tile38/vendor/github.com/tidwall/geojson/geo/geo_test.go

190 lines
5.2 KiB
Go

// Copyright 2018 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package geo
import (
"math"
"math/rand"
"testing"
"time"
)
func init() {
seed := time.Now().UnixNano()
//seed = 1540656736244531000
println(seed)
rand.Seed(seed)
}
func TestGeoCalc(t *testing.T) {
dist := 172853.26908429610193707048892974853515625
bearing := 320.8560640269032546711969189345836639404296875
latA, lonA := 33.112, -112.123
latB, lonB := 34.312, -113.311
// DistanceTo
value := DistanceTo(latA, lonA, latB, lonB)
if value != dist {
t.Fatalf("expected '%v', got '%v'", dist, value)
}
// BearingTo
value = BearingTo(latA, lonA, latB, lonB)
if value != bearing {
t.Fatalf("expected '%v', got '%v'", bearing, value)
}
// DestinationPoint
value1, value2 := DestinationPoint(latA, lonA, dist, bearing)
if value1 != latB {
t.Fatalf("expected '%v', got '%v'", latB, value1)
}
if value2 != lonB {
t.Fatalf("expected '%v', got '%v'", lonB, value2)
}
// RectFromCenter
// expected mins and maxes for wraparound and pole tests
expMinLat := -90.0
expMinLon := -180.0
expMaxLat := 90.0
expMaxLon := 180.0
dist1 := 1600000.0
wraparoundTests := []struct {
name string
lat, lon, searchRadius float64
}{
{name: "Wraparound E", lat: 0.0, lon: 179.0, searchRadius: dist1}, // at equator near 180th meridian East
{name: "Wraparound W", lat: 0.0, lon: -179.0, searchRadius: dist1}, // at equator near 180th meridian West
}
for _, tt := range wraparoundTests {
t.Run(tt.name, func(t *testing.T) {
_, minLon, _, maxLon := RectFromCenter(tt.lat, tt.lon, tt.searchRadius)
if !(minLon == expMinLon && maxLon == expMaxLon) {
t.Errorf("\nexpected minLon = '%v', maxLon = '%v'"+"\ngot minLon = '%v', maxLon = '%v'\n",
expMinLon, expMaxLon,
minLon, maxLon)
}
})
}
northPoleTests := []struct {
name string
lat, lon, searchRadius float64
}{
{name: "North Pole", lat: 89.0, lon: 90.0, searchRadius: dist1}, // near North Pole
{name: "North Pole: Tile38 iss422", lat: 13.0257553, lon: 77.6672509, searchRadius: 9000000.0},
}
for _, tt := range northPoleTests {
t.Run(tt.name, func(t *testing.T) {
_, minLon, maxLat, maxLon := RectFromCenter(tt.lat, tt.lon, tt.searchRadius)
if !(minLon == expMinLon && maxLat == expMaxLat && maxLon == expMaxLon) {
t.Errorf("\nexpected minLon = '%v', maxLat = '%v', maxLon = '%v'"+"\ngot minLon = '%v', maxLat = '%v', maxLon = '%v'",
expMinLon, expMaxLat, expMaxLon,
minLon, maxLat, maxLon)
}
})
}
southPoleTests := []struct {
name string
lat, lon, searchRadius float64
}{
{name: "South Pole", lat: -89.0, lon: 90.0, searchRadius: dist1}, // near South Pole
}
for _, tt := range southPoleTests {
t.Run(tt.name, func(t *testing.T) {
minLat, minLon, _, maxLon := RectFromCenter(tt.lat, tt.lon, tt.searchRadius)
if !(minLat == expMinLat && minLon == expMinLon && maxLon == expMaxLon) {
t.Errorf("\nexpected minLat = '%v', minLon = '%v', maxLon = '%v'"+"\ngot minLat = '%v', minLon = '%v', maxLon = '%v'",
expMinLat, expMinLon, expMaxLon,
minLat, minLon, maxLon)
}
})
}
}
func TestHaversine(t *testing.T) {
latA := rand.Float64()*180 - 90
lonA := rand.Float64()*360 - 180
start := time.Now()
for time.Since(start) < time.Second/4 {
for i := 0; i < 1000; i++ {
latB := rand.Float64()*180 - 90
lonB := rand.Float64()*360 - 180
latC := rand.Float64()*180 - 90
lonC := rand.Float64()*360 - 180
haver1 := Haversine(latA, lonA, latB, lonB)
haver2 := Haversine(latA, lonA, latC, lonC)
meters1 := DistanceTo(latA, lonA, latB, lonB)
meters2 := DistanceTo(latA, lonA, latC, lonC)
switch {
case haver1 < haver2:
if meters1 >= meters2 {
t.Fatalf("failed")
}
case haver1 == haver2:
if meters1 != meters2 {
t.Fatalf("failed")
}
case haver1 > haver2:
if meters1 <= meters2 {
t.Fatalf("failed")
}
}
}
}
}
func TestNormalizeDistance(t *testing.T) {
start := time.Now()
for time.Since(start) < time.Second {
for i := 0; i < 1000; i++ {
meters1 := rand.Float64() * earthRadius * 3 // wrap three times
meters2 := NormalizeDistance(meters1)
dist1 := math.Floor(DistanceToHaversine(meters2) * 1e8)
dist2 := math.Floor(DistanceToHaversine(meters1) * 1e8)
if dist1 != dist2 {
t.Fatalf("expected %f, got %f", dist2, dist1)
}
}
}
}
type point struct {
lat, lon float64
}
func BenchmarkHaversine(b *testing.B) {
pointA := point{
lat: rand.Float64()*180 - 90,
lon: rand.Float64()*360 - 180,
}
points := make([]point, b.N)
for i := 0; i < b.N; i++ {
points[i].lat = rand.Float64()*180 - 90
points[i].lon = rand.Float64()*360 - 180
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
Haversine(pointA.lat, pointA.lon, points[i].lat, points[i].lon)
}
}
func BenchmarkDistanceTo(b *testing.B) {
pointA := point{
lat: rand.Float64()*180 - 90,
lon: rand.Float64()*360 - 180,
}
points := make([]point, b.N)
for i := 0; i < b.N; i++ {
points[i].lat = rand.Float64()*180 - 90
points[i].lon = rand.Float64()*360 - 180
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
DistanceTo(pointA.lat, pointA.lon, points[i].lat, points[i].lon)
}
}