tile38/geojson/polygon.go

227 lines
5.6 KiB
Go

package geojson
import (
"bytes"
"strconv"
"github.com/tidwall/tile38/geojson/geohash"
)
// Polygon is a geojson object with the type "Polygon"
type Polygon struct {
Coordinates [][]Position
BBox *BBox
}
func fillPolygon(coordinates [][]Position, bbox *BBox, err error) (Polygon, error) {
if err == nil {
if len(coordinates) == 0 {
err = errMustBeALinearRing
}
}
if err == nil {
for _, ps := range coordinates {
if !isLinearRing(ps) {
err = errMustBeALinearRing
break
}
}
}
return Polygon{
Coordinates: coordinates,
BBox: bbox,
}, err
}
// CalculatedBBox is exterior bbox containing the object.
func (g Polygon) CalculatedBBox() BBox {
return level3CalculatedBBox(g.Coordinates, g.BBox, true)
}
// CalculatedPoint is a point representation of the object.
func (g Polygon) CalculatedPoint() Position {
return g.CalculatedBBox().center()
}
// Geohash converts the object to a geohash value.
func (g Polygon) Geohash(precision int) (string, error) {
p := g.CalculatedPoint()
return geohash.Encode(p.Y, p.X, precision)
}
// PositionCount return the number of coordinates.
func (g Polygon) PositionCount() int {
return level3PositionCount(g.Coordinates, g.BBox)
}
// Weight returns the in-memory size of the object.
func (g Polygon) Weight() int {
return level3Weight(g.Coordinates, g.BBox)
}
// MarshalJSON allows the object to be encoded in json.Marshal calls.
func (g Polygon) MarshalJSON() ([]byte, error) {
return []byte(g.JSON()), nil
}
// JSON is the json representation of the object. This might not be exactly the same as the original.
func (g Polygon) JSON() string {
return level3JSON("Polygon", g.Coordinates, g.BBox)
}
// String returns a string representation of the object. This might be JSON or something else.
func (g Polygon) String() string {
return g.JSON()
}
func (g Polygon) bboxPtr() *BBox {
return g.BBox
}
func (g Polygon) hasPositions() bool {
if g.BBox != nil {
return true
}
for _, c := range g.Coordinates {
if len(c) > 0 {
return true
}
}
return false
}
// WithinBBox detects if the object is fully contained inside a bbox.
func (g Polygon) WithinBBox(bbox BBox) bool {
if g.BBox != nil {
return rectBBox(g.CalculatedBBox()).InsideRect(rectBBox(bbox))
}
if len(g.Coordinates) == 0 {
return false
}
rbbox := rectBBox(bbox)
ext, holes := polyExteriorHoles(g.Coordinates)
if len(holes) > 0 {
if rbbox.Max == rbbox.Min {
return rbbox.Min.Inside(ext, holes)
}
return rbbox.Inside(ext, holes)
}
return ext.InsideRect(rectBBox(bbox))
}
// IntersectsBBox detects if the object intersects a bbox.
func (g Polygon) IntersectsBBox(bbox BBox) bool {
if g.BBox != nil {
return rectBBox(g.CalculatedBBox()).IntersectsRect(rectBBox(bbox))
}
if len(g.Coordinates) == 0 {
return false
}
rbbox := rectBBox(bbox)
ext, holes := polyExteriorHoles(g.Coordinates)
if len(holes) > 0 {
if rbbox.Max == rbbox.Min {
return rbbox.Min.Intersects(ext, holes)
}
return rbbox.Intersects(ext, holes)
}
return ext.IntersectsRect(rectBBox(bbox))
}
// Within detects if the object is fully contained inside another object.
func (g Polygon) Within(o Object) bool {
return withinObjectShared(g, o,
func(v Polygon) bool {
if len(g.Coordinates) == 0 {
return false
}
return polyPositions(g.Coordinates[0]).Inside(polyExteriorHoles(v.Coordinates))
},
func(v MultiPolygon) bool {
if len(g.Coordinates) == 0 {
return false
}
for _, c := range v.Coordinates {
if !polyPositions(g.Coordinates[0]).Inside(polyExteriorHoles(c)) {
return false
}
}
return true
},
)
}
// Intersects detects if the object intersects another object.
func (g Polygon) Intersects(o Object) bool {
return intersectsObjectShared(g, o,
func(v Polygon) bool {
if len(g.Coordinates) == 0 {
return false
}
return polyPositions(g.Coordinates[0]).Intersects(polyExteriorHoles(v.Coordinates))
},
func(v MultiPolygon) bool {
if len(g.Coordinates) == 0 {
return false
}
for _, c := range v.Coordinates {
if polyPositions(g.Coordinates[0]).Intersects(polyExteriorHoles(c)) {
return true
}
}
return false
},
)
}
// Nearby detects if the object is nearby a position.
func (g Polygon) Nearby(center Position, meters float64) bool {
return nearbyObjectShared(g, center.X, center.Y, meters)
}
// KML outputs kml
func (g Polygon) KML() string {
var buf bytes.Buffer
buf.WriteString(`<?xml version="1.0" encoding="UTF-8"?>`)
buf.WriteString(`<kml xmlns="http://www.opengis.net/kml/2.2">`)
buf.WriteString(`<Placemark>`)
buf.WriteString(`<Polygon>`)
buf.WriteString(`<extrude>1</extrude>`)
buf.WriteString(`<altitudeMode>relativeToGround</altitudeMode>`)
for i, c := range g.Coordinates {
if i == 0 {
buf.WriteString(`<outerBoundaryIs>`)
} else {
buf.WriteString(`<innerBoundaryIs>`)
}
buf.WriteString(`<LinearRing>`)
buf.WriteString(`<coordinates>`)
for _, c := range c {
buf.WriteString("\n" + strconv.FormatFloat(c.X, 'f', -1, 64) + `,` + strconv.FormatFloat(c.Y, 'f', -1, 64) + `,` + strconv.FormatFloat(c.Z, 'f', -1, 64))
}
if len(c) > 0 {
buf.WriteString("\n")
}
buf.WriteString(`</coordinates>`)
buf.WriteString(`</LinearRing>`)
if i == 0 {
buf.WriteString(`</outerBoundaryIs>`)
} else {
buf.WriteString(`</innerBoundaryIs>`)
}
}
buf.WriteString(`</Polygon>`)
buf.WriteString(`</Placemark>`)
buf.WriteString(`</kml>`)
return buf.String()
}
// IsBBoxDefined returns true if the object has a defined bbox.
func (g Polygon) IsBBoxDefined() bool {
return g.BBox != nil
}
// IsGeometry return true if the object is a geojson geometry object. false if it something else.
func (g Polygon) IsGeometry() bool {
return true
}