mirror of https://github.com/tidwall/tile38.git
962 lines
24 KiB
Go
962 lines
24 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ir
|
|
|
|
// This file implements the Function and BasicBlock types.
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/constant"
|
|
"go/format"
|
|
"go/token"
|
|
"go/types"
|
|
"io"
|
|
"os"
|
|
"strings"
|
|
)
|
|
|
|
// addEdge adds a control-flow graph edge from from to to.
|
|
func addEdge(from, to *BasicBlock) {
|
|
from.Succs = append(from.Succs, to)
|
|
to.Preds = append(to.Preds, from)
|
|
}
|
|
|
|
// Control returns the last instruction in the block.
|
|
func (b *BasicBlock) Control() Instruction {
|
|
if len(b.Instrs) == 0 {
|
|
return nil
|
|
}
|
|
return b.Instrs[len(b.Instrs)-1]
|
|
}
|
|
|
|
// SIgmaFor returns the sigma node for v coming from pred.
|
|
func (b *BasicBlock) SigmaFor(v Value, pred *BasicBlock) *Sigma {
|
|
for _, instr := range b.Instrs {
|
|
sigma, ok := instr.(*Sigma)
|
|
if !ok {
|
|
// no more sigmas
|
|
return nil
|
|
}
|
|
if sigma.From == pred && sigma.X == v {
|
|
return sigma
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Parent returns the function that contains block b.
|
|
func (b *BasicBlock) Parent() *Function { return b.parent }
|
|
|
|
// String returns a human-readable label of this block.
|
|
// It is not guaranteed unique within the function.
|
|
//
|
|
func (b *BasicBlock) String() string {
|
|
return fmt.Sprintf("%d", b.Index)
|
|
}
|
|
|
|
// emit appends an instruction to the current basic block.
|
|
// If the instruction defines a Value, it is returned.
|
|
//
|
|
func (b *BasicBlock) emit(i Instruction, source ast.Node) Value {
|
|
i.setSource(source)
|
|
i.setBlock(b)
|
|
b.Instrs = append(b.Instrs, i)
|
|
v, _ := i.(Value)
|
|
return v
|
|
}
|
|
|
|
// predIndex returns the i such that b.Preds[i] == c or panics if
|
|
// there is none.
|
|
func (b *BasicBlock) predIndex(c *BasicBlock) int {
|
|
for i, pred := range b.Preds {
|
|
if pred == c {
|
|
return i
|
|
}
|
|
}
|
|
panic(fmt.Sprintf("no edge %s -> %s", c, b))
|
|
}
|
|
|
|
// succIndex returns the i such that b.Succs[i] == c or -1 if there is none.
|
|
func (b *BasicBlock) succIndex(c *BasicBlock) int {
|
|
for i, succ := range b.Succs {
|
|
if succ == c {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// hasPhi returns true if b.Instrs contains φ-nodes.
|
|
func (b *BasicBlock) hasPhi() bool {
|
|
_, ok := b.Instrs[0].(*Phi)
|
|
return ok
|
|
}
|
|
|
|
func (b *BasicBlock) Phis() []Instruction {
|
|
return b.phis()
|
|
}
|
|
|
|
// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
|
|
func (b *BasicBlock) phis() []Instruction {
|
|
for i, instr := range b.Instrs {
|
|
if _, ok := instr.(*Phi); !ok {
|
|
return b.Instrs[:i]
|
|
}
|
|
}
|
|
return nil // unreachable in well-formed blocks
|
|
}
|
|
|
|
// replacePred replaces all occurrences of p in b's predecessor list with q.
|
|
// Ordinarily there should be at most one.
|
|
//
|
|
func (b *BasicBlock) replacePred(p, q *BasicBlock) {
|
|
for i, pred := range b.Preds {
|
|
if pred == p {
|
|
b.Preds[i] = q
|
|
}
|
|
}
|
|
}
|
|
|
|
// replaceSucc replaces all occurrences of p in b's successor list with q.
|
|
// Ordinarily there should be at most one.
|
|
//
|
|
func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
|
|
for i, succ := range b.Succs {
|
|
if succ == p {
|
|
b.Succs[i] = q
|
|
}
|
|
}
|
|
}
|
|
|
|
// removePred removes all occurrences of p in b's
|
|
// predecessor list and φ-nodes.
|
|
// Ordinarily there should be at most one.
|
|
//
|
|
func (b *BasicBlock) removePred(p *BasicBlock) {
|
|
phis := b.phis()
|
|
|
|
// We must preserve edge order for φ-nodes.
|
|
j := 0
|
|
for i, pred := range b.Preds {
|
|
if pred != p {
|
|
b.Preds[j] = b.Preds[i]
|
|
// Strike out φ-edge too.
|
|
for _, instr := range phis {
|
|
phi := instr.(*Phi)
|
|
phi.Edges[j] = phi.Edges[i]
|
|
}
|
|
j++
|
|
}
|
|
}
|
|
// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
|
|
for i := j; i < len(b.Preds); i++ {
|
|
b.Preds[i] = nil
|
|
for _, instr := range phis {
|
|
instr.(*Phi).Edges[i] = nil
|
|
}
|
|
}
|
|
b.Preds = b.Preds[:j]
|
|
for _, instr := range phis {
|
|
phi := instr.(*Phi)
|
|
phi.Edges = phi.Edges[:j]
|
|
}
|
|
}
|
|
|
|
// Destinations associated with unlabelled for/switch/select stmts.
|
|
// We push/pop one of these as we enter/leave each construct and for
|
|
// each BranchStmt we scan for the innermost target of the right type.
|
|
//
|
|
type targets struct {
|
|
tail *targets // rest of stack
|
|
_break *BasicBlock
|
|
_continue *BasicBlock
|
|
_fallthrough *BasicBlock
|
|
}
|
|
|
|
// Destinations associated with a labelled block.
|
|
// We populate these as labels are encountered in forward gotos or
|
|
// labelled statements.
|
|
//
|
|
type lblock struct {
|
|
_goto *BasicBlock
|
|
_break *BasicBlock
|
|
_continue *BasicBlock
|
|
}
|
|
|
|
// labelledBlock returns the branch target associated with the
|
|
// specified label, creating it if needed.
|
|
//
|
|
func (f *Function) labelledBlock(label *ast.Ident) *lblock {
|
|
lb := f.lblocks[label.Obj]
|
|
if lb == nil {
|
|
lb = &lblock{_goto: f.newBasicBlock(label.Name)}
|
|
if f.lblocks == nil {
|
|
f.lblocks = make(map[*ast.Object]*lblock)
|
|
}
|
|
f.lblocks[label.Obj] = lb
|
|
}
|
|
return lb
|
|
}
|
|
|
|
// addParam adds a (non-escaping) parameter to f.Params of the
|
|
// specified name, type and source position.
|
|
//
|
|
func (f *Function) addParam(name string, typ types.Type, source ast.Node) *Parameter {
|
|
var b *BasicBlock
|
|
if len(f.Blocks) > 0 {
|
|
b = f.Blocks[0]
|
|
}
|
|
v := &Parameter{
|
|
name: name,
|
|
}
|
|
v.setBlock(b)
|
|
v.setType(typ)
|
|
v.setSource(source)
|
|
f.Params = append(f.Params, v)
|
|
if b != nil {
|
|
// There may be no blocks if this function has no body. We
|
|
// still create params, but aren't interested in the
|
|
// instruction.
|
|
f.Blocks[0].Instrs = append(f.Blocks[0].Instrs, v)
|
|
}
|
|
return v
|
|
}
|
|
|
|
func (f *Function) addParamObj(obj types.Object, source ast.Node) *Parameter {
|
|
name := obj.Name()
|
|
if name == "" {
|
|
name = fmt.Sprintf("arg%d", len(f.Params))
|
|
}
|
|
param := f.addParam(name, obj.Type(), source)
|
|
param.object = obj
|
|
return param
|
|
}
|
|
|
|
// addSpilledParam declares a parameter that is pre-spilled to the
|
|
// stack; the function body will load/store the spilled location.
|
|
// Subsequent lifting will eliminate spills where possible.
|
|
//
|
|
func (f *Function) addSpilledParam(obj types.Object, source ast.Node) {
|
|
param := f.addParamObj(obj, source)
|
|
spill := &Alloc{}
|
|
spill.setType(types.NewPointer(obj.Type()))
|
|
spill.source = source
|
|
f.objects[obj] = spill
|
|
f.Locals = append(f.Locals, spill)
|
|
f.emit(spill, source)
|
|
emitStore(f, spill, param, source)
|
|
// f.emit(&Store{Addr: spill, Val: param})
|
|
}
|
|
|
|
// startBody initializes the function prior to generating IR code for its body.
|
|
// Precondition: f.Type() already set.
|
|
//
|
|
func (f *Function) startBody() {
|
|
entry := f.newBasicBlock("entry")
|
|
f.currentBlock = entry
|
|
f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
|
|
}
|
|
|
|
func (f *Function) blockset(i int) *BlockSet {
|
|
bs := &f.blocksets[i]
|
|
if len(bs.values) != len(f.Blocks) {
|
|
if cap(bs.values) >= len(f.Blocks) {
|
|
bs.values = bs.values[:len(f.Blocks)]
|
|
bs.Clear()
|
|
} else {
|
|
bs.values = make([]bool, len(f.Blocks))
|
|
}
|
|
} else {
|
|
bs.Clear()
|
|
}
|
|
return bs
|
|
}
|
|
|
|
func (f *Function) exitBlock() {
|
|
old := f.currentBlock
|
|
|
|
f.Exit = f.newBasicBlock("exit")
|
|
f.currentBlock = f.Exit
|
|
|
|
ret := f.results()
|
|
results := make([]Value, len(ret))
|
|
// Run function calls deferred in this
|
|
// function when explicitly returning from it.
|
|
f.emit(new(RunDefers), nil)
|
|
for i, r := range ret {
|
|
results[i] = emitLoad(f, r, nil)
|
|
}
|
|
|
|
f.emit(&Return{Results: results}, nil)
|
|
f.currentBlock = old
|
|
}
|
|
|
|
// createSyntacticParams populates f.Params and generates code (spills
|
|
// and named result locals) for all the parameters declared in the
|
|
// syntax. In addition it populates the f.objects mapping.
|
|
//
|
|
// Preconditions:
|
|
// f.startBody() was called.
|
|
// Postcondition:
|
|
// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
|
|
//
|
|
func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
|
|
// Receiver (at most one inner iteration).
|
|
if recv != nil {
|
|
for _, field := range recv.List {
|
|
for _, n := range field.Names {
|
|
f.addSpilledParam(f.Pkg.info.Defs[n], n)
|
|
}
|
|
// Anonymous receiver? No need to spill.
|
|
if field.Names == nil {
|
|
f.addParamObj(f.Signature.Recv(), field)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parameters.
|
|
if functype.Params != nil {
|
|
n := len(f.Params) // 1 if has recv, 0 otherwise
|
|
for _, field := range functype.Params.List {
|
|
for _, n := range field.Names {
|
|
f.addSpilledParam(f.Pkg.info.Defs[n], n)
|
|
}
|
|
// Anonymous parameter? No need to spill.
|
|
if field.Names == nil {
|
|
f.addParamObj(f.Signature.Params().At(len(f.Params)-n), field)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Named results.
|
|
if functype.Results != nil {
|
|
for _, field := range functype.Results.List {
|
|
// Implicit "var" decl of locals for named results.
|
|
for _, n := range field.Names {
|
|
f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
|
|
}
|
|
}
|
|
|
|
if len(f.namedResults) == 0 {
|
|
sig := f.Signature.Results()
|
|
for i := 0; i < sig.Len(); i++ {
|
|
// XXX position information
|
|
v := f.addLocal(sig.At(i).Type(), nil)
|
|
f.implicitResults = append(f.implicitResults, v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func numberNodes(f *Function) {
|
|
var base ID
|
|
for _, b := range f.Blocks {
|
|
for _, instr := range b.Instrs {
|
|
if instr == nil {
|
|
continue
|
|
}
|
|
base++
|
|
instr.setID(base)
|
|
}
|
|
}
|
|
}
|
|
|
|
// buildReferrers populates the def/use information in all non-nil
|
|
// Value.Referrers slice.
|
|
// Precondition: all such slices are initially empty.
|
|
func buildReferrers(f *Function) {
|
|
var rands []*Value
|
|
for _, b := range f.Blocks {
|
|
for _, instr := range b.Instrs {
|
|
rands = instr.Operands(rands[:0]) // recycle storage
|
|
for _, rand := range rands {
|
|
if r := *rand; r != nil {
|
|
if ref := r.Referrers(); ref != nil {
|
|
*ref = append(*ref, instr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (f *Function) emitConsts() {
|
|
if len(f.Blocks) == 0 {
|
|
f.consts = nil
|
|
return
|
|
}
|
|
|
|
// TODO(dh): our deduplication only works on booleans and
|
|
// integers. other constants are represented as pointers to
|
|
// things.
|
|
if len(f.consts) == 0 {
|
|
return
|
|
} else if len(f.consts) <= 32 {
|
|
f.emitConstsFew()
|
|
} else {
|
|
f.emitConstsMany()
|
|
}
|
|
}
|
|
|
|
func (f *Function) emitConstsFew() {
|
|
dedup := make([]*Const, 0, 32)
|
|
for _, c := range f.consts {
|
|
if len(*c.Referrers()) == 0 {
|
|
continue
|
|
}
|
|
found := false
|
|
for _, d := range dedup {
|
|
if c.typ == d.typ && c.Value == d.Value {
|
|
replaceAll(c, d)
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
dedup = append(dedup, c)
|
|
}
|
|
}
|
|
|
|
instrs := make([]Instruction, len(f.Blocks[0].Instrs)+len(dedup))
|
|
for i, c := range dedup {
|
|
instrs[i] = c
|
|
c.setBlock(f.Blocks[0])
|
|
}
|
|
copy(instrs[len(dedup):], f.Blocks[0].Instrs)
|
|
f.Blocks[0].Instrs = instrs
|
|
f.consts = nil
|
|
}
|
|
|
|
func (f *Function) emitConstsMany() {
|
|
type constKey struct {
|
|
typ types.Type
|
|
value constant.Value
|
|
}
|
|
|
|
m := make(map[constKey]Value, len(f.consts))
|
|
areNil := 0
|
|
for i, c := range f.consts {
|
|
if len(*c.Referrers()) == 0 {
|
|
f.consts[i] = nil
|
|
areNil++
|
|
continue
|
|
}
|
|
|
|
k := constKey{
|
|
typ: c.typ,
|
|
value: c.Value,
|
|
}
|
|
if dup, ok := m[k]; !ok {
|
|
m[k] = c
|
|
} else {
|
|
f.consts[i] = nil
|
|
areNil++
|
|
replaceAll(c, dup)
|
|
}
|
|
}
|
|
|
|
instrs := make([]Instruction, len(f.Blocks[0].Instrs)+len(f.consts)-areNil)
|
|
i := 0
|
|
for _, c := range f.consts {
|
|
if c != nil {
|
|
instrs[i] = c
|
|
c.setBlock(f.Blocks[0])
|
|
i++
|
|
}
|
|
}
|
|
copy(instrs[i:], f.Blocks[0].Instrs)
|
|
f.Blocks[0].Instrs = instrs
|
|
f.consts = nil
|
|
}
|
|
|
|
// buildFakeExits ensures that every block in the function is
|
|
// reachable in reverse from the Exit block. This is required to build
|
|
// a full post-dominator tree, and to ensure the exit block's
|
|
// inclusion in the dominator tree.
|
|
func buildFakeExits(fn *Function) {
|
|
// Find back-edges via forward DFS
|
|
fn.fakeExits = BlockSet{values: make([]bool, len(fn.Blocks))}
|
|
seen := fn.blockset(0)
|
|
backEdges := fn.blockset(1)
|
|
|
|
var dfs func(b *BasicBlock)
|
|
dfs = func(b *BasicBlock) {
|
|
if !seen.Add(b) {
|
|
backEdges.Add(b)
|
|
return
|
|
}
|
|
for _, pred := range b.Succs {
|
|
dfs(pred)
|
|
}
|
|
}
|
|
dfs(fn.Blocks[0])
|
|
buildLoop:
|
|
for {
|
|
seen := fn.blockset(2)
|
|
var dfs func(b *BasicBlock)
|
|
dfs = func(b *BasicBlock) {
|
|
if !seen.Add(b) {
|
|
return
|
|
}
|
|
for _, pred := range b.Preds {
|
|
dfs(pred)
|
|
}
|
|
if b == fn.Exit {
|
|
for _, b := range fn.Blocks {
|
|
if fn.fakeExits.Has(b) {
|
|
dfs(b)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
dfs(fn.Exit)
|
|
|
|
for _, b := range fn.Blocks {
|
|
if !seen.Has(b) && backEdges.Has(b) {
|
|
// Block b is not reachable from the exit block. Add a
|
|
// fake jump from b to exit, then try again. Note that we
|
|
// only add one fake edge at a time, as it may make
|
|
// multiple blocks reachable.
|
|
//
|
|
// We only consider those blocks that have back edges.
|
|
// Any unreachable block that doesn't have a back edge
|
|
// must flow into a loop, which by definition has a
|
|
// back edge. Thus, by looking for loops, we should
|
|
// need fewer fake edges overall.
|
|
fn.fakeExits.Add(b)
|
|
continue buildLoop
|
|
}
|
|
}
|
|
|
|
break
|
|
}
|
|
}
|
|
|
|
// finishBody() finalizes the function after IR code generation of its body.
|
|
func (f *Function) finishBody() {
|
|
f.objects = nil
|
|
f.currentBlock = nil
|
|
f.lblocks = nil
|
|
|
|
// Remove from f.Locals any Allocs that escape to the heap.
|
|
j := 0
|
|
for _, l := range f.Locals {
|
|
if !l.Heap {
|
|
f.Locals[j] = l
|
|
j++
|
|
}
|
|
}
|
|
// Nil out f.Locals[j:] to aid GC.
|
|
for i := j; i < len(f.Locals); i++ {
|
|
f.Locals[i] = nil
|
|
}
|
|
f.Locals = f.Locals[:j]
|
|
|
|
optimizeBlocks(f)
|
|
buildReferrers(f)
|
|
buildDomTree(f)
|
|
buildPostDomTree(f)
|
|
|
|
if f.Prog.mode&NaiveForm == 0 {
|
|
lift(f)
|
|
}
|
|
|
|
// emit constants after lifting, because lifting may produce new constants.
|
|
f.emitConsts()
|
|
|
|
f.namedResults = nil // (used by lifting)
|
|
f.implicitResults = nil
|
|
|
|
numberNodes(f)
|
|
|
|
defer f.wr.Close()
|
|
f.wr.WriteFunc("start", "start", f)
|
|
|
|
if f.Prog.mode&PrintFunctions != 0 {
|
|
printMu.Lock()
|
|
f.WriteTo(os.Stdout)
|
|
printMu.Unlock()
|
|
}
|
|
|
|
if f.Prog.mode&SanityCheckFunctions != 0 {
|
|
mustSanityCheck(f, nil)
|
|
}
|
|
}
|
|
|
|
func isUselessPhi(phi *Phi) (Value, bool) {
|
|
var v0 Value
|
|
for _, e := range phi.Edges {
|
|
if e == phi {
|
|
continue
|
|
}
|
|
if v0 == nil {
|
|
v0 = e
|
|
}
|
|
if v0 != e {
|
|
if v0, ok := v0.(*Const); ok {
|
|
if e, ok := e.(*Const); ok {
|
|
if v0.typ == e.typ && v0.Value == e.Value {
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
return nil, false
|
|
}
|
|
}
|
|
return v0, true
|
|
}
|
|
|
|
func (f *Function) RemoveNilBlocks() {
|
|
f.removeNilBlocks()
|
|
}
|
|
|
|
// removeNilBlocks eliminates nils from f.Blocks and updates each
|
|
// BasicBlock.Index. Use this after any pass that may delete blocks.
|
|
//
|
|
func (f *Function) removeNilBlocks() {
|
|
j := 0
|
|
for _, b := range f.Blocks {
|
|
if b != nil {
|
|
b.Index = j
|
|
f.Blocks[j] = b
|
|
j++
|
|
}
|
|
}
|
|
// Nil out f.Blocks[j:] to aid GC.
|
|
for i := j; i < len(f.Blocks); i++ {
|
|
f.Blocks[i] = nil
|
|
}
|
|
f.Blocks = f.Blocks[:j]
|
|
}
|
|
|
|
// SetDebugMode sets the debug mode for package pkg. If true, all its
|
|
// functions will include full debug info. This greatly increases the
|
|
// size of the instruction stream, and causes Functions to depend upon
|
|
// the ASTs, potentially keeping them live in memory for longer.
|
|
//
|
|
func (pkg *Package) SetDebugMode(debug bool) {
|
|
// TODO(adonovan): do we want ast.File granularity?
|
|
pkg.debug = debug
|
|
}
|
|
|
|
// debugInfo reports whether debug info is wanted for this function.
|
|
func (f *Function) debugInfo() bool {
|
|
return f.Pkg != nil && f.Pkg.debug
|
|
}
|
|
|
|
// addNamedLocal creates a local variable, adds it to function f and
|
|
// returns it. Its name and type are taken from obj. Subsequent
|
|
// calls to f.lookup(obj) will return the same local.
|
|
//
|
|
func (f *Function) addNamedLocal(obj types.Object, source ast.Node) *Alloc {
|
|
l := f.addLocal(obj.Type(), source)
|
|
f.objects[obj] = l
|
|
return l
|
|
}
|
|
|
|
func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
|
|
return f.addNamedLocal(f.Pkg.info.Defs[id], id)
|
|
}
|
|
|
|
// addLocal creates an anonymous local variable of type typ, adds it
|
|
// to function f and returns it. pos is the optional source location.
|
|
//
|
|
func (f *Function) addLocal(typ types.Type, source ast.Node) *Alloc {
|
|
v := &Alloc{}
|
|
v.setType(types.NewPointer(typ))
|
|
f.Locals = append(f.Locals, v)
|
|
f.emit(v, source)
|
|
return v
|
|
}
|
|
|
|
// lookup returns the address of the named variable identified by obj
|
|
// that is local to function f or one of its enclosing functions.
|
|
// If escaping, the reference comes from a potentially escaping pointer
|
|
// expression and the referent must be heap-allocated.
|
|
//
|
|
func (f *Function) lookup(obj types.Object, escaping bool) Value {
|
|
if v, ok := f.objects[obj]; ok {
|
|
if alloc, ok := v.(*Alloc); ok && escaping {
|
|
alloc.Heap = true
|
|
}
|
|
return v // function-local var (address)
|
|
}
|
|
|
|
// Definition must be in an enclosing function;
|
|
// plumb it through intervening closures.
|
|
if f.parent == nil {
|
|
panic("no ir.Value for " + obj.String())
|
|
}
|
|
outer := f.parent.lookup(obj, true) // escaping
|
|
v := &FreeVar{
|
|
name: obj.Name(),
|
|
typ: outer.Type(),
|
|
outer: outer,
|
|
parent: f,
|
|
}
|
|
f.objects[obj] = v
|
|
f.FreeVars = append(f.FreeVars, v)
|
|
return v
|
|
}
|
|
|
|
// emit emits the specified instruction to function f.
|
|
func (f *Function) emit(instr Instruction, source ast.Node) Value {
|
|
return f.currentBlock.emit(instr, source)
|
|
}
|
|
|
|
// RelString returns the full name of this function, qualified by
|
|
// package name, receiver type, etc.
|
|
//
|
|
// The specific formatting rules are not guaranteed and may change.
|
|
//
|
|
// Examples:
|
|
// "math.IsNaN" // a package-level function
|
|
// "(*bytes.Buffer).Bytes" // a declared method or a wrapper
|
|
// "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
|
|
// "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
|
|
// "main.main$1" // an anonymous function in main
|
|
// "main.init#1" // a declared init function
|
|
// "main.init" // the synthesized package initializer
|
|
//
|
|
// When these functions are referred to from within the same package
|
|
// (i.e. from == f.Pkg.Object), they are rendered without the package path.
|
|
// For example: "IsNaN", "(*Buffer).Bytes", etc.
|
|
//
|
|
// All non-synthetic functions have distinct package-qualified names.
|
|
// (But two methods may have the same name "(T).f" if one is a synthetic
|
|
// wrapper promoting a non-exported method "f" from another package; in
|
|
// that case, the strings are equal but the identifiers "f" are distinct.)
|
|
//
|
|
func (f *Function) RelString(from *types.Package) string {
|
|
// Anonymous?
|
|
if f.parent != nil {
|
|
// An anonymous function's Name() looks like "parentName$1",
|
|
// but its String() should include the type/package/etc.
|
|
parent := f.parent.RelString(from)
|
|
for i, anon := range f.parent.AnonFuncs {
|
|
if anon == f {
|
|
return fmt.Sprintf("%s$%d", parent, 1+i)
|
|
}
|
|
}
|
|
|
|
return f.name // should never happen
|
|
}
|
|
|
|
// Method (declared or wrapper)?
|
|
if recv := f.Signature.Recv(); recv != nil {
|
|
return f.relMethod(from, recv.Type())
|
|
}
|
|
|
|
// Thunk?
|
|
if f.method != nil {
|
|
return f.relMethod(from, f.method.Recv())
|
|
}
|
|
|
|
// Bound?
|
|
if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
|
|
return f.relMethod(from, f.FreeVars[0].Type())
|
|
}
|
|
|
|
// Package-level function?
|
|
// Prefix with package name for cross-package references only.
|
|
if p := f.pkg(); p != nil && p != from {
|
|
return fmt.Sprintf("%s.%s", p.Path(), f.name)
|
|
}
|
|
|
|
// Unknown.
|
|
return f.name
|
|
}
|
|
|
|
func (f *Function) relMethod(from *types.Package, recv types.Type) string {
|
|
return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
|
|
}
|
|
|
|
// writeSignature writes to buf the signature sig in declaration syntax.
|
|
func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
|
|
buf.WriteString("func ")
|
|
if recv := sig.Recv(); recv != nil {
|
|
buf.WriteString("(")
|
|
if n := params[0].Name(); n != "" {
|
|
buf.WriteString(n)
|
|
buf.WriteString(" ")
|
|
}
|
|
types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
|
|
buf.WriteString(") ")
|
|
}
|
|
buf.WriteString(name)
|
|
types.WriteSignature(buf, sig, types.RelativeTo(from))
|
|
}
|
|
|
|
func (f *Function) pkg() *types.Package {
|
|
if f.Pkg != nil {
|
|
return f.Pkg.Pkg
|
|
}
|
|
return nil
|
|
}
|
|
|
|
var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
|
|
|
|
func (f *Function) WriteTo(w io.Writer) (int64, error) {
|
|
var buf bytes.Buffer
|
|
WriteFunction(&buf, f)
|
|
n, err := w.Write(buf.Bytes())
|
|
return int64(n), err
|
|
}
|
|
|
|
// WriteFunction writes to buf a human-readable "disassembly" of f.
|
|
func WriteFunction(buf *bytes.Buffer, f *Function) {
|
|
fmt.Fprintf(buf, "# Name: %s\n", f.String())
|
|
if f.Pkg != nil {
|
|
fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
|
|
}
|
|
if syn := f.Synthetic; syn != "" {
|
|
fmt.Fprintln(buf, "# Synthetic:", syn)
|
|
}
|
|
if pos := f.Pos(); pos.IsValid() {
|
|
fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
|
|
}
|
|
|
|
if f.parent != nil {
|
|
fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
|
|
}
|
|
|
|
from := f.pkg()
|
|
|
|
if f.FreeVars != nil {
|
|
buf.WriteString("# Free variables:\n")
|
|
for i, fv := range f.FreeVars {
|
|
fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
|
|
}
|
|
}
|
|
|
|
if len(f.Locals) > 0 {
|
|
buf.WriteString("# Locals:\n")
|
|
for i, l := range f.Locals {
|
|
fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
|
|
}
|
|
}
|
|
writeSignature(buf, from, f.Name(), f.Signature, f.Params)
|
|
buf.WriteString(":\n")
|
|
|
|
if f.Blocks == nil {
|
|
buf.WriteString("\t(external)\n")
|
|
}
|
|
|
|
for _, b := range f.Blocks {
|
|
if b == nil {
|
|
// Corrupt CFG.
|
|
fmt.Fprintf(buf, ".nil:\n")
|
|
continue
|
|
}
|
|
fmt.Fprintf(buf, "b%d:", b.Index)
|
|
if len(b.Preds) > 0 {
|
|
fmt.Fprint(buf, " ←")
|
|
for _, pred := range b.Preds {
|
|
fmt.Fprintf(buf, " b%d", pred.Index)
|
|
}
|
|
}
|
|
if b.Comment != "" {
|
|
fmt.Fprintf(buf, " # %s", b.Comment)
|
|
}
|
|
buf.WriteByte('\n')
|
|
|
|
if false { // CFG debugging
|
|
fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
|
|
}
|
|
|
|
buf2 := &bytes.Buffer{}
|
|
for _, instr := range b.Instrs {
|
|
buf.WriteString("\t")
|
|
switch v := instr.(type) {
|
|
case Value:
|
|
// Left-align the instruction.
|
|
if name := v.Name(); name != "" {
|
|
fmt.Fprintf(buf, "%s = ", name)
|
|
}
|
|
buf.WriteString(instr.String())
|
|
case nil:
|
|
// Be robust against bad transforms.
|
|
buf.WriteString("<deleted>")
|
|
default:
|
|
buf.WriteString(instr.String())
|
|
}
|
|
buf.WriteString("\n")
|
|
|
|
if f.Prog.mode&PrintSource != 0 {
|
|
if s := instr.Source(); s != nil {
|
|
buf2.Reset()
|
|
format.Node(buf2, f.Prog.Fset, s)
|
|
for {
|
|
line, err := buf2.ReadString('\n')
|
|
if len(line) == 0 {
|
|
break
|
|
}
|
|
buf.WriteString("\t\t> ")
|
|
buf.WriteString(line)
|
|
if line[len(line)-1] != '\n' {
|
|
buf.WriteString("\n")
|
|
}
|
|
if err != nil {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
buf.WriteString("\n")
|
|
}
|
|
}
|
|
|
|
// newBasicBlock adds to f a new basic block and returns it. It does
|
|
// not automatically become the current block for subsequent calls to emit.
|
|
// comment is an optional string for more readable debugging output.
|
|
//
|
|
func (f *Function) newBasicBlock(comment string) *BasicBlock {
|
|
b := &BasicBlock{
|
|
Index: len(f.Blocks),
|
|
Comment: comment,
|
|
parent: f,
|
|
}
|
|
b.Succs = b.succs2[:0]
|
|
f.Blocks = append(f.Blocks, b)
|
|
return b
|
|
}
|
|
|
|
// NewFunction returns a new synthetic Function instance belonging to
|
|
// prog, with its name and signature fields set as specified.
|
|
//
|
|
// The caller is responsible for initializing the remaining fields of
|
|
// the function object, e.g. Pkg, Params, Blocks.
|
|
//
|
|
// It is practically impossible for clients to construct well-formed
|
|
// IR functions/packages/programs directly, so we assume this is the
|
|
// job of the Builder alone. NewFunction exists to provide clients a
|
|
// little flexibility. For example, analysis tools may wish to
|
|
// construct fake Functions for the root of the callgraph, a fake
|
|
// "reflect" package, etc.
|
|
//
|
|
// TODO(adonovan): think harder about the API here.
|
|
//
|
|
func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
|
|
return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
|
|
}
|
|
|
|
//lint:ignore U1000 we may make use of this for functions loaded from export data
|
|
type extentNode [2]token.Pos
|
|
|
|
func (n extentNode) Pos() token.Pos { return n[0] }
|
|
func (n extentNode) End() token.Pos { return n[1] }
|
|
|
|
func (f *Function) initHTML(name string) {
|
|
if name == "" {
|
|
return
|
|
}
|
|
if rel := f.RelString(nil); rel == name {
|
|
f.wr = NewHTMLWriter("ir.html", rel, "")
|
|
}
|
|
}
|