mirror of https://github.com/tidwall/tile38.git
176 lines
4.8 KiB
Go
176 lines
4.8 KiB
Go
// Copyright 2018 Joshua J Baker. All rights reserved.
|
||
// Use of this source code is governed by an MIT-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package geo
|
||
|
||
import (
|
||
"math"
|
||
)
|
||
|
||
const (
|
||
earthRadius = 6371e3
|
||
radians = math.Pi / 180
|
||
degrees = 180 / math.Pi
|
||
piR = math.Pi * earthRadius
|
||
twoPiR = 2 * piR
|
||
)
|
||
|
||
// Haversine ...
|
||
func Haversine(latA, lonA, latB, lonB float64) float64 {
|
||
φ1 := latA * radians
|
||
λ1 := lonA * radians
|
||
φ2 := latB * radians
|
||
λ2 := lonB * radians
|
||
Δφ := φ2 - φ1
|
||
Δλ := λ2 - λ1
|
||
sΔφ2 := math.Sin(Δφ / 2)
|
||
sΔλ2 := math.Sin(Δλ / 2)
|
||
return sΔφ2*sΔφ2 + math.Cos(φ1)*math.Cos(φ2)*sΔλ2*sΔλ2
|
||
}
|
||
|
||
// NormalizeDistance ...
|
||
func NormalizeDistance(meters float64) float64 {
|
||
return math.Mod(meters, twoPiR)
|
||
}
|
||
|
||
// DistanceToHaversine ...
|
||
func DistanceToHaversine(meters float64) float64 {
|
||
// convert the given distance to its haversine
|
||
sin := math.Sin(0.5 * meters / earthRadius)
|
||
return sin * sin
|
||
}
|
||
|
||
// DistanceFromHaversine ...
|
||
func DistanceFromHaversine(haversine float64) float64 {
|
||
return earthRadius * 2 * math.Asin(math.Sqrt(haversine))
|
||
}
|
||
|
||
// DistanceTo return the distance in meters between two point.
|
||
func DistanceTo(latA, lonA, latB, lonB float64) (meters float64) {
|
||
a := Haversine(latA, lonA, latB, lonB)
|
||
return DistanceFromHaversine(a)
|
||
}
|
||
|
||
// DestinationPoint return the destination from a point based on a
|
||
// distance and bearing.
|
||
func DestinationPoint(lat, lon, meters, bearingDegrees float64) (
|
||
destLat, destLon float64,
|
||
) {
|
||
// see http://williams.best.vwh.net/avform.htm#LL
|
||
δ := meters / earthRadius // angular distance in radians
|
||
θ := bearingDegrees * radians
|
||
φ1 := lat * radians
|
||
λ1 := lon * radians
|
||
φ2 := math.Asin(math.Sin(φ1)*math.Cos(δ) +
|
||
math.Cos(φ1)*math.Sin(δ)*math.Cos(θ))
|
||
λ2 := λ1 + math.Atan2(math.Sin(θ)*math.Sin(δ)*math.Cos(φ1),
|
||
math.Cos(δ)-math.Sin(φ1)*math.Sin(φ2))
|
||
λ2 = math.Mod(λ2+3*math.Pi, 2*math.Pi) - math.Pi // normalise to -180..+180°
|
||
return φ2 * degrees, λ2 * degrees
|
||
}
|
||
|
||
// BearingTo returns the (initial) bearing from point 'A' to point 'B'.
|
||
func BearingTo(latA, lonA, latB, lonB float64) float64 {
|
||
// tanθ = sinΔλ⋅cosφ2 / cosφ1⋅sinφ2 − sinφ1⋅cosφ2⋅cosΔλ
|
||
// see mathforum.org/library/drmath/view/55417.html for derivation
|
||
|
||
φ1 := latA * radians
|
||
φ2 := latB * radians
|
||
Δλ := (lonB - lonA) * radians
|
||
y := math.Sin(Δλ) * math.Cos(φ2)
|
||
x := math.Cos(φ1)*math.Sin(φ2) - math.Sin(φ1)*math.Cos(φ2)*math.Cos(Δλ)
|
||
θ := math.Atan2(y, x)
|
||
|
||
return math.Mod(θ*degrees+360, 360)
|
||
}
|
||
|
||
// RectFromCenter calculates the bounding box surrounding a circle.
|
||
func RectFromCenter(lat, lon, meters float64) (
|
||
minLat, minLon, maxLat, maxLon float64,
|
||
) {
|
||
// convert degrees to radians
|
||
lat *= radians
|
||
lon *= radians
|
||
|
||
// Calculate ANGULAR RADIUS
|
||
// see http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#UsingIndex
|
||
r := meters / earthRadius
|
||
|
||
// Calculate LATITUDE min and max
|
||
// see http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#Latitude
|
||
minLat = lat - r
|
||
maxLat = lat + r
|
||
|
||
// Calculate LONGITUDE min and max
|
||
// see http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#Longitude
|
||
rCos := math.Cos(r)
|
||
if rCos == 1.0 {
|
||
|
||
// This can occur when the meters is too miniscule to derive the outer
|
||
// rectangle coordinates.
|
||
minLat = lat
|
||
minLon = lon
|
||
maxLat = lat
|
||
maxLon = lon
|
||
|
||
} else {
|
||
|
||
latSin, latCos := math.Sincos(lat)
|
||
latT := math.Asin(latSin / rCos)
|
||
latTSin, latTCos := math.Sincos(latT)
|
||
lonΔ := math.Acos((rCos - latTSin*latSin) / (latTCos * latCos))
|
||
|
||
minLon = lon - lonΔ
|
||
maxLon = lon + lonΔ
|
||
}
|
||
|
||
// ADJUST mins and maxes for edge-of-map cases
|
||
// see http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#PolesAnd180thMeridian
|
||
|
||
// adjust for NORTH POLE
|
||
if maxLat > math.Pi/2 {
|
||
minLon = -math.Pi
|
||
maxLat = math.Pi / 2
|
||
maxLon = math.Pi
|
||
}
|
||
|
||
// adjust for SOUTH POLE
|
||
if minLat < -math.Pi/2 {
|
||
minLat = -math.Pi / 2
|
||
minLon = -math.Pi
|
||
maxLon = math.Pi
|
||
}
|
||
|
||
/* adjust for WRAPAROUND
|
||
|
||
Creates a bounding box that wraps around the Earth like a belt, which
|
||
results in returning false positive candidates (candidates that are
|
||
farther away from the center than the distance of the search radius).
|
||
|
||
An alternative method, possibly to be implemented in the future, would be
|
||
to split the bounding box into two boxes. This would return fewer (or no)
|
||
false positives, but will require significant changes to the API's of
|
||
geoJSON and any of its dependents. */
|
||
if minLon < -math.Pi || maxLon > math.Pi {
|
||
minLon = -math.Pi
|
||
maxLon = math.Pi
|
||
}
|
||
|
||
// convert radians to degrees
|
||
minLat *= degrees
|
||
minLon *= degrees
|
||
maxLat *= degrees
|
||
maxLon *= degrees
|
||
return
|
||
|
||
}
|
||
|
||
func DegsToSemi(degs float64) int32 {
|
||
return int32(degs * (math.Pow(2, 31) / 180.0))
|
||
}
|
||
|
||
func SemiToDegs(semi int32) float64 {
|
||
return float64(semi) * (180.0 / math.Pow(2, 31))
|
||
}
|