher() {
// Release the wait group
defer nc.wg.Done()
// snapshot the bw and conn since they can change from underneath of us.
nc.mu.Lock()
bw := nc.bw
conn := nc.conn
fch := nc.fch
nc.mu.Unlock()
if conn == nil || bw == nil {
return
}
for {
if _, ok := <-fch; !ok {
return
}
nc.mu.Lock()
// Check to see if we should bail out.
if !nc.isConnected() || nc.isConnecting() || bw != nc.bw || conn != nc.conn {
nc.mu.Unlock()
return
}
if bw.Buffered() > 0 {
if err := bw.Flush(); err != nil {
if nc.err == nil {
nc.err = err
}
}
}
nc.mu.Unlock()
}
}
// processPing will send an immediate pong protocol response to the
// server. The server uses this mechanism to detect dead clients.
func (nc *Conn) processPing() {
nc.sendProto(pongProto)
}
// processPong is used to process responses to the client's ping
// messages. We use pings for the flush mechanism as well.
func (nc *Conn) processPong() {
var ch chan struct{}
nc.mu.Lock()
if len(nc.pongs) > 0 {
ch = nc.pongs[0]
nc.pongs = nc.pongs[1:]
}
nc.pout = 0
nc.mu.Unlock()
if ch != nil {
ch <- struct{}{}
}
}
// processOK is a placeholder for processing OK messages.
func (nc *Conn) processOK() {
// do nothing
}
// processInfo is used to parse the info messages sent
// from the server.
// This function may update the server pool.
func (nc *Conn) processInfo(info string) error {
if info == _EMPTY_ {
return nil
}
ncInfo := serverInfo{}
if err := json.Unmarshal([]byte(info), &ncInfo); err != nil {
return err
}
// Copy content into connection's info structure.
nc.info = ncInfo
// The array could be empty/not present on initial connect,
// if advertise is disabled on that server, or servers that
// did not include themselves in the async INFO protocol.
// If empty, do not remove the implicit servers from the pool.
if len(nc.info.ConnectURLs) == 0 {
if !nc.initc && ncInfo.LameDuckMode && nc.Opts.LameDuckModeHandler != nil {
nc.ach.push(func() { nc.Opts.LameDuckModeHandler(nc) })
}
return nil
}
// Note about pool randomization: when the pool was first created,
// it was randomized (if allowed). We keep the order the same (removing
// implicit servers that are no longer sent to us). New URLs are sent
// to us in no specific order so don't need extra randomization.
hasNew := false
// This is what we got from the server we are connected to.
urls := nc.info.ConnectURLs
// Transform that to a map for easy lookups
tmp := make(map[string]struct{}, len(urls))
for _, curl := range urls {
tmp[curl] = struct{}{}
}
// Walk the pool and removed the implicit servers that are no longer in the
// given array/map
sp := nc.srvPool
for i := 0; i < len(sp); i++ {
srv := sp[i]
curl := srv.url.Host
// Check if this URL is in the INFO protocol
_, inInfo := tmp[curl]
// Remove from the temp map so that at the end we are left with only
// new (or restarted) servers that need to be added to the pool.
delete(tmp, curl)
// Keep servers that were set through Options, but also the one that
// we are currently connected to (even if it is a discovered server).
if !srv.isImplicit || srv.url == nc.current.url {
continue
}
if !inInfo {
// Remove from server pool. Keep current order.
copy(sp[i:], sp[i+1:])
nc.srvPool = sp[:len(sp)-1]
sp = nc.srvPool
i--
}
}
// Figure out if we should save off the current non-IP hostname if we encounter a bare IP.
saveTLS := nc.current != nil && !hostIsIP(nc.current.url)
// If there are any left in the tmp map, these are new (or restarted) servers
// and need to be added to the pool.
for curl := range tmp {
// Before adding, check if this is a new (as in never seen) URL.
// This is used to figure out if we invoke the DiscoveredServersCB
if _, present := nc.urls[curl]; !present {
hasNew = true
}
nc.addURLToPool(fmt.Sprintf("%s://%s", nc.connScheme(), curl), true, saveTLS)
}
if hasNew {
// Randomize the pool if allowed but leave the first URL in place.
if !nc.Opts.NoRandomize {
nc.shufflePool(1)
}
if !nc.initc && nc.Opts.DiscoveredServersCB != nil {
nc.ach.push(func() { nc.Opts.DiscoveredServersCB(nc) })
}
}
if !nc.initc && ncInfo.LameDuckMode && nc.Opts.LameDuckModeHandler != nil {
nc.ach.push(func() { nc.Opts.LameDuckModeHandler(nc) })
}
return nil
}
// processAsyncInfo does the same than processInfo, but is called
// from the parser. Calls processInfo under connection's lock
// protection.
func (nc *Conn) processAsyncInfo(info []byte) {
nc.mu.Lock()
// Ignore errors, we will simply not update the server pool...
nc.processInfo(string(info))
nc.mu.Unlock()
}
// LastError reports the last error encountered via the connection.
// It can be used reliably within ClosedCB in order to find out reason
// why connection was closed for example.
func (nc *Conn) LastError() error {
if nc == nil {
return ErrInvalidConnection
}
nc.mu.RLock()
err := nc.err
nc.mu.RUnlock()
return err
}
// Check if the given error string is an auth error, and if so returns
// the corresponding ErrXXX error, nil otherwise
func checkAuthError(e string) error {
if strings.HasPrefix(e, AUTHORIZATION_ERR) {
return ErrAuthorization
}
if strings.HasPrefix(e, AUTHENTICATION_EXPIRED_ERR) {
return ErrAuthExpired
}
return nil
}
// processErr processes any error messages from the server and
// sets the connection's lastError.
func (nc *Conn) processErr(ie string) {
// Trim, remove quotes
ne := normalizeErr(ie)
// convert to lower case.
e := strings.ToLower(ne)
close := false
// FIXME(dlc) - process Slow Consumer signals special.
if e == STALE_CONNECTION {
nc.processOpErr(ErrStaleConnection)
} else if strings.HasPrefix(e, PERMISSIONS_ERR) {
nc.processPermissionsViolation(ne)
} else if authErr := checkAuthError(e); authErr != nil {
nc.mu.Lock()
close = nc.processAuthError(authErr)
nc.mu.Unlock()
} else {
close = true
nc.mu.Lock()
nc.err = errors.New("nats: " + ne)
nc.mu.Unlock()
}
if close {
nc.close(CLOSED, true, nil)
}
}
// kickFlusher will send a bool on a channel to kick the
// flush Go routine to flush data to the server.
func (nc *Conn) kickFlusher() {
if nc.bw != nil {
select {
case nc.fch <- struct{}{}:
default:
}
}
}
// Publish publishes the data argument to the given subject. The data
// argument is left untouched and needs to be correctly interpreted on
// the receiver.
func (nc *Conn) Publish(subj string, data []byte) error {
return nc.publish(subj, _EMPTY_, nil, data)
}
// NewMsg creates a message for publishing that will use headers.
func NewMsg(subject string) *Msg {
return &Msg{
Subject: subject,
Header: make(http.Header),
}
}
const (
hdrLine = "NATS/1.0\r\n"
crlf = "\r\n"
hdrPreEnd = len(hdrLine) - len(crlf)
statusHdr = "Status"
descrHdr = "Description"
noResponders = "503"
statusLen = 3 // e.g. 20x, 40x, 50x
)
// decodeHeadersMsg will decode and headers.
func decodeHeadersMsg(data []byte) (http.Header, error) {
tp := textproto.NewReader(bufio.NewReader(bytes.NewReader(data)))
l, err := tp.ReadLine()
if err != nil || len(l) < hdrPreEnd || l[:hdrPreEnd] != hdrLine[:hdrPreEnd] {
return nil, ErrBadHeaderMsg
}
mh, err := tp.ReadMIMEHeader()
if err != nil {
return nil, ErrBadHeaderMsg
}
// Check if we have an inlined status.
if len(l) > hdrPreEnd {
var description string
status := strings.TrimSpace(l[hdrPreEnd:])
if len(status) != statusLen {
description = strings.TrimSpace(status[statusLen:])
status = status[:statusLen]
}
mh.Add(statusHdr, status)
if len(description) > 0 {
mh.Add(descrHdr, description)
}
}
return http.Header(mh), nil
}
// PublishMsg publishes the Msg structure, which includes the
// Subject, an optional Reply and an optional Data field.
func (nc *Conn) PublishMsg(m *Msg) error {
if m == nil {
return ErrInvalidMsg
}
var hdr []byte
var err error
if len(m.Header) > 0 {
if !nc.info.Headers {
return ErrHeadersNotSupported
}
hdr, err = m.headerBytes()
if err != nil {
return err
}
}
return nc.publish(m.Subject, m.Reply, hdr, m.Data)
}
// PublishRequest will perform a Publish() expecting a response on the
// reply subject. Use Request() for automatically waiting for a response
// inline.
func (nc *Conn) PublishRequest(subj, reply string, data []byte) error {
return nc.publish(subj, reply, nil, data)
}
// Used for handrolled itoa
const digits = "0123456789"
// publish is the internal function to publish messages to a nats-server.
// Sends a protocol data message by queuing into the bufio writer
// and kicking the flush go routine. These writes should be protected.
func (nc *Conn) publish(subj, reply string, hdr, data []byte) error {
if nc == nil {
return ErrInvalidConnection
}
if subj == "" {
return ErrBadSubject
}
nc.mu.Lock()
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
if nc.isDrainingPubs() {
nc.mu.Unlock()
return ErrConnectionDraining
}
// Proactively reject payloads over the threshold set by server.
msgSize := int64(len(data) + len(hdr))
// Skip this check if we are not yet connected (RetryOnFailedConnect)
if !nc.initc && msgSize > nc.info.MaxPayload {
nc.mu.Unlock()
return ErrMaxPayload
}
// Check if we are reconnecting, and if so check if
// we have exceeded our reconnect outbound buffer limits.
if nc.isReconnecting() {
// Flush to underlying buffer.
nc.bw.Flush()
// Check if we are over
if nc.pending.Len() >= nc.Opts.ReconnectBufSize {
nc.mu.Unlock()
return ErrReconnectBufExceeded
}
}
var mh []byte
if hdr != nil {
mh = nc.scratch[:len(_HPUB_P_)]
} else {
mh = nc.scratch[1:len(_HPUB_P_)]
}
mh = append(mh, subj...)
mh = append(mh, ' ')
if reply != "" {
mh = append(mh, reply...)
mh = append(mh, ' ')
}
// We could be smarter here, but simple loop is ok,
// just avoid strconv in fast path.
// FIXME(dlc) - Find a better way here.
// msgh = strconv.AppendInt(msgh, int64(len(data)), 10)
// go 1.14 some values strconv faster, may be able to switch over.
var b [12]byte
var i = len(b)
if hdr != nil {
if len(hdr) > 0 {
for l := len(hdr); l > 0; l /= 10 {
i--
b[i] = digits[l%10]
}
} else {
i--
b[i] = digits[0]
}
mh = append(mh, b[i:]...)
mh = append(mh, ' ')
// reset for below.
i = len(b)
}
if msgSize > 0 {
for l := msgSize; l > 0; l /= 10 {
i--
b[i] = digits[l%10]
}
} else {
i--
b[i] = digits[0]
}
mh = append(mh, b[i:]...)
mh = append(mh, _CRLF_...)
_, err := nc.bw.Write(mh)
if err == nil {
if hdr != nil {
_, err = nc.bw.Write(hdr)
}
if err == nil {
_, err = nc.bw.Write(data)
}
}
if err == nil {
_, err = nc.bw.WriteString(_CRLF_)
}
if err != nil {
nc.mu.Unlock()
return err
}
nc.OutMsgs++
nc.OutBytes += uint64(len(data) + len(hdr))
if len(nc.fch) == 0 {
nc.kickFlusher()
}
nc.mu.Unlock()
return nil
}
// respHandler is the global response handler. It will look up
// the appropriate channel based on the last token and place
// the message on the channel if possible.
func (nc *Conn) respHandler(m *Msg) {
nc.mu.Lock()
// Just return if closed.
if nc.isClosed() {
nc.mu.Unlock()
return
}
var mch chan *Msg
// Grab mch
rt := nc.respToken(m.Subject)
if rt != _EMPTY_ {
mch = nc.respMap[rt]
// Delete the key regardless, one response only.
delete(nc.respMap, rt)
} else if len(nc.respMap) == 1 {
// If the server has rewritten the subject, the response token (rt)
// will not match (could be the case with JetStream). If that is the
// case and there is a single entry, use that.
for k, v := range nc.respMap {
mch = v
delete(nc.respMap, k)
break
}
}
nc.mu.Unlock()
// Don't block, let Request timeout instead, mch is
// buffered and we should delete the key before a
// second response is processed.
select {
case mch <- m:
default:
return
}
}
// Helper to setup and send new request style requests. Return the chan to receive the response.
func (nc *Conn) createNewRequestAndSend(subj string, hdr, data []byte) (chan *Msg, string, error) {
nc.mu.Lock()
// Do setup for the new style if needed.
if nc.respMap == nil {
nc.initNewResp()
}
// Create new literal Inbox and map to a chan msg.
mch := make(chan *Msg, RequestChanLen)
respInbox := nc.newRespInbox()
token := respInbox[respInboxPrefixLen:]
nc.respMap[token] = mch
if nc.respMux == nil {
// Create the response subscription we will use for all new style responses.
// This will be on an _INBOX with an additional terminal token. The subscription
// will be on a wildcard.
s, err := nc.subscribeLocked(nc.respSub, _EMPTY_, nc.respHandler, nil, false, nil)
if err != nil {
nc.mu.Unlock()
return nil, token, err
}
nc.respScanf = strings.Replace(nc.respSub, "*", "%s", -1)
nc.respMux = s
}
nc.mu.Unlock()
if err := nc.publish(subj, respInbox, hdr, data); err != nil {
return nil, token, err
}
return mch, token, nil
}
// RequestMsg will send a request payload including optional headers and deliver
// the response message, or an error, including a timeout if no message was received properly.
func (nc *Conn) RequestMsg(msg *Msg, timeout time.Duration) (*Msg, error) {
var hdr []byte
var err error
if len(msg.Header) > 0 {
if !nc.info.Headers {
return nil, ErrHeadersNotSupported
}
hdr, err = msg.headerBytes()
if err != nil {
return nil, err
}
}
return nc.request(msg.Subject, hdr, msg.Data, timeout)
}
// Request will send a request payload and deliver the response message,
// or an error, including a timeout if no message was received properly.
func (nc *Conn) Request(subj string, data []byte, timeout time.Duration) (*Msg, error) {
return nc.request(subj, nil, data, timeout)
}
func (nc *Conn) useOldRequestStyle() bool {
nc.mu.RLock()
r := nc.Opts.UseOldRequestStyle
nc.mu.RUnlock()
return r
}
func (nc *Conn) request(subj string, hdr, data []byte, timeout time.Duration) (*Msg, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
var m *Msg
var err error
if nc.useOldRequestStyle() {
m, err = nc.oldRequest(subj, hdr, data, timeout)
} else {
m, err = nc.newRequest(subj, hdr, data, timeout)
}
// Check for no responder status.
if err == nil && len(m.Data) == 0 && m.Header.Get(statusHdr) == noResponders {
m, err = nil, ErrNoResponders
}
return m, err
}
func (nc *Conn) newRequest(subj string, hdr, data []byte, timeout time.Duration) (*Msg, error) {
mch, token, err := nc.createNewRequestAndSend(subj, hdr, data)
if err != nil {
return nil, err
}
t := globalTimerPool.Get(timeout)
defer globalTimerPool.Put(t)
var ok bool
var msg *Msg
select {
case msg, ok = <-mch:
if !ok {
return nil, ErrConnectionClosed
}
case <-t.C:
nc.mu.Lock()
delete(nc.respMap, token)
nc.mu.Unlock()
return nil, ErrTimeout
}
return msg, nil
}
// oldRequest will create an Inbox and perform a Request() call
// with the Inbox reply and return the first reply received.
// This is optimized for the case of multiple responses.
func (nc *Conn) oldRequest(subj string, hdr, data []byte, timeout time.Duration) (*Msg, error) {
inbox := NewInbox()
ch := make(chan *Msg, RequestChanLen)
s, err := nc.subscribe(inbox, _EMPTY_, nil, ch, true, nil)
if err != nil {
return nil, err
}
s.AutoUnsubscribe(1)
defer s.Unsubscribe()
err = nc.publish(subj, inbox, hdr, data)
if err != nil {
return nil, err
}
return s.NextMsg(timeout)
}
// InboxPrefix is the prefix for all inbox subjects.
const (
InboxPrefix = "_INBOX."
inboxPrefixLen = len(InboxPrefix)
respInboxPrefixLen = inboxPrefixLen + nuidSize + 1
replySuffixLen = 8 // Gives us 62^8
rdigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
base = 62
)
// NewInbox will return an inbox string which can be used for directed replies from
// subscribers. These are guaranteed to be unique, but can be shared and subscribed
// to by others.
func NewInbox() string {
var b [inboxPrefixLen + nuidSize]byte
pres := b[:inboxPrefixLen]
copy(pres, InboxPrefix)
ns := b[inboxPrefixLen:]
copy(ns, nuid.Next())
return string(b[:])
}
// Function to init new response structures.
func (nc *Conn) initNewResp() {
// _INBOX wildcard
nc.respSub = fmt.Sprintf("%s.*", NewInbox())
nc.respMap = make(map[string]chan *Msg)
nc.respRand = rand.New(rand.NewSource(time.Now().UnixNano()))
}
// newRespInbox creates a new literal response subject
// that will trigger the mux subscription handler.
// Lock should be held.
func (nc *Conn) newRespInbox() string {
if nc.respMap == nil {
nc.initNewResp()
}
var b [respInboxPrefixLen + replySuffixLen]byte
pres := b[:respInboxPrefixLen]
copy(pres, nc.respSub)
rn := nc.respRand.Int63()
for i, l := respInboxPrefixLen, rn; i < len(b); i++ {
b[i] = rdigits[l%base]
l /= base
}
return string(b[:])
}
// NewRespInbox is the new format used for _INBOX.
func (nc *Conn) NewRespInbox() string {
nc.mu.Lock()
s := nc.newRespInbox()
nc.mu.Unlock()
return s
}
// respToken will return the last token of a literal response inbox
// which we use for the message channel lookup. This needs to do a
// scan to protect itself against the server changing the subject.
// Lock should be held.
func (nc *Conn) respToken(respInbox string) string {
var token string
n, err := fmt.Sscanf(respInbox, nc.respScanf, &token)
if err != nil || n != 1 {
return ""
}
return token
}
// Subscribe will express interest in the given subject. The subject
// can have wildcards (partial:*, full:>). Messages will be delivered
// to the associated MsgHandler.
func (nc *Conn) Subscribe(subj string, cb MsgHandler) (*Subscription, error) {
return nc.subscribe(subj, _EMPTY_, cb, nil, false, nil)
}
// ChanSubscribe will express interest in the given subject and place
// all messages received on the channel.
// You should not close the channel until sub.Unsubscribe() has been called.
func (nc *Conn) ChanSubscribe(subj string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, _EMPTY_, nil, ch, false, nil)
}
// ChanQueueSubscribe will express interest in the given subject.
// All subscribers with the same queue name will form the queue group
// and only one member of the group will be selected to receive any given message,
// which will be placed on the channel.
// You should not close the channel until sub.Unsubscribe() has been called.
// Note: This is the same than QueueSubscribeSyncWithChan.
func (nc *Conn) ChanQueueSubscribe(subj, group string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, group, nil, ch, false, nil)
}
// SubscribeSync will express interest on the given subject. Messages will
// be received synchronously using Subscription.NextMsg().
func (nc *Conn) SubscribeSync(subj string) (*Subscription, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
mch := make(chan *Msg, nc.Opts.SubChanLen)
s, e := nc.subscribe(subj, _EMPTY_, nil, mch, true, nil)
return s, e
}
// QueueSubscribe creates an asynchronous queue subscriber on the given subject.
// All subscribers with the same queue name will form the queue group and
// only one member of the group will be selected to receive any given
// message asynchronously.
func (nc *Conn) QueueSubscribe(subj, queue string, cb MsgHandler) (*Subscription, error) {
return nc.subscribe(subj, queue, cb, nil, false, nil)
}
// QueueSubscribeSync creates a synchronous queue subscriber on the given
// subject. All subscribers with the same queue name will form the queue
// group and only one member of the group will be selected to receive any
// given message synchronously using Subscription.NextMsg().
func (nc *Conn) QueueSubscribeSync(subj, queue string) (*Subscription, error) {
mch := make(chan *Msg, nc.Opts.SubChanLen)
s, e := nc.subscribe(subj, queue, nil, mch, true, nil)
return s, e
}
// QueueSubscribeSyncWithChan will express interest in the given subject.
// All subscribers with the same queue name will form the queue group
// and only one member of the group will be selected to receive any given message,
// which will be placed on the channel.
// You should not close the channel until sub.Unsubscribe() has been called.
// Note: This is the same than ChanQueueSubscribe.
func (nc *Conn) QueueSubscribeSyncWithChan(subj, queue string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, queue, nil, ch, false, nil)
}
// badSubject will do quick test on whether a subject is acceptable.
// Spaces are not allowed and all tokens should be > 0 in len.
func badSubject(subj string) bool {
if strings.ContainsAny(subj, " \t\r\n") {
return true
}
tokens := strings.Split(subj, ".")
for _, t := range tokens {
if len(t) == 0 {
return true
}
}
return false
}
// badQueue will check a queue name for whitespace.
func badQueue(qname string) bool {
return strings.ContainsAny(qname, " \t\r\n")
}
// subscribe is the internal subscribe function that indicates interest in a subject.
func (nc *Conn) subscribe(subj, queue string, cb MsgHandler, ch chan *Msg, isSync bool, js *jsSub) (*Subscription, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.subscribeLocked(subj, queue, cb, ch, isSync, js)
}
func (nc *Conn) subscribeLocked(subj, queue string, cb MsgHandler, ch chan *Msg, isSync bool, js *jsSub) (*Subscription, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
if badSubject(subj) {
return nil, ErrBadSubject
}
if queue != "" && badQueue(queue) {
return nil, ErrBadQueueName
}
// Check for some error conditions.
if nc.isClosed() {
return nil, ErrConnectionClosed
}
if nc.isDraining() {
return nil, ErrConnectionDraining
}
if cb == nil && ch == nil {
return nil, ErrBadSubscription
}
sub := &Subscription{Subject: subj, Queue: queue, mcb: cb, conn: nc, jsi: js}
// Set pending limits.
if ch != nil {
sub.pMsgsLimit = cap(ch)
} else {
sub.pMsgsLimit = DefaultSubPendingMsgsLimit
}
sub.pBytesLimit = DefaultSubPendingBytesLimit
// If we have an async callback, start up a sub specific
// Go routine to deliver the messages.
if cb != nil {
sub.typ = AsyncSubscription
sub.pCond = sync.NewCond(&sub.mu)
go nc.waitForMsgs(sub)
} else if !isSync {
sub.typ = ChanSubscription
sub.mch = ch
} else { // Sync Subscription
sub.typ = SyncSubscription
sub.mch = ch
}
nc.subsMu.Lock()
nc.ssid++
sub.sid = nc.ssid
nc.subs[sub.sid] = sub
nc.subsMu.Unlock()
// We will send these for all subs when we reconnect
// so that we can suppress here if reconnecting.
if !nc.isReconnecting() {
fmt.Fprintf(nc.bw, subProto, subj, queue, sub.sid)
// Kick flusher if needed.
if len(nc.fch) == 0 {
nc.kickFlusher()
}
}
return sub, nil
}
// NumSubscriptions returns active number of subscriptions.
func (nc *Conn) NumSubscriptions() int {
nc.mu.RLock()
defer nc.mu.RUnlock()
return len(nc.subs)
}
// Lock for nc should be held here upon entry
func (nc *Conn) removeSub(s *Subscription) {
nc.subsMu.Lock()
delete(nc.subs, s.sid)
nc.subsMu.Unlock()
s.mu.Lock()
defer s.mu.Unlock()
// Release callers on NextMsg for SyncSubscription only
if s.mch != nil && s.typ == SyncSubscription {
close(s.mch)
}
s.mch = nil
// Mark as invalid
s.closed = true
if s.pCond != nil {
s.pCond.Broadcast()
}
}
// SubscriptionType is the type of the Subscription.
type SubscriptionType int
// The different types of subscription types.
const (
AsyncSubscription = SubscriptionType(iota)
SyncSubscription
ChanSubscription
NilSubscription
)
// Type returns the type of Subscription.
func (s *Subscription) Type() SubscriptionType {
if s == nil {
return NilSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
return s.typ
}
// IsValid returns a boolean indicating whether the subscription
// is still active. This will return false if the subscription has
// already been closed.
func (s *Subscription) IsValid() bool {
if s == nil {
return false
}
s.mu.Lock()
defer s.mu.Unlock()
return s.conn != nil && !s.closed
}
// Drain will remove interest but continue callbacks until all messages
// have been processed.
func (s *Subscription) Drain() error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
conn := s.conn
s.mu.Unlock()
if conn == nil {
return ErrBadSubscription
}
return conn.unsubscribe(s, 0, true)
}
// Unsubscribe will remove interest in the given subject.
func (s *Subscription) Unsubscribe() error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
conn := s.conn
closed := s.closed
s.mu.Unlock()
if conn == nil || conn.IsClosed() {
return ErrConnectionClosed
}
if closed {
return ErrBadSubscription
}
if conn.IsDraining() {
return ErrConnectionDraining
}
return conn.unsubscribe(s, 0, false)
}
// checkDrained will watch for a subscription to be fully drained
// and then remove it.
func (nc *Conn) checkDrained(sub *Subscription) {
if nc == nil || sub == nil {
return
}
// This allows us to know that whatever we have in the client pending
// is correct and the server will not send additional information.
nc.Flush()
// Once we are here we just wait for Pending to reach 0 or
// any other state to exit this go routine.
for {
// check connection is still valid.
if nc.IsClosed() {
return
}
// Check subscription state
sub.mu.Lock()
conn := sub.conn
closed := sub.closed
pMsgs := sub.pMsgs
sub.mu.Unlock()
if conn == nil || closed || pMsgs == 0 {
nc.mu.Lock()
nc.removeSub(sub)
nc.mu.Unlock()
return
}
time.Sleep(100 * time.Millisecond)
}
}
// AutoUnsubscribe will issue an automatic Unsubscribe that is
// processed by the server when max messages have been received.
// This can be useful when sending a request to an unknown number
// of subscribers.
func (s *Subscription) AutoUnsubscribe(max int) error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
conn := s.conn
closed := s.closed
s.mu.Unlock()
if conn == nil || closed {
return ErrBadSubscription
}
return conn.unsubscribe(s, max, false)
}
// unsubscribe performs the low level unsubscribe to the server.
// Use Subscription.Unsubscribe()
func (nc *Conn) unsubscribe(sub *Subscription, max int, drainMode bool) error {
// Check whether it is a JetStream sub and should clean up consumers.
sub.mu.Lock()
jsi := sub.jsi
sub.mu.Unlock()
if jsi != nil {
err := jsi.unsubscribe(drainMode)
if err != nil {
return err
}
}
nc.mu.Lock()
// ok here, but defer is expensive
defer nc.mu.Unlock()
defer nc.kickFlusher()
if nc.isClosed() {
return ErrConnectionClosed
}
nc.subsMu.RLock()
s := nc.subs[sub.sid]
nc.subsMu.RUnlock()
// Already unsubscribed
if s == nil {
return nil
}
maxStr := _EMPTY_
if max > 0 {
s.max = uint64(max)
maxStr = strconv.Itoa(max)
} else if !drainMode {
nc.removeSub(s)
}
if drainMode {
go nc.checkDrained(sub)
}
// We will send these for all subs when we reconnect
// so that we can suppress here.
if !nc.isReconnecting() {
fmt.Fprintf(nc.bw, unsubProto, s.sid, maxStr)
}
return nil
}
// NextMsg will return the next message available to a synchronous subscriber
// or block until one is available. An error is returned if the subscription is invalid (ErrBadSubscription),
// the connection is closed (ErrConnectionClosed), or the timeout is reached (ErrTimeout).
func (s *Subscription) NextMsg(timeout time.Duration) (*Msg, error) {
if s == nil {
return nil, ErrBadSubscription
}
s.mu.Lock()
err := s.validateNextMsgState()
if err != nil {
s.mu.Unlock()
return nil, err
}
// snapshot
mch := s.mch
s.mu.Unlock()
var ok bool
var msg *Msg
// If something is available right away, let's optimize that case.
select {
case msg, ok = <-mch:
if !ok {
return nil, s.getNextMsgErr()
}
if err := s.processNextMsgDelivered(msg); err != nil {
return nil, err
} else {
return msg, nil
}
default:
}
// If we are here a message was not immediately available, so lets loop
// with a timeout.
t := globalTimerPool.Get(timeout)
defer globalTimerPool.Put(t)
select {
case msg, ok = <-mch:
if !ok {
return nil, s.getNextMsgErr()
}
if err := s.processNextMsgDelivered(msg); err != nil {
return nil, err
}
case <-t.C:
return nil, ErrTimeout
}
return msg, nil
}
// validateNextMsgState checks whether the subscription is in a valid
// state to call NextMsg and be delivered another message synchronously.
// This should be called while holding the lock.
func (s *Subscription) validateNextMsgState() error {
if s.connClosed {
return ErrConnectionClosed
}
if s.mch == nil {
if s.max > 0 && s.delivered >= s.max {
return ErrMaxMessages
} else if s.closed {
return ErrBadSubscription
}
}
if s.mcb != nil {
return ErrSyncSubRequired
}
if s.sc {
s.sc = false
return ErrSlowConsumer
}
return nil
}
// This is called when the sync channel has been closed.
// The error returned will be either connection or subscription
// closed depending on what caused NextMsg() to fail.
func (s *Subscription) getNextMsgErr() error {
s.mu.Lock()
defer s.mu.Unlock()
if s.connClosed {
return ErrConnectionClosed
}
return ErrBadSubscription
}
// processNextMsgDelivered takes a message and applies the needed
// accounting to the stats from the subscription, returning an
// error in case we have the maximum number of messages have been
// delivered already. It should not be called while holding the lock.
func (s *Subscription) processNextMsgDelivered(msg *Msg) error {
s.mu.Lock()
nc := s.conn
max := s.max
jsi := s.jsi
// Update some stats.
s.delivered++
delivered := s.delivered
if s.typ == SyncSubscription {
s.pMsgs--
s.pBytes -= len(msg.Data)
}
s.mu.Unlock()
if max > 0 {
if delivered > max {
return ErrMaxMessages
}
// Remove subscription if we have reached max.
if delivered == max {
nc.mu.Lock()
nc.removeSub(s)
nc.mu.Unlock()
}
}
// In case this is a JetStream message and in pull mode
// then check whether it is an JS API error.
if jsi != nil && jsi.pull > 0 && len(msg.Data) == 0 && msg.Header.Get(statusHdr) == noResponders {
return ErrNoResponders
}
return nil
}
// Queued returns the number of queued messages in the client for this subscription.
// DEPRECATED: Use Pending()
func (s *Subscription) QueuedMsgs() (int, error) {
m, _, err := s.Pending()
return int(m), err
}
// Pending returns the number of queued messages and queued bytes in the client for this subscription.
func (s *Subscription) Pending() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgs, s.pBytes, nil
}
// MaxPending returns the maximum number of queued messages and queued bytes seen so far.
func (s *Subscription) MaxPending() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgsMax, s.pBytesMax, nil
}
// ClearMaxPending resets the maximums seen so far.
func (s *Subscription) ClearMaxPending() error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return ErrBadSubscription
}
if s.typ == ChanSubscription {
return ErrTypeSubscription
}
s.pMsgsMax, s.pBytesMax = 0, 0
return nil
}
// Pending Limits
const (
// DefaultSubPendingMsgsLimit will be 512k msgs.
DefaultSubPendingMsgsLimit = 512 * 1024
// DefaultSubPendingBytesLimit is 64MB
DefaultSubPendingBytesLimit = 64 * 1024 * 1024
)
// PendingLimits returns the current limits for this subscription.
// If no error is returned, a negative value indicates that the
// given metric is not limited.
func (s *Subscription) PendingLimits() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgsLimit, s.pBytesLimit, nil
}
// SetPendingLimits sets the limits for pending msgs and bytes for this subscription.
// Zero is not allowed. Any negative value means that the given metric is not limited.
func (s *Subscription) SetPendingLimits(msgLimit, bytesLimit int) error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return ErrBadSubscription
}
if s.typ == ChanSubscription {
return ErrTypeSubscription
}
if msgLimit == 0 || bytesLimit == 0 {
return ErrInvalidArg
}
s.pMsgsLimit, s.pBytesLimit = msgLimit, bytesLimit
return nil
}
// Delivered returns the number of delivered messages for this subscription.
func (s *Subscription) Delivered() (int64, error) {
if s == nil {
return -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return -1, ErrBadSubscription
}
return int64(s.delivered), nil
}
// Dropped returns the number of known dropped messages for this subscription.
// This will correspond to messages dropped by violations of PendingLimits. If
// the server declares the connection a SlowConsumer, this number may not be
// valid.
func (s *Subscription) Dropped() (int, error) {
if s == nil {
return -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil || s.closed {
return -1, ErrBadSubscription
}
return s.dropped, nil
}
// Respond allows a convenient way to respond to requests in service based subscriptions.
func (m *Msg) Respond(data []byte) error {
if m == nil || m.Sub == nil {
return ErrMsgNotBound
}
if m.Reply == "" {
return ErrMsgNoReply
}
m.Sub.mu.Lock()
nc := m.Sub.conn
m.Sub.mu.Unlock()
// No need to check the connection here since the call to publish will do all the checking.
return nc.Publish(m.Reply, data)
}
// RespondMsg allows a convenient way to respond to requests in service based subscriptions that might include headers
func (m *Msg) RespondMsg(msg *Msg) error {
if m == nil || m.Sub == nil {
return ErrMsgNotBound
}
if m.Reply == "" {
return ErrMsgNoReply
}
msg.Subject = m.Reply
m.Sub.mu.Lock()
nc := m.Sub.conn
m.Sub.mu.Unlock()
// No need to check the connection here since the call to publish will do all the checking.
return nc.PublishMsg(msg)
}
// FIXME: This is a hack
// removeFlushEntry is needed when we need to discard queued up responses
// for our pings as part of a flush call. This happens when we have a flush
// call outstanding and we call close.
func (nc *Conn) removeFlushEntry(ch chan struct{}) bool {
nc.mu.Lock()
defer nc.mu.Unlock()
if nc.pongs == nil {
return false
}
for i, c := range nc.pongs {
if c == ch {
nc.pongs[i] = nil
return true
}
}
return false
}
// The lock must be held entering this function.
func (nc *Conn) sendPing(ch chan struct{}) {
nc.pongs = append(nc.pongs, ch)
nc.bw.WriteString(pingProto)
// Flush in place.
nc.bw.Flush()
}
// This will fire periodically and send a client origin
// ping to the server. Will also check that we have received
// responses from the server.
func (nc *Conn) processPingTimer() {
nc.mu.Lock()
if nc.status != CONNECTED {
nc.mu.Unlock()
return
}
// Check for violation
nc.pout++
if nc.pout > nc.Opts.MaxPingsOut {
nc.mu.Unlock()
nc.processOpErr(ErrStaleConnection)
return
}
nc.sendPing(nil)
nc.ptmr.Reset(nc.Opts.PingInterval)
nc.mu.Unlock()
}
// FlushTimeout allows a Flush operation to have an associated timeout.
func (nc *Conn) FlushTimeout(timeout time.Duration) (err error) {
if nc == nil {
return ErrInvalidConnection
}
if timeout <= 0 {
return ErrBadTimeout
}
nc.mu.Lock()
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
t := globalTimerPool.Get(timeout)
defer globalTimerPool.Put(t)
// Create a buffered channel to prevent chan send to block
// in processPong() if this code here times out just when
// PONG was received.
ch := make(chan struct{}, 1)
nc.sendPing(ch)
nc.mu.Unlock()
select {
case _, ok := <-ch:
if !ok {
err = ErrConnectionClosed
} else {
close(ch)
}
case <-t.C:
err = ErrTimeout
}
if err != nil {
nc.removeFlushEntry(ch)
}
return
}
// RTT calculates the round trip time between this client and the server.
func (nc *Conn) RTT() (time.Duration, error) {
if nc.IsClosed() {
return 0, ErrConnectionClosed
}
if nc.IsReconnecting() {
return 0, ErrDisconnected
}
start := time.Now()
if err := nc.FlushTimeout(10 * time.Second); err != nil {
return 0, err
}
return time.Since(start), nil
}
// Flush will perform a round trip to the server and return when it
// receives the internal reply.
func (nc *Conn) Flush() error {
return nc.FlushTimeout(10 * time.Second)
}
// Buffered will return the number of bytes buffered to be sent to the server.
// FIXME(dlc) take into account disconnected state.
func (nc *Conn) Buffered() (int, error) {
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.isClosed() || nc.bw == nil {
return -1, ErrConnectionClosed
}
return nc.bw.Buffered(), nil
}
// resendSubscriptions will send our subscription state back to the
// server. Used in reconnects
func (nc *Conn) resendSubscriptions() {
// Since we are going to send protocols to the server, we don't want to
// be holding the subsMu lock (which is used in processMsg). So copy
// the subscriptions in a temporary array.
nc.subsMu.RLock()
subs := make([]*Subscription, 0, len(nc.subs))
for _, s := range nc.subs {
subs = append(subs, s)
}
nc.subsMu.RUnlock()
for _, s := range subs {
adjustedMax := uint64(0)
s.mu.Lock()
if s.max > 0 {
if s.delivered < s.max {
adjustedMax = s.max - s.delivered
}
// adjustedMax could be 0 here if the number of delivered msgs
// reached the max, if so unsubscribe.
if adjustedMax == 0 {
s.mu.Unlock()
fmt.Fprintf(nc.bw, unsubProto, s.sid, _EMPTY_)
continue
}
}
s.mu.Unlock()
fmt.Fprintf(nc.bw, subProto, s.Subject, s.Queue, s.sid)
if adjustedMax > 0 {
maxStr := strconv.Itoa(int(adjustedMax))
fmt.Fprintf(nc.bw, unsubProto, s.sid, maxStr)
}
}
}
// This will clear any pending flush calls and release pending calls.
// Lock is assumed to be held by the caller.
func (nc *Conn) clearPendingFlushCalls() {
// Clear any queued pongs, e.g. pending flush calls.
for _, ch := range nc.pongs {
if ch != nil {
close(ch)
}
}
nc.pongs = nil
}
// This will clear any pending Request calls.
// Lock is assumed to be held by the caller.
func (nc *Conn) clearPendingRequestCalls() {
if nc.respMap == nil {
return
}
for key, ch := range nc.respMap {
if ch != nil {
close(ch)
delete(nc.respMap, key)
}
}
}
// Low level close call that will do correct cleanup and set
// desired status. Also controls whether user defined callbacks
// will be triggered. The lock should not be held entering this
// function. This function will handle the locking manually.
func (nc *Conn) close(status Status, doCBs bool, err error) {
nc.mu.Lock()
if nc.isClosed() {
nc.status = status
nc.mu.Unlock()
return
}
nc.status = CLOSED
// Kick the Go routines so they fall out.
nc.kickFlusher()
// If the reconnect timer is waiting between a reconnect attempt,
// this will kick it out.
if nc.rqch != nil {
close(nc.rqch)
nc.rqch = nil
}
// Clear any queued pongs, e.g. pending flush calls.
nc.clearPendingFlushCalls()
// Clear any queued and blocking Requests.
nc.clearPendingRequestCalls()
// Stop ping timer if set.
nc.stopPingTimer()
nc.ptmr = nil
// Need to close and set tcp conn to nil if reconnect loop has stopped,
// otherwise we would incorrectly invoke Disconnect handler (if set)
// down below.
if nc.ar && nc.conn != nil {
nc.conn.Close()
nc.conn = nil
} else if nc.conn != nil {
// Go ahead and make sure we have flushed the outbound
nc.bw.Flush()
defer nc.conn.Close()
}
// Close sync subscriber channels and release any
// pending NextMsg() calls.
nc.subsMu.Lock()
for _, s := range nc.subs {
s.mu.Lock()
// Release callers on NextMsg for SyncSubscription only
if s.mch != nil && s.typ == SyncSubscription {
close(s.mch)
}
s.mch = nil
// Mark as invalid, for signaling to deliverMsgs
s.closed = true
// Mark connection closed in subscription
s.connClosed = true
// If we have an async subscription, signals it to exit
if s.typ == AsyncSubscription && s.pCond != nil {
s.pCond.Signal()
}
s.mu.Unlock()
}
nc.subs = nil
nc.subsMu.Unlock()
nc.status = status
// Perform appropriate callback if needed for a disconnect.
if doCBs {
if nc.conn != nil {
if nc.Opts.DisconnectedErrCB != nil {
nc.ach.push(func() { nc.Opts.DisconnectedErrCB(nc, err) })
} else if nc.Opts.DisconnectedCB != nil {
nc.ach.push(func() { nc.Opts.DisconnectedCB(nc) })
}
}
if nc.Opts.ClosedCB != nil {
nc.ach.push(func() { nc.Opts.ClosedCB(nc) })
}
}
// If this is terminal, then we have to notify the asyncCB handler that
// it can exit once all async cbs have been dispatched.
if status == CLOSED {
nc.ach.close()
}
nc.mu.Unlock()
}
// Close will close the connection to the server. This call will release
// all blocking calls, such as Flush() and NextMsg()
func (nc *Conn) Close() {
if nc != nil {
nc.close(CLOSED, !nc.Opts.NoCallbacksAfterClientClose, nil)
}
}
// IsClosed tests if a Conn has been closed.
func (nc *Conn) IsClosed() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.isClosed()
}
// IsReconnecting tests if a Conn is reconnecting.
func (nc *Conn) IsReconnecting() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.isReconnecting()
}
// IsConnected tests if a Conn is connected.
func (nc *Conn) IsConnected() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.isConnected()
}
// drainConnection will run in a separate Go routine and will
// flush all publishes and drain all active subscriptions.
func (nc *Conn) drainConnection() {
// Snapshot subs list.
nc.mu.Lock()
// Check again here if we are in a state to not process.
if nc.isClosed() {
nc.mu.Unlock()
return
}
if nc.isConnecting() || nc.isReconnecting() {
nc.mu.Unlock()
// Move to closed state.
nc.close(CLOSED, true, nil)
return
}
subs := make([]*Subscription, 0, len(nc.subs))
for _, s := range nc.subs {
if s == nc.respMux {
// Skip since might be in use while messages
// are being processed (can miss responses).
continue
}
subs = append(subs, s)
}
errCB := nc.Opts.AsyncErrorCB
drainWait := nc.Opts.DrainTimeout
respMux := nc.respMux
nc.mu.Unlock()
// for pushing errors with context.
pushErr := func(err error) {
nc.mu.Lock()
nc.err = err
if errCB != nil {
nc.ach.push(func() { errCB(nc, nil, err) })
}
nc.mu.Unlock()
}
// Do subs first, skip request handler if present.
for _, s := range subs {
if err := s.Drain(); err != nil {
// We will notify about these but continue.
pushErr(err)
}
}
// Wait for the subscriptions to drop to zero.
timeout := time.Now().Add(drainWait)
var min int
if respMux != nil {
min = 1
} else {
min = 0
}
for time.Now().Before(timeout) {
if nc.NumSubscriptions() == min {
break
}
time.Sleep(10 * time.Millisecond)
}
// In case there was a request/response handler
// then need to call drain at the end.
if respMux != nil {
if err := respMux.Drain(); err != nil {
// We will notify about these but continue.
pushErr(err)
}
for time.Now().Before(timeout) {
if nc.NumSubscriptions() == 0 {
break
}
time.Sleep(10 * time.Millisecond)
}
}
// Check if we timed out.
if nc.NumSubscriptions() != 0 {
pushErr(ErrDrainTimeout)
}
// Flip State
nc.mu.Lock()
nc.status = DRAINING_PUBS
nc.mu.Unlock()
// Do publish drain via Flush() call.
err := nc.FlushTimeout(5 * time.Second)
if err != nil {
pushErr(err)
nc.close(CLOSED, true, nil)
return
}
// Move to closed state.
nc.close(CLOSED, true, nil)
}
// Drain will put a connection into a drain state. All subscriptions will
// immediately be put into a drain state. Upon completion, the publishers
// will be drained and can not publish any additional messages. Upon draining
// of the publishers, the connection will be closed. Use the ClosedCB()
// option to know when the connection has moved from draining to closed.
func (nc *Conn) Drain() error {
nc.mu.Lock()
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
if nc.isConnecting() || nc.isReconnecting() {
nc.mu.Unlock()
nc.close(CLOSED, true, nil)
return ErrConnectionReconnecting
}
if nc.isDraining() {
nc.mu.Unlock()
return nil
}
nc.status = DRAINING_SUBS
go nc.drainConnection()
nc.mu.Unlock()
return nil
}
// IsDraining tests if a Conn is in the draining state.
func (nc *Conn) IsDraining() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.isDraining()
}
// caller must lock
func (nc *Conn) getServers(implicitOnly bool) []string {
poolSize := len(nc.srvPool)
var servers = make([]string, 0)
for i := 0; i < poolSize; i++ {
if implicitOnly && !nc.srvPool[i].isImplicit {
continue
}
url := nc.srvPool[i].url
servers = append(servers, fmt.Sprintf("%s://%s", url.Scheme, url.Host))
}
return servers
}
// Servers returns the list of known server urls, including additional
// servers discovered after a connection has been established. If
// authentication is enabled, use UserInfo or Token when connecting with
// these urls.
func (nc *Conn) Servers() []string {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.getServers(false)
}
// DiscoveredServers returns only the server urls that have been discovered
// after a connection has been established. If authentication is enabled,
// use UserInfo or Token when connecting with these urls.
func (nc *Conn) DiscoveredServers() []string {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.getServers(true)
}
// Status returns the current state of the connection.
func (nc *Conn) Status() Status {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.status
}
// Test if Conn has been closed Lock is assumed held.
func (nc *Conn) isClosed() bool {
return nc.status == CLOSED
}
// Test if Conn is in the process of connecting
func (nc *Conn) isConnecting() bool {
return nc.status == CONNECTING
}
// Test if Conn is being reconnected.
func (nc *Conn) isReconnecting() bool {
return nc.status == RECONNECTING
}
// Test if Conn is connected or connecting.
func (nc *Conn) isConnected() bool {
return nc.status == CONNECTED || nc.isDraining()
}
// Test if Conn is in the draining state.
func (nc *Conn) isDraining() bool {
return nc.status == DRAINING_SUBS || nc.status == DRAINING_PUBS
}
// Test if Conn is in the draining state for pubs.
func (nc *Conn) isDrainingPubs() bool {
return nc.status == DRAINING_PUBS
}
// Stats will return a race safe copy of the Statistics section for the connection.
func (nc *Conn) Stats() Statistics {
// Stats are updated either under connection's mu or with atomic operations
// for inbound stats in processMsg().
nc.mu.Lock()
stats := Statistics{
InMsgs: atomic.LoadUint64(&nc.InMsgs),
InBytes: atomic.LoadUint64(&nc.InBytes),
OutMsgs: nc.OutMsgs,
OutBytes: nc.OutBytes,
Reconnects: nc.Reconnects,
}
nc.mu.Unlock()
return stats
}
// MaxPayload returns the size limit that a message payload can have.
// This is set by the server configuration and delivered to the client
// upon connect.
func (nc *Conn) MaxPayload() int64 {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.info.MaxPayload
}
// HeadersSupported will return if the server supports headers
func (nc *Conn) HeadersSupported() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.info.Headers
}
// AuthRequired will return if the connected server requires authorization.
func (nc *Conn) AuthRequired() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.info.AuthRequired
}
// TLSRequired will return if the connected server requires TLS connections.
func (nc *Conn) TLSRequired() bool {
nc.mu.RLock()
defer nc.mu.RUnlock()
return nc.info.TLSRequired
}
// Barrier schedules the given function `f` to all registered asynchronous
// subscriptions.
// Only the last subscription to see this barrier will invoke the function.
// If no subscription is registered at the time of this call, `f()` is invoked
// right away.
// ErrConnectionClosed is returned if the connection is closed prior to
// the call.
func (nc *Conn) Barrier(f func()) error {
nc.mu.Lock()
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
nc.subsMu.Lock()
// Need to figure out how many non chan subscriptions there are
numSubs := 0
for _, sub := range nc.subs {
if sub.typ == AsyncSubscription {
numSubs++
}
}
if numSubs == 0 {
nc.subsMu.Unlock()
nc.mu.Unlock()
f()
return nil
}
barrier := &barrierInfo{refs: int64(numSubs), f: f}
for _, sub := range nc.subs {
sub.mu.Lock()
if sub.mch == nil {
msg := &Msg{barrier: barrier}
// Push onto the async pList
if sub.pTail != nil {
sub.pTail.next = msg
} else {
sub.pHead = msg
sub.pCond.Signal()
}
sub.pTail = msg
}
sub.mu.Unlock()
}
nc.subsMu.Unlock()
nc.mu.Unlock()
return nil
}
// GetClientIP returns the client IP as known by the server.
// Supported as of server version 2.1.6.
func (nc *Conn) GetClientIP() (net.IP, error) {
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.isClosed() {
return nil, ErrConnectionClosed
}
if nc.info.ClientIP == "" {
return nil, ErrClientIPNotSupported
}
ip := net.ParseIP(nc.info.ClientIP)
return ip, nil
}
// GetClientID returns the client ID assigned by the server to which
// the client is currently connected to. Note that the value may change if
// the client reconnects.
// This function returns ErrClientIDNotSupported if the server is of a
// version prior to 1.2.0.
func (nc *Conn) GetClientID() (uint64, error) {
nc.mu.RLock()
defer nc.mu.RUnlock()
if nc.isClosed() {
return 0, ErrConnectionClosed
}
if nc.info.CID == 0 {
return 0, ErrClientIDNotSupported
}
return nc.info.CID, nil
}
// NkeyOptionFromSeed will load an nkey pair from a seed file.
// It will return the NKey Option and will handle
// signing of nonce challenges from the server. It will take
// care to not hold keys in memory and to wipe memory.
func NkeyOptionFromSeed(seedFile string) (Option, error) {
kp, err := nkeyPairFromSeedFile(seedFile)
if err != nil {
return nil, err
}
// Wipe our key on exit.
defer kp.Wipe()
pub, err := kp.PublicKey()
if err != nil {
return nil, err
}
if !nkeys.IsValidPublicUserKey(pub) {
return nil, fmt.Errorf("nats: Not a valid nkey user seed")
}
sigCB := func(nonce []byte) ([]byte, error) {
return sigHandler(nonce, seedFile)
}
return Nkey(string(pub), sigCB), nil
}
// Just wipe slice with 'x', for clearing contents of creds or nkey seed file.
func wipeSlice(buf []byte) {
for i := range buf {
buf[i] = 'x'
}
}
func userFromFile(userFile string) (string, error) {
path, err := expandPath(userFile)
if err != nil {
return _EMPTY_, fmt.Errorf("nats: %v", err)
}
contents, err := ioutil.ReadFile(path)
if err != nil {
return _EMPTY_, fmt.Errorf("nats: %v", err)
}
defer wipeSlice(contents)
return nkeys.ParseDecoratedJWT(contents)
}
func homeDir() (string, error) {
if runtime.GOOS == "windows" {
homeDrive, homePath := os.Getenv("HOMEDRIVE"), os.Getenv("HOMEPATH")
userProfile := os.Getenv("USERPROFILE")
var home string
if homeDrive == "" || homePath == "" {
if userProfile == "" {
return _EMPTY_, errors.New("nats: failed to get home dir, require %HOMEDRIVE% and %HOMEPATH% or %USERPROFILE%")
}
home = userProfile
} else {
home = filepath.Join(homeDrive, homePath)
}
return home, nil
}
home := os.Getenv("HOME")
if home == "" {
return _EMPTY_, errors.New("nats: failed to get home dir, require $HOME")
}
return home, nil
}
func expandPath(p string) (string, error) {
p = os.ExpandEnv(p)
if !strings.HasPrefix(p, "~") {
return p, nil
}
home, err := homeDir()
if err != nil {
return _EMPTY_, err
}
return filepath.Join(home, p[1:]), nil
}
func nkeyPairFromSeedFile(seedFile string) (nkeys.KeyPair, error) {
contents, err := ioutil.ReadFile(seedFile)
if err != nil {
return nil, fmt.Errorf("nats: %v", err)
}
defer wipeSlice(contents)
return nkeys.ParseDecoratedNKey(contents)
}
// Sign authentication challenges from the server.
// Do not keep private seed in memory.
func sigHandler(nonce []byte, seedFile string) ([]byte, error) {
kp, err := nkeyPairFromSeedFile(seedFile)
if err != nil {
return nil, err
}
// Wipe our key on exit.
defer kp.Wipe()
sig, _ := kp.Sign(nonce)
return sig, nil
}
type timeoutWriter struct {
timeout time.Duration
conn net.Conn
err error
}
// Write implements the io.Writer interface.
func (tw *timeoutWriter) Write(p []byte) (int, error) {
if tw.err != nil {
return 0, tw.err
}
var n int
tw.conn.SetWriteDeadline(time.Now().Add(tw.timeout))
n, tw.err = tw.conn.Write(p)
tw.conn.SetWriteDeadline(time.Time{})
return n, tw.err
}