package sarama import ( "compress/gzip" "crypto/tls" "fmt" "io/ioutil" "net" "regexp" "time" "github.com/rcrowley/go-metrics" "golang.org/x/net/proxy" ) const defaultClientID = "sarama" var validID = regexp.MustCompile(`\A[A-Za-z0-9._-]+\z`) // Config is used to pass multiple configuration options to Sarama's constructors. type Config struct { // Admin is the namespace for ClusterAdmin properties used by the administrative Kafka client. Admin struct { Retry struct { // The total number of times to retry sending (retriable) admin requests (default 5). // Similar to the `retries` setting of the JVM AdminClientConfig. Max int // Backoff time between retries of a failed request (default 100ms) Backoff time.Duration } // The maximum duration the administrative Kafka client will wait for ClusterAdmin operations, // including topics, brokers, configurations and ACLs (defaults to 3 seconds). Timeout time.Duration } // Net is the namespace for network-level properties used by the Broker, and // shared by the Client/Producer/Consumer. Net struct { // How many outstanding requests a connection is allowed to have before // sending on it blocks (default 5). MaxOpenRequests int // All three of the below configurations are similar to the // `socket.timeout.ms` setting in JVM kafka. All of them default // to 30 seconds. DialTimeout time.Duration // How long to wait for the initial connection. ReadTimeout time.Duration // How long to wait for a response. WriteTimeout time.Duration // How long to wait for a transmit. TLS struct { // Whether or not to use TLS when connecting to the broker // (defaults to false). Enable bool // The TLS configuration to use for secure connections if // enabled (defaults to nil). Config *tls.Config } // SASL based authentication with broker. While there are multiple SASL authentication methods // the current implementation is limited to plaintext (SASL/PLAIN) authentication SASL struct { // Whether or not to use SASL authentication when connecting to the broker // (defaults to false). Enable bool // SASLMechanism is the name of the enabled SASL mechanism. // Possible values: OAUTHBEARER, PLAIN (defaults to PLAIN). Mechanism SASLMechanism // Version is the SASL Protocol Version to use // Kafka > 1.x should use V1, except on Azure EventHub which use V0 Version int16 // Whether or not to send the Kafka SASL handshake first if enabled // (defaults to true). You should only set this to false if you're using // a non-Kafka SASL proxy. Handshake bool // AuthIdentity is an (optional) authorization identity (authzid) to // use for SASL/PLAIN authentication (if different from User) when // an authenticated user is permitted to act as the presented // alternative user. See RFC4616 for details. AuthIdentity string // User is the authentication identity (authcid) to present for // SASL/PLAIN or SASL/SCRAM authentication User string // Password for SASL/PLAIN authentication Password string // authz id used for SASL/SCRAM authentication SCRAMAuthzID string // SCRAMClientGeneratorFunc is a generator of a user provided implementation of a SCRAM // client used to perform the SCRAM exchange with the server. SCRAMClientGeneratorFunc func() SCRAMClient // TokenProvider is a user-defined callback for generating // access tokens for SASL/OAUTHBEARER auth. See the // AccessTokenProvider interface docs for proper implementation // guidelines. TokenProvider AccessTokenProvider GSSAPI GSSAPIConfig } // KeepAlive specifies the keep-alive period for an active network connection (defaults to 0). // If zero or positive, keep-alives are enabled. // If negative, keep-alives are disabled. KeepAlive time.Duration // LocalAddr is the local address to use when dialing an // address. The address must be of a compatible type for the // network being dialed. // If nil, a local address is automatically chosen. LocalAddr net.Addr Proxy struct { // Whether or not to use proxy when connecting to the broker // (defaults to false). Enable bool // The proxy dialer to use enabled (defaults to nil). Dialer proxy.Dialer } } // Metadata is the namespace for metadata management properties used by the // Client, and shared by the Producer/Consumer. Metadata struct { Retry struct { // The total number of times to retry a metadata request when the // cluster is in the middle of a leader election (default 3). Max int // How long to wait for leader election to occur before retrying // (default 250ms). Similar to the JVM's `retry.backoff.ms`. Backoff time.Duration // Called to compute backoff time dynamically. Useful for implementing // more sophisticated backoff strategies. This takes precedence over // `Backoff` if set. BackoffFunc func(retries, maxRetries int) time.Duration } // How frequently to refresh the cluster metadata in the background. // Defaults to 10 minutes. Set to 0 to disable. Similar to // `topic.metadata.refresh.interval.ms` in the JVM version. RefreshFrequency time.Duration // Whether to maintain a full set of metadata for all topics, or just // the minimal set that has been necessary so far. The full set is simpler // and usually more convenient, but can take up a substantial amount of // memory if you have many topics and partitions. Defaults to true. Full bool // How long to wait for a successful metadata response. // Disabled by default which means a metadata request against an unreachable // cluster (all brokers are unreachable or unresponsive) can take up to // `Net.[Dial|Read]Timeout * BrokerCount * (Metadata.Retry.Max + 1) + Metadata.Retry.Backoff * Metadata.Retry.Max` // to fail. Timeout time.Duration } // Producer is the namespace for configuration related to producing messages, // used by the Producer. Producer struct { // The maximum permitted size of a message (defaults to 1000000). Should be // set equal to or smaller than the broker's `message.max.bytes`. MaxMessageBytes int // The level of acknowledgement reliability needed from the broker (defaults // to WaitForLocal). Equivalent to the `request.required.acks` setting of the // JVM producer. RequiredAcks RequiredAcks // The maximum duration the broker will wait the receipt of the number of // RequiredAcks (defaults to 10 seconds). This is only relevant when // RequiredAcks is set to WaitForAll or a number > 1. Only supports // millisecond resolution, nanoseconds will be truncated. Equivalent to // the JVM producer's `request.timeout.ms` setting. Timeout time.Duration // The type of compression to use on messages (defaults to no compression). // Similar to `compression.codec` setting of the JVM producer. Compression CompressionCodec // The level of compression to use on messages. The meaning depends // on the actual compression type used and defaults to default compression // level for the codec. CompressionLevel int // Generates partitioners for choosing the partition to send messages to // (defaults to hashing the message key). Similar to the `partitioner.class` // setting for the JVM producer. Partitioner PartitionerConstructor // If enabled, the producer will ensure that exactly one copy of each message is // written. Idempotent bool // Return specifies what channels will be populated. If they are set to true, // you must read from the respective channels to prevent deadlock. If, // however, this config is used to create a `SyncProducer`, both must be set // to true and you shall not read from the channels since the producer does // this internally. Return struct { // If enabled, successfully delivered messages will be returned on the // Successes channel (default disabled). Successes bool // If enabled, messages that failed to deliver will be returned on the // Errors channel, including error (default enabled). Errors bool } // The following config options control how often messages are batched up and // sent to the broker. By default, messages are sent as fast as possible, and // all messages received while the current batch is in-flight are placed // into the subsequent batch. Flush struct { // The best-effort number of bytes needed to trigger a flush. Use the // global sarama.MaxRequestSize to set a hard upper limit. Bytes int // The best-effort number of messages needed to trigger a flush. Use // `MaxMessages` to set a hard upper limit. Messages int // The best-effort frequency of flushes. Equivalent to // `queue.buffering.max.ms` setting of JVM producer. Frequency time.Duration // The maximum number of messages the producer will send in a single // broker request. Defaults to 0 for unlimited. Similar to // `queue.buffering.max.messages` in the JVM producer. MaxMessages int } Retry struct { // The total number of times to retry sending a message (default 3). // Similar to the `message.send.max.retries` setting of the JVM producer. Max int // How long to wait for the cluster to settle between retries // (default 100ms). Similar to the `retry.backoff.ms` setting of the // JVM producer. Backoff time.Duration // Called to compute backoff time dynamically. Useful for implementing // more sophisticated backoff strategies. This takes precedence over // `Backoff` if set. BackoffFunc func(retries, maxRetries int) time.Duration } } // Consumer is the namespace for configuration related to consuming messages, // used by the Consumer. Consumer struct { // Group is the namespace for configuring consumer group. Group struct { Session struct { // The timeout used to detect consumer failures when using Kafka's group management facility. // The consumer sends periodic heartbeats to indicate its liveness to the broker. // If no heartbeats are received by the broker before the expiration of this session timeout, // then the broker will remove this consumer from the group and initiate a rebalance. // Note that the value must be in the allowable range as configured in the broker configuration // by `group.min.session.timeout.ms` and `group.max.session.timeout.ms` (default 10s) Timeout time.Duration } Heartbeat struct { // The expected time between heartbeats to the consumer coordinator when using Kafka's group // management facilities. Heartbeats are used to ensure that the consumer's session stays active and // to facilitate rebalancing when new consumers join or leave the group. // The value must be set lower than Consumer.Group.Session.Timeout, but typically should be set no // higher than 1/3 of that value. // It can be adjusted even lower to control the expected time for normal rebalances (default 3s) Interval time.Duration } Rebalance struct { // Strategy for allocating topic partitions to members (default BalanceStrategyRange) Strategy BalanceStrategy // The maximum allowed time for each worker to join the group once a rebalance has begun. // This is basically a limit on the amount of time needed for all tasks to flush any pending // data and commit offsets. If the timeout is exceeded, then the worker will be removed from // the group, which will cause offset commit failures (default 60s). Timeout time.Duration Retry struct { // When a new consumer joins a consumer group the set of consumers attempt to "rebalance" // the load to assign partitions to each consumer. If the set of consumers changes while // this assignment is taking place the rebalance will fail and retry. This setting controls // the maximum number of attempts before giving up (default 4). Max int // Backoff time between retries during rebalance (default 2s) Backoff time.Duration } } Member struct { // Custom metadata to include when joining the group. The user data for all joined members // can be retrieved by sending a DescribeGroupRequest to the broker that is the // coordinator for the group. UserData []byte } } Retry struct { // How long to wait after a failing to read from a partition before // trying again (default 2s). Backoff time.Duration // Called to compute backoff time dynamically. Useful for implementing // more sophisticated backoff strategies. This takes precedence over // `Backoff` if set. BackoffFunc func(retries int) time.Duration } // Fetch is the namespace for controlling how many bytes are retrieved by any // given request. Fetch struct { // The minimum number of message bytes to fetch in a request - the broker // will wait until at least this many are available. The default is 1, // as 0 causes the consumer to spin when no messages are available. // Equivalent to the JVM's `fetch.min.bytes`. Min int32 // The default number of message bytes to fetch from the broker in each // request (default 1MB). This should be larger than the majority of // your messages, or else the consumer will spend a lot of time // negotiating sizes and not actually consuming. Similar to the JVM's // `fetch.message.max.bytes`. Default int32 // The maximum number of message bytes to fetch from the broker in a // single request. Messages larger than this will return // ErrMessageTooLarge and will not be consumable, so you must be sure // this is at least as large as your largest message. Defaults to 0 // (no limit). Similar to the JVM's `fetch.message.max.bytes`. The // global `sarama.MaxResponseSize` still applies. Max int32 } // The maximum amount of time the broker will wait for Consumer.Fetch.Min // bytes to become available before it returns fewer than that anyways. The // default is 250ms, since 0 causes the consumer to spin when no events are // available. 100-500ms is a reasonable range for most cases. Kafka only // supports precision up to milliseconds; nanoseconds will be truncated. // Equivalent to the JVM's `fetch.wait.max.ms`. MaxWaitTime time.Duration // The maximum amount of time the consumer expects a message takes to // process for the user. If writing to the Messages channel takes longer // than this, that partition will stop fetching more messages until it // can proceed again. // Note that, since the Messages channel is buffered, the actual grace time is // (MaxProcessingTime * ChannelBufferSize). Defaults to 100ms. // If a message is not written to the Messages channel between two ticks // of the expiryTicker then a timeout is detected. // Using a ticker instead of a timer to detect timeouts should typically // result in many fewer calls to Timer functions which may result in a // significant performance improvement if many messages are being sent // and timeouts are infrequent. // The disadvantage of using a ticker instead of a timer is that // timeouts will be less accurate. That is, the effective timeout could // be between `MaxProcessingTime` and `2 * MaxProcessingTime`. For // example, if `MaxProcessingTime` is 100ms then a delay of 180ms // between two messages being sent may not be recognized as a timeout. MaxProcessingTime time.Duration // Return specifies what channels will be populated. If they are set to true, // you must read from them to prevent deadlock. Return struct { // If enabled, any errors that occurred while consuming are returned on // the Errors channel (default disabled). Errors bool } // Offsets specifies configuration for how and when to commit consumed // offsets. This currently requires the manual use of an OffsetManager // but will eventually be automated. Offsets struct { // Deprecated: CommitInterval exists for historical compatibility // and should not be used. Please use Consumer.Offsets.AutoCommit CommitInterval time.Duration // AutoCommit specifies configuration for commit messages automatically. AutoCommit struct { // Whether or not to auto-commit updated offsets back to the broker. // (default enabled). Enable bool // How frequently to commit updated offsets. Ineffective unless // auto-commit is enabled (default 1s) Interval time.Duration } // The initial offset to use if no offset was previously committed. // Should be OffsetNewest or OffsetOldest. Defaults to OffsetNewest. Initial int64 // The retention duration for committed offsets. If zero, disabled // (in which case the `offsets.retention.minutes` option on the // broker will be used). Kafka only supports precision up to // milliseconds; nanoseconds will be truncated. Requires Kafka // broker version 0.9.0 or later. // (default is 0: disabled). Retention time.Duration Retry struct { // The total number of times to retry failing commit // requests during OffsetManager shutdown (default 3). Max int } } // IsolationLevel support 2 mode: // - use `ReadUncommitted` (default) to consume and return all messages in message channel // - use `ReadCommitted` to hide messages that are part of an aborted transaction IsolationLevel IsolationLevel } // A user-provided string sent with every request to the brokers for logging, // debugging, and auditing purposes. Defaults to "sarama", but you should // probably set it to something specific to your application. ClientID string // A rack identifier for this client. This can be any string value which // indicates where this client is physically located. // It corresponds with the broker config 'broker.rack' RackID string // The number of events to buffer in internal and external channels. This // permits the producer and consumer to continue processing some messages // in the background while user code is working, greatly improving throughput. // Defaults to 256. ChannelBufferSize int // The version of Kafka that Sarama will assume it is running against. // Defaults to the oldest supported stable version. Since Kafka provides // backwards-compatibility, setting it to a version older than you have // will not break anything, although it may prevent you from using the // latest features. Setting it to a version greater than you are actually // running may lead to random breakage. Version KafkaVersion // The registry to define metrics into. // Defaults to a local registry. // If you want to disable metrics gathering, set "metrics.UseNilMetrics" to "true" // prior to starting Sarama. // See Examples on how to use the metrics registry MetricRegistry metrics.Registry } // NewConfig returns a new configuration instance with sane defaults. func NewConfig() *Config { c := &Config{} c.Admin.Retry.Max = 5 c.Admin.Retry.Backoff = 100 * time.Millisecond c.Admin.Timeout = 3 * time.Second c.Net.MaxOpenRequests = 5 c.Net.DialTimeout = 30 * time.Second c.Net.ReadTimeout = 30 * time.Second c.Net.WriteTimeout = 30 * time.Second c.Net.SASL.Handshake = true c.Net.SASL.Version = SASLHandshakeV0 c.Metadata.Retry.Max = 3 c.Metadata.Retry.Backoff = 250 * time.Millisecond c.Metadata.RefreshFrequency = 10 * time.Minute c.Metadata.Full = true c.Producer.MaxMessageBytes = 1000000 c.Producer.RequiredAcks = WaitForLocal c.Producer.Timeout = 10 * time.Second c.Producer.Partitioner = NewHashPartitioner c.Producer.Retry.Max = 3 c.Producer.Retry.Backoff = 100 * time.Millisecond c.Producer.Return.Errors = true c.Producer.CompressionLevel = CompressionLevelDefault c.Consumer.Fetch.Min = 1 c.Consumer.Fetch.Default = 1024 * 1024 c.Consumer.Retry.Backoff = 2 * time.Second c.Consumer.MaxWaitTime = 250 * time.Millisecond c.Consumer.MaxProcessingTime = 100 * time.Millisecond c.Consumer.Return.Errors = false c.Consumer.Offsets.AutoCommit.Enable = true c.Consumer.Offsets.AutoCommit.Interval = 1 * time.Second c.Consumer.Offsets.Initial = OffsetNewest c.Consumer.Offsets.Retry.Max = 3 c.Consumer.Group.Session.Timeout = 10 * time.Second c.Consumer.Group.Heartbeat.Interval = 3 * time.Second c.Consumer.Group.Rebalance.Strategy = BalanceStrategyRange c.Consumer.Group.Rebalance.Timeout = 60 * time.Second c.Consumer.Group.Rebalance.Retry.Max = 4 c.Consumer.Group.Rebalance.Retry.Backoff = 2 * time.Second c.ClientID = defaultClientID c.ChannelBufferSize = 256 c.Version = MinVersion c.MetricRegistry = metrics.NewRegistry() return c } // Validate checks a Config instance. It will return a // ConfigurationError if the specified values don't make sense. func (c *Config) Validate() error { // some configuration values should be warned on but not fail completely, do those first if !c.Net.TLS.Enable && c.Net.TLS.Config != nil { Logger.Println("Net.TLS is disabled but a non-nil configuration was provided.") } if !c.Net.SASL.Enable { if c.Net.SASL.User != "" { Logger.Println("Net.SASL is disabled but a non-empty username was provided.") } if c.Net.SASL.Password != "" { Logger.Println("Net.SASL is disabled but a non-empty password was provided.") } } if c.Producer.RequiredAcks > 1 { Logger.Println("Producer.RequiredAcks > 1 is deprecated and will raise an exception with kafka >= 0.8.2.0.") } if c.Producer.MaxMessageBytes >= int(MaxRequestSize) { Logger.Println("Producer.MaxMessageBytes must be smaller than MaxRequestSize; it will be ignored.") } if c.Producer.Flush.Bytes >= int(MaxRequestSize) { Logger.Println("Producer.Flush.Bytes must be smaller than MaxRequestSize; it will be ignored.") } if (c.Producer.Flush.Bytes > 0 || c.Producer.Flush.Messages > 0) && c.Producer.Flush.Frequency == 0 { Logger.Println("Producer.Flush: Bytes or Messages are set, but Frequency is not; messages may not get flushed.") } if c.Producer.Timeout%time.Millisecond != 0 { Logger.Println("Producer.Timeout only supports millisecond resolution; nanoseconds will be truncated.") } if c.Consumer.MaxWaitTime < 100*time.Millisecond { Logger.Println("Consumer.MaxWaitTime is very low, which can cause high CPU and network usage. See documentation for details.") } if c.Consumer.MaxWaitTime%time.Millisecond != 0 { Logger.Println("Consumer.MaxWaitTime only supports millisecond precision; nanoseconds will be truncated.") } if c.Consumer.Offsets.Retention%time.Millisecond != 0 { Logger.Println("Consumer.Offsets.Retention only supports millisecond precision; nanoseconds will be truncated.") } if c.Consumer.Group.Session.Timeout%time.Millisecond != 0 { Logger.Println("Consumer.Group.Session.Timeout only supports millisecond precision; nanoseconds will be truncated.") } if c.Consumer.Group.Heartbeat.Interval%time.Millisecond != 0 { Logger.Println("Consumer.Group.Heartbeat.Interval only supports millisecond precision; nanoseconds will be truncated.") } if c.Consumer.Group.Rebalance.Timeout%time.Millisecond != 0 { Logger.Println("Consumer.Group.Rebalance.Timeout only supports millisecond precision; nanoseconds will be truncated.") } if c.ClientID == defaultClientID { Logger.Println("ClientID is the default of 'sarama', you should consider setting it to something application-specific.") } // validate Net values switch { case c.Net.MaxOpenRequests <= 0: return ConfigurationError("Net.MaxOpenRequests must be > 0") case c.Net.DialTimeout <= 0: return ConfigurationError("Net.DialTimeout must be > 0") case c.Net.ReadTimeout <= 0: return ConfigurationError("Net.ReadTimeout must be > 0") case c.Net.WriteTimeout <= 0: return ConfigurationError("Net.WriteTimeout must be > 0") case c.Net.SASL.Enable: if c.Net.SASL.Mechanism == "" { c.Net.SASL.Mechanism = SASLTypePlaintext } switch c.Net.SASL.Mechanism { case SASLTypePlaintext: if c.Net.SASL.User == "" { return ConfigurationError("Net.SASL.User must not be empty when SASL is enabled") } if c.Net.SASL.Password == "" { return ConfigurationError("Net.SASL.Password must not be empty when SASL is enabled") } case SASLTypeOAuth: if c.Net.SASL.TokenProvider == nil { return ConfigurationError("An AccessTokenProvider instance must be provided to Net.SASL.TokenProvider") } case SASLTypeSCRAMSHA256, SASLTypeSCRAMSHA512: if c.Net.SASL.User == "" { return ConfigurationError("Net.SASL.User must not be empty when SASL is enabled") } if c.Net.SASL.Password == "" { return ConfigurationError("Net.SASL.Password must not be empty when SASL is enabled") } if c.Net.SASL.SCRAMClientGeneratorFunc == nil { return ConfigurationError("A SCRAMClientGeneratorFunc function must be provided to Net.SASL.SCRAMClientGeneratorFunc") } case SASLTypeGSSAPI: if c.Net.SASL.GSSAPI.ServiceName == "" { return ConfigurationError("Net.SASL.GSSAPI.ServiceName must not be empty when GSS-API mechanism is used") } if c.Net.SASL.GSSAPI.AuthType == KRB5_USER_AUTH { if c.Net.SASL.GSSAPI.Password == "" { return ConfigurationError("Net.SASL.GSSAPI.Password must not be empty when GSS-API " + "mechanism is used and Net.SASL.GSSAPI.AuthType = KRB5_USER_AUTH") } } else if c.Net.SASL.GSSAPI.AuthType == KRB5_KEYTAB_AUTH { if c.Net.SASL.GSSAPI.KeyTabPath == "" { return ConfigurationError("Net.SASL.GSSAPI.KeyTabPath must not be empty when GSS-API mechanism is used" + " and Net.SASL.GSSAPI.AuthType = KRB5_KEYTAB_AUTH") } } else { return ConfigurationError("Net.SASL.GSSAPI.AuthType is invalid. Possible values are KRB5_USER_AUTH and KRB5_KEYTAB_AUTH") } if c.Net.SASL.GSSAPI.KerberosConfigPath == "" { return ConfigurationError("Net.SASL.GSSAPI.KerberosConfigPath must not be empty when GSS-API mechanism is used") } if c.Net.SASL.GSSAPI.Username == "" { return ConfigurationError("Net.SASL.GSSAPI.Username must not be empty when GSS-API mechanism is used") } if c.Net.SASL.GSSAPI.Realm == "" { return ConfigurationError("Net.SASL.GSSAPI.Realm must not be empty when GSS-API mechanism is used") } default: msg := fmt.Sprintf("The SASL mechanism configuration is invalid. Possible values are `%s`, `%s`, `%s`, `%s` and `%s`", SASLTypeOAuth, SASLTypePlaintext, SASLTypeSCRAMSHA256, SASLTypeSCRAMSHA512, SASLTypeGSSAPI) return ConfigurationError(msg) } } // validate the Admin values switch { case c.Admin.Timeout <= 0: return ConfigurationError("Admin.Timeout must be > 0") } // validate the Metadata values switch { case c.Metadata.Retry.Max < 0: return ConfigurationError("Metadata.Retry.Max must be >= 0") case c.Metadata.Retry.Backoff < 0: return ConfigurationError("Metadata.Retry.Backoff must be >= 0") case c.Metadata.RefreshFrequency < 0: return ConfigurationError("Metadata.RefreshFrequency must be >= 0") } // validate the Producer values switch { case c.Producer.MaxMessageBytes <= 0: return ConfigurationError("Producer.MaxMessageBytes must be > 0") case c.Producer.RequiredAcks < -1: return ConfigurationError("Producer.RequiredAcks must be >= -1") case c.Producer.Timeout <= 0: return ConfigurationError("Producer.Timeout must be > 0") case c.Producer.Partitioner == nil: return ConfigurationError("Producer.Partitioner must not be nil") case c.Producer.Flush.Bytes < 0: return ConfigurationError("Producer.Flush.Bytes must be >= 0") case c.Producer.Flush.Messages < 0: return ConfigurationError("Producer.Flush.Messages must be >= 0") case c.Producer.Flush.Frequency < 0: return ConfigurationError("Producer.Flush.Frequency must be >= 0") case c.Producer.Flush.MaxMessages < 0: return ConfigurationError("Producer.Flush.MaxMessages must be >= 0") case c.Producer.Flush.MaxMessages > 0 && c.Producer.Flush.MaxMessages < c.Producer.Flush.Messages: return ConfigurationError("Producer.Flush.MaxMessages must be >= Producer.Flush.Messages when set") case c.Producer.Retry.Max < 0: return ConfigurationError("Producer.Retry.Max must be >= 0") case c.Producer.Retry.Backoff < 0: return ConfigurationError("Producer.Retry.Backoff must be >= 0") } if c.Producer.Compression == CompressionLZ4 && !c.Version.IsAtLeast(V0_10_0_0) { return ConfigurationError("lz4 compression requires Version >= V0_10_0_0") } if c.Producer.Compression == CompressionGZIP { if c.Producer.CompressionLevel != CompressionLevelDefault { if _, err := gzip.NewWriterLevel(ioutil.Discard, c.Producer.CompressionLevel); err != nil { return ConfigurationError(fmt.Sprintf("gzip compression does not work with level %d: %v", c.Producer.CompressionLevel, err)) } } } if c.Producer.Compression == CompressionZSTD && !c.Version.IsAtLeast(V2_1_0_0) { return ConfigurationError("zstd compression requires Version >= V2_1_0_0") } if c.Producer.Idempotent { if !c.Version.IsAtLeast(V0_11_0_0) { return ConfigurationError("Idempotent producer requires Version >= V0_11_0_0") } if c.Producer.Retry.Max == 0 { return ConfigurationError("Idempotent producer requires Producer.Retry.Max >= 1") } if c.Producer.RequiredAcks != WaitForAll { return ConfigurationError("Idempotent producer requires Producer.RequiredAcks to be WaitForAll") } if c.Net.MaxOpenRequests > 1 { return ConfigurationError("Idempotent producer requires Net.MaxOpenRequests to be 1") } } // validate the Consumer values switch { case c.Consumer.Fetch.Min <= 0: return ConfigurationError("Consumer.Fetch.Min must be > 0") case c.Consumer.Fetch.Default <= 0: return ConfigurationError("Consumer.Fetch.Default must be > 0") case c.Consumer.Fetch.Max < 0: return ConfigurationError("Consumer.Fetch.Max must be >= 0") case c.Consumer.MaxWaitTime < 1*time.Millisecond: return ConfigurationError("Consumer.MaxWaitTime must be >= 1ms") case c.Consumer.MaxProcessingTime <= 0: return ConfigurationError("Consumer.MaxProcessingTime must be > 0") case c.Consumer.Retry.Backoff < 0: return ConfigurationError("Consumer.Retry.Backoff must be >= 0") case c.Consumer.Offsets.AutoCommit.Interval <= 0: return ConfigurationError("Consumer.Offsets.AutoCommit.Interval must be > 0") case c.Consumer.Offsets.Initial != OffsetOldest && c.Consumer.Offsets.Initial != OffsetNewest: return ConfigurationError("Consumer.Offsets.Initial must be OffsetOldest or OffsetNewest") case c.Consumer.Offsets.Retry.Max < 0: return ConfigurationError("Consumer.Offsets.Retry.Max must be >= 0") case c.Consumer.IsolationLevel != ReadUncommitted && c.Consumer.IsolationLevel != ReadCommitted: return ConfigurationError("Consumer.IsolationLevel must be ReadUncommitted or ReadCommitted") } if c.Consumer.Offsets.CommitInterval != 0 { Logger.Println("Deprecation warning: Consumer.Offsets.CommitInterval exists for historical compatibility" + " and should not be used. Please use Consumer.Offsets.AutoCommit, the current value will be ignored") } // validate IsolationLevel if c.Consumer.IsolationLevel == ReadCommitted && !c.Version.IsAtLeast(V0_11_0_0) { return ConfigurationError("ReadCommitted requires Version >= V0_11_0_0") } // validate the Consumer Group values switch { case c.Consumer.Group.Session.Timeout <= 2*time.Millisecond: return ConfigurationError("Consumer.Group.Session.Timeout must be >= 2ms") case c.Consumer.Group.Heartbeat.Interval < 1*time.Millisecond: return ConfigurationError("Consumer.Group.Heartbeat.Interval must be >= 1ms") case c.Consumer.Group.Heartbeat.Interval >= c.Consumer.Group.Session.Timeout: return ConfigurationError("Consumer.Group.Heartbeat.Interval must be < Consumer.Group.Session.Timeout") case c.Consumer.Group.Rebalance.Strategy == nil: return ConfigurationError("Consumer.Group.Rebalance.Strategy must not be empty") case c.Consumer.Group.Rebalance.Timeout <= time.Millisecond: return ConfigurationError("Consumer.Group.Rebalance.Timeout must be >= 1ms") case c.Consumer.Group.Rebalance.Retry.Max < 0: return ConfigurationError("Consumer.Group.Rebalance.Retry.Max must be >= 0") case c.Consumer.Group.Rebalance.Retry.Backoff < 0: return ConfigurationError("Consumer.Group.Rebalance.Retry.Backoff must be >= 0") } // validate misc shared values switch { case c.ChannelBufferSize < 0: return ConfigurationError("ChannelBufferSize must be >= 0") case !validID.MatchString(c.ClientID): return ConfigurationError("ClientID is invalid") } return nil } func (c *Config) getDialer() proxy.Dialer { if c.Net.Proxy.Enable { Logger.Printf("using proxy %s", c.Net.Proxy.Dialer) return c.Net.Proxy.Dialer } else { return &net.Dialer{ Timeout: c.Net.DialTimeout, KeepAlive: c.Net.KeepAlive, LocalAddr: c.Net.LocalAddr, } } }