package geojson import ( "math" "strconv" "github.com/tidwall/geojson/geo" "github.com/tidwall/geojson/geometry" ) // Circle ... type Circle struct { object Object center geometry.Point meters float64 haversine float64 steps int km bool extra *extra } // NewCircle returns an circle object func NewCircle(center geometry.Point, meters float64, steps int) *Circle { if steps < 3 { steps = 3 } g := new(Circle) g.center = center g.meters = meters g.steps = steps if meters > 0 { meters = geo.NormalizeDistance(meters) g.haversine = geo.DistanceToHaversine(meters) } return g } // AppendJSON ... func (g *Circle) AppendJSON(dst []byte) []byte { dst = append(dst, `{"type":"Feature","geometry":`...) dst = append(dst, `{"type":"Point","coordinates":[`...) dst = strconv.AppendFloat(dst, g.center.X, 'f', -1, 64) dst = append(dst, ',') dst = strconv.AppendFloat(dst, g.center.Y, 'f', -1, 64) dst = append(dst, `]},"properties":{"type":"Circle","radius":`...) dst = strconv.AppendFloat(dst, g.meters, 'f', -1, 64) dst = append(dst, `,"radius_units":"m"}}`...) return dst } // JSON ... func (g *Circle) JSON() string { return string(g.AppendJSON(nil)) } // MarshalJSON ... func (g *Circle) MarshalJSON() ([]byte, error) { return g.AppendJSON(nil), nil } // String ... func (g *Circle) String() string { return string(g.AppendJSON(nil)) } // Meters returns the circle's radius func (g *Circle) Meters() float64 { return g.meters } // Center returns the circle's center point func (g *Circle) Center() geometry.Point { return g.center } // Haversine returns the haversine corresponding to circle's radius func (g *Circle) Haversine() float64 { return g.haversine } // HaversineTo returns the haversine from a given point to circle's center func (g *Circle) HaversineTo(p geometry.Point) float64 { return geo.Haversine(p.Y, p.X, g.center.Y, g.center.X) } // Within returns true if circle is contained inside object func (g *Circle) Within(obj Object) bool { return obj.Contains(g) } // containsPoint returns true if circle contains a given point func (g *Circle) containsPoint(p geometry.Point) bool { h := geo.Haversine(p.Y, p.X, g.center.Y, g.center.X) return h <= g.haversine } // Contains returns true if the circle contains other object func (g *Circle) Contains(obj Object) bool { switch other := obj.(type) { case *Point: return g.containsPoint(other.Center()) case *Circle: return other.Distance(g) < (other.meters + g.meters) case *LineString: for i := 0; i < other.base.NumPoints(); i++ { if !g.containsPoint(other.base.PointAt(i)) { return false } } return true case Collection: for _, p := range other.Children() { if !g.Contains(p) { return false } } return true default: // No simple cases, so using polygon approximation. return g.getObject().Contains(other) } } // intersectsSegment returns true if the circle intersects a given segment func (g *Circle) intersectsSegment(seg geometry.Segment) bool { start, end := seg.A, seg.B // These are faster checks. // If they succeed there's no need do complicate things. if g.containsPoint(start) || g.containsPoint(end) { return true } // Distance between start and end l := geo.DistanceTo(start.Y, start.X, end.Y, end.X) // Unit direction vector dx := (end.X - start.X) / l dy := (end.Y - start.Y) / l // Point of the line closest to the center t := dx*(g.center.X-start.X) + dy*(g.center.Y-start.Y) px := t*dx + start.X py := t*dy + start.Y if px < start.X || px > end.X || py < start.Y || py > end.Y { // closest point is outside the segment return false } // Distance from the closest point to the center return g.containsPoint(geometry.Point{X: px, Y: py}) } // Intersects returns true the circle intersects other object func (g *Circle) Intersects(obj Object) bool { switch other := obj.(type) { case *Point: return g.containsPoint(other.Center()) case *Circle: return other.Distance(g) <= (other.meters + g.meters) case *LineString: for i := 0; i < other.base.NumSegments(); i++ { if g.intersectsSegment(other.base.SegmentAt(i)) { return true } } return false case Collection: for _, p := range other.Children() { if g.Intersects(p) { return true } } return false default: // No simple cases, so using polygon approximation. return g.getObject().Intersects(obj) } } // Empty ... func (g *Circle) Empty() bool { return false } // Valid ... func (g *Circle) Valid() bool { return g.getObject().Valid() } // ForEach ... func (g *Circle) ForEach(iter func(geom Object) bool) bool { return iter(g) } // NumPoints ... func (g *Circle) NumPoints() int { // should this be g.steps? return 1 } // Distance ... func (g *Circle) Distance(other Object) float64 { return g.getObject().Distance(other) } // Rect ... func (g *Circle) Rect() geometry.Rect { return g.getObject().Rect() } // Spatial ... func (g *Circle) Spatial() Spatial { return g.getObject().Spatial() } func (g *Circle) getObject() Object { if g.object != nil { return g.object } return makeCircleObject(g.center, g.meters, g.steps) } func makeCircleObject(center geometry.Point, meters float64, steps int) Object { if meters <= 0 { return NewPoint(center) } meters = geo.NormalizeDistance(meters) points := make([]geometry.Point, 0, steps+1) // calc the four corners maxY, _ := geo.DestinationPoint(center.Y, center.X, meters, 0) _, maxX := geo.DestinationPoint(center.Y, center.X, meters, 90) minY, _ := geo.DestinationPoint(center.Y, center.X, meters, 180) _, minX := geo.DestinationPoint(center.Y, center.X, meters, 270) // TODO: detect of pole and antimeridian crossing and generate a // valid multigeometry // use the half width of the lat and lon lons := (maxX - minX) / 2 lats := (maxY - minY) / 2 // generate the for th := 0.0; th <= 360.0; th += 360.0 / float64(steps) { radians := (math.Pi / 180) * th x := center.X + lats*math.Cos(radians) y := center.Y + lons*math.Sin(radians) points = append(points, geometry.Point{X: x, Y: y}) } // add last connecting point, make a total of steps+1 points = append(points, points[0]) return NewPolygon( geometry.NewPoly(points, nil, &geometry.IndexOptions{ Kind: geometry.None, }), ) }