tile38/internal/collection/collection.go

742 lines
17 KiB
Go

package collection
import (
"runtime"
"github.com/tidwall/btree"
"github.com/tidwall/geoindex"
"github.com/tidwall/geojson"
"github.com/tidwall/geojson/geo"
"github.com/tidwall/geojson/geometry"
"github.com/tidwall/rbang"
"github.com/tidwall/tile38/internal/deadline"
"github.com/tidwall/tinybtree"
)
// yieldStep forces the iterator to yield goroutine every 255 steps.
const yieldStep = 255
// Cursor allows for quickly paging through Scan, Within, Intersects, and Nearby
type Cursor interface {
Offset() uint64
Step(count uint64)
}
type itemT struct {
id string
obj geojson.Object
}
func (item *itemT) Less(other btree.Item, ctx interface{}) bool {
value1 := item.obj.String()
value2 := other.(*itemT).obj.String()
if value1 < value2 {
return true
}
if value1 > value2 {
return false
}
// the values match so we'll compare IDs, which are always unique.
return item.id < other.(*itemT).id
}
// Collection represents a collection of geojson objects.
type Collection struct {
items tinybtree.BTree // items sorted by keys
index *geoindex.Index // items geospatially indexed
values *btree.BTree // items sorted by value+key
fieldMap map[string]int
fieldValues map[string][]float64
weight int
points int
objects int // geometry count
nobjects int // non-geometry count
}
var counter uint64
// New creates an empty collection
func New() *Collection {
col := &Collection{
index: geoindex.Wrap(&rbang.RTree{}),
values: btree.New(32, nil),
fieldMap: make(map[string]int),
}
return col
}
func (c *Collection) setFieldValues(id string, values []float64) {
if c.fieldValues == nil {
c.fieldValues = make(map[string][]float64)
}
c.fieldValues[id] = values
}
func (c *Collection) getFieldValues(id string) (values []float64) {
if c.fieldValues == nil {
return nil
}
return c.fieldValues[id]
}
func (c *Collection) deleteFieldValues(id string) {
if c.fieldValues != nil {
delete(c.fieldValues, id)
}
}
// Count returns the number of objects in collection.
func (c *Collection) Count() int {
return c.objects + c.nobjects
}
// StringCount returns the number of string values.
func (c *Collection) StringCount() int {
return c.nobjects
}
// PointCount returns the number of points (lat/lon coordinates) in collection.
func (c *Collection) PointCount() int {
return c.points
}
// TotalWeight calculates the in-memory cost of the collection in bytes.
func (c *Collection) TotalWeight() int {
return c.weight
}
// Bounds returns the bounds of all the items in the collection.
func (c *Collection) Bounds() (minX, minY, maxX, maxY float64) {
min, max := c.index.Bounds()
if len(min) >= 2 && len(max) >= 2 {
return min[0], min[1], max[0], max[1]
}
return
}
func objIsSpatial(obj geojson.Object) bool {
_, ok := obj.(geojson.Spatial)
return ok
}
func (c *Collection) objWeight(item *itemT) int {
var weight int
if objIsSpatial(item.obj) {
weight = item.obj.NumPoints() * 16
} else {
weight = len(item.obj.String())
}
return weight + len(c.getFieldValues(item.id))*8 + len(item.id)
}
func (c *Collection) indexDelete(item *itemT) {
if !item.obj.Empty() {
rect := item.obj.Rect()
c.index.Delete(
[2]float64{rect.Min.X, rect.Min.Y},
[2]float64{rect.Max.X, rect.Max.Y},
item)
}
}
func (c *Collection) indexInsert(item *itemT) {
if !item.obj.Empty() {
rect := item.obj.Rect()
c.index.Insert(
[2]float64{rect.Min.X, rect.Min.Y},
[2]float64{rect.Max.X, rect.Max.Y},
item)
}
}
// Set adds or replaces an object in the collection and returns the fields
// array. If an item with the same id is already in the collection then the
// new item will adopt the old item's fields.
// The fields argument is optional.
// The return values are the old object, the old fields, and the new fields
func (c *Collection) Set(
id string, obj geojson.Object, fields []string, values []float64,
) (
oldObject geojson.Object, oldFields []float64, newFields []float64,
) {
newItem := &itemT{id: id, obj: obj}
// add the new item to main btree and remove the old one if needed
oldItem, ok := c.items.Set(id, newItem)
if ok {
oldItem := oldItem.(*itemT)
// the old item was removed, now let's remove it from the rtree/btree.
if objIsSpatial(oldItem.obj) {
c.indexDelete(oldItem)
c.objects--
} else {
c.values.Delete(oldItem)
c.nobjects--
}
// decrement the point count
c.points -= oldItem.obj.NumPoints()
// decrement the weights
c.weight -= c.objWeight(oldItem)
// references
oldObject = oldItem.obj
oldFields = c.getFieldValues(id)
newFields = oldFields
}
// insert the new item into the rtree or strings tree.
if objIsSpatial(newItem.obj) {
c.indexInsert(newItem)
c.objects++
} else {
c.values.ReplaceOrInsert(newItem)
c.nobjects++
}
// increment the point count
c.points += newItem.obj.NumPoints()
// add the new weights
c.weight += c.objWeight(newItem)
if fields == nil {
if len(values) > 0 {
// directly set the field values, update weight
c.weight -= len(newFields) * 8
newFields = values
c.setFieldValues(id, newFields)
c.weight += len(newFields) * 8
}
} else {
// map field name to value
for i, field := range fields {
c.setField(newItem, field, values[i])
}
newFields = c.getFieldValues(id)
}
return oldObject, oldFields, newFields
}
// Delete removes an object and returns it.
// If the object does not exist then the 'ok' return value will be false.
func (c *Collection) Delete(id string) (
obj geojson.Object, fields []float64, ok bool,
) {
oldItemV, ok := c.items.Delete(id)
if !ok {
return nil, nil, false
}
oldItem := oldItemV.(*itemT)
if objIsSpatial(oldItem.obj) {
if !oldItem.obj.Empty() {
c.indexDelete(oldItem)
}
c.objects--
} else {
c.values.Delete(oldItem)
c.nobjects--
}
c.weight -= c.objWeight(oldItem)
c.points -= oldItem.obj.NumPoints()
fields = c.getFieldValues(id)
c.deleteFieldValues(id)
return oldItem.obj, fields, true
}
// Get returns an object.
// If the object does not exist then the 'ok' return value will be false.
func (c *Collection) Get(id string) (
obj geojson.Object, fields []float64, ok bool,
) {
itemV, ok := c.items.Get(id)
if !ok {
return nil, nil, false
}
item := itemV.(*itemT)
return item.obj, c.getFieldValues(id), true
}
// SetField set a field value for an object and returns that object.
// If the object does not exist then the 'ok' return value will be false.
func (c *Collection) SetField(id, field string, value float64) (
obj geojson.Object, fields []float64, updated bool, ok bool,
) {
itemV, ok := c.items.Get(id)
if !ok {
return nil, nil, false, false
}
item := itemV.(*itemT)
updated = c.setField(item, field, value)
return item.obj, c.getFieldValues(id), updated, true
}
// SetFields is similar to SetField, just setting multiple fields at once
func (c *Collection) SetFields(
id string, inFields []string, inValues []float64,
) (obj geojson.Object, fields []float64, updatedCount int, ok bool) {
itemV, ok := c.items.Get(id)
if !ok {
return nil, nil, 0, false
}
item := itemV.(*itemT)
for idx, field := range inFields {
if c.setField(item, field, inValues[idx]) {
updatedCount++
}
}
return item.obj, c.getFieldValues(id), updatedCount, true
}
func (c *Collection) setField(item *itemT, field string, value float64) (
updated bool,
) {
idx, ok := c.fieldMap[field]
if !ok {
idx = len(c.fieldMap)
c.fieldMap[field] = idx
}
fields := c.getFieldValues(item.id)
c.weight -= len(fields) * 8
for idx >= len(fields) {
fields = append(fields, 0)
}
c.weight += len(fields) * 8
ovalue := fields[idx]
fields[idx] = value
c.setFieldValues(item.id, fields)
return ovalue != value
}
// FieldMap return a maps of the field names.
func (c *Collection) FieldMap() map[string]int {
return c.fieldMap
}
// FieldArr return an array representation of the field names.
func (c *Collection) FieldArr() []string {
arr := make([]string, len(c.fieldMap))
for field, i := range c.fieldMap {
arr[i] = field
}
return arr
}
// Scan iterates though the collection ids.
func (c *Collection) Scan(
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(key string, value interface{}) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
iitm := value.(*itemT)
keepon = iterator(iitm.id, iitm.obj, c.getFieldValues(iitm.id))
return keepon
}
if desc {
c.items.Reverse(iter)
} else {
c.items.Scan(iter)
}
return keepon
}
// ScanRange iterates though the collection starting with specified id.
func (c *Collection) ScanRange(
start, end string,
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(key string, value interface{}) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if !desc {
if key >= end {
return false
}
} else {
if key <= end {
return false
}
}
iitm := value.(*itemT)
keepon = iterator(iitm.id, iitm.obj, c.getFieldValues(iitm.id))
return keepon
}
if desc {
c.items.Descend(start, iter)
} else {
c.items.Ascend(start, iter)
}
return keepon
}
// SearchValues iterates though the collection values.
func (c *Collection) SearchValues(
desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(item btree.Item) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
iitm := item.(*itemT)
keepon = iterator(iitm.id, iitm.obj, c.getFieldValues(iitm.id))
return keepon
}
if desc {
c.values.Descend(iter)
} else {
c.values.Ascend(iter)
}
return keepon
}
// SearchValuesRange iterates though the collection values.
func (c *Collection) SearchValuesRange(start, end string, desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(item btree.Item) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
iitm := item.(*itemT)
keepon = iterator(iitm.id, iitm.obj, c.getFieldValues(iitm.id))
return keepon
}
if desc {
c.values.DescendRange(&itemT{obj: String(start)},
&itemT{obj: String(end)}, iter)
} else {
c.values.AscendRange(&itemT{obj: String(start)},
&itemT{obj: String(end)}, iter)
}
return keepon
}
// ScanGreaterOrEqual iterates though the collection starting with specified id.
func (c *Collection) ScanGreaterOrEqual(id string, desc bool,
cursor Cursor,
deadline *deadline.Deadline,
iterator func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var keepon = true
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
iter := func(key string, value interface{}) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
iitm := value.(*itemT)
keepon = iterator(iitm.id, iitm.obj, c.getFieldValues(iitm.id))
return keepon
}
if desc {
c.items.Descend(id, iter)
} else {
c.items.Ascend(id, iter)
}
return keepon
}
func (c *Collection) geoSearch(
rect geometry.Rect,
iter func(id string, obj geojson.Object, fields []float64) bool,
) bool {
alive := true
c.index.Search(
[2]float64{rect.Min.X, rect.Min.Y},
[2]float64{rect.Max.X, rect.Max.Y},
func(_, _ [2]float64, itemv interface{}) bool {
item := itemv.(*itemT)
alive = iter(item.id, item.obj, c.getFieldValues(item.id))
return alive
},
)
return alive
}
func (c *Collection) geoSparse(
obj geojson.Object, sparse uint8,
iter func(id string, obj geojson.Object, fields []float64) (match, ok bool),
) bool {
matches := make(map[string]bool)
alive := true
c.geoSparseInner(obj.Rect(), sparse,
func(id string, o geojson.Object, fields []float64) (
match, ok bool,
) {
ok = true
if !matches[id] {
match, ok = iter(id, o, fields)
if match {
matches[id] = true
}
}
return match, ok
},
)
return alive
}
func (c *Collection) geoSparseInner(
rect geometry.Rect, sparse uint8,
iter func(id string, obj geojson.Object, fields []float64) (match, ok bool),
) bool {
if sparse > 0 {
w := rect.Max.X - rect.Min.X
h := rect.Max.Y - rect.Min.Y
quads := [4]geometry.Rect{
geometry.Rect{
Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y + h/2},
Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Max.Y},
},
geometry.Rect{
Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2},
Max: geometry.Point{X: rect.Max.X, Y: rect.Max.Y},
},
geometry.Rect{
Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y},
Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2},
},
geometry.Rect{
Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y},
Max: geometry.Point{X: rect.Max.X, Y: rect.Min.Y + h/2},
},
}
for _, quad := range quads {
if !c.geoSparseInner(quad, sparse-1, iter) {
return false
}
}
return true
}
alive := true
c.geoSearch(rect,
func(id string, obj geojson.Object, fields []float64) bool {
match, ok := iter(id, obj, fields)
if !ok {
alive = false
return false
}
return !match
},
)
return alive
}
// Within returns all object that are fully contained within an object or
// bounding box. Set obj to nil in order to use the bounding box.
func (c *Collection) Within(
obj geojson.Object,
sparse uint8,
cursor Cursor,
deadline *deadline.Deadline,
iter func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
if sparse > 0 {
return c.geoSparse(obj, sparse,
func(id string, o geojson.Object, fields []float64) (
match, ok bool,
) {
count++
if count <= offset {
return false, true
}
nextStep(count, cursor, deadline)
if match = o.Within(obj); match {
ok = iter(id, o, fields)
}
return match, ok
},
)
}
return c.geoSearch(obj.Rect(),
func(id string, o geojson.Object, fields []float64) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if o.Within(obj) {
return iter(id, o, fields)
}
return true
},
)
}
// Intersects returns all object that are intersect an object or bounding box.
// Set obj to nil in order to use the bounding box.
func (c *Collection) Intersects(
obj geojson.Object,
sparse uint8,
cursor Cursor,
deadline *deadline.Deadline,
iter func(id string, obj geojson.Object, fields []float64) bool,
) bool {
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
if sparse > 0 {
return c.geoSparse(obj, sparse,
func(id string, o geojson.Object, fields []float64) (
match, ok bool,
) {
count++
if count <= offset {
return false, true
}
nextStep(count, cursor, deadline)
if match = o.Intersects(obj); match {
ok = iter(id, o, fields)
}
return match, ok
},
)
}
return c.geoSearch(obj.Rect(),
func(id string, o geojson.Object, fields []float64) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
if o.Intersects(obj) {
return iter(id, o, fields)
}
return true
},
)
}
// Nearby returns the nearest neighbors
func (c *Collection) Nearby(
target geojson.Object,
cursor Cursor,
deadline *deadline.Deadline,
iter func(id string, obj geojson.Object, fields []float64) bool,
) bool {
// First look to see if there's at least one candidate in the circle's
// outer rectangle. This is a fast-fail operation.
if circle, ok := target.(*geojson.Circle); ok {
meters := circle.Meters()
if meters > 0 {
center := circle.Center()
minLat, minLon, maxLat, maxLon :=
geo.RectFromCenter(center.Y, center.X, meters)
var exists bool
c.index.Search(
[2]float64{minLon, minLat},
[2]float64{maxLon, maxLat},
func(_, _ [2]float64, itemv interface{}) bool {
exists = true
return false
},
)
if !exists {
// no candidates
return true
}
}
}
// do the kNN operation
alive := true
center := target.Center()
var count uint64
var offset uint64
if cursor != nil {
offset = cursor.Offset()
cursor.Step(offset)
}
c.index.Nearby(
geoindex.SimpleBoxAlgo(
[2]float64{center.X, center.Y},
[2]float64{center.X, center.Y},
),
func(_, _ [2]float64, itemv interface{}, _ float64) bool {
count++
if count <= offset {
return true
}
nextStep(count, cursor, deadline)
item := itemv.(*itemT)
alive = iter(item.id, item.obj, c.getFieldValues(item.id))
return alive
},
)
return alive
}
func nextStep(step uint64, cursor Cursor, deadline *deadline.Deadline) {
if step&yieldStep == yieldStep {
runtime.Gosched()
deadline.Check()
}
if cursor != nil {
cursor.Step(1)
}
}