package rtree import "math" func d3fmin(a, b float64) float64 { if a < b { return a } return b } func d3fmax(a, b float64) float64 { if a > b { return a } return b } const ( d3numDims = 3 d3maxNodes = 8 d3minNodes = d3maxNodes / 2 d3useSphericalVolume = true // Better split classification, may be slower on some systems ) var d3unitSphereVolume = []float64{ 0.000000, 2.000000, 3.141593, // Dimension 0,1,2 4.188790, 4.934802, 5.263789, // Dimension 3,4,5 5.167713, 4.724766, 4.058712, // Dimension 6,7,8 3.298509, 2.550164, 1.884104, // Dimension 9,10,11 1.335263, 0.910629, 0.599265, // Dimension 12,13,14 0.381443, 0.235331, 0.140981, // Dimension 15,16,17 0.082146, 0.046622, 0.025807, // Dimension 18,19,20 }[d3numDims] type d3RTree struct { root *d3nodeT ///< Root of tree } /// Minimal bounding rectangle (n-dimensional) type d3rectT struct { min [d3numDims]float64 ///< Min dimensions of bounding box max [d3numDims]float64 ///< Max dimensions of bounding box } /// May be data or may be another subtree /// The parents level determines this. /// If the parents level is 0, then this is data type d3branchT struct { rect d3rectT ///< Bounds child *d3nodeT ///< Child node data interface{} ///< Data Id or Ptr } /// d3nodeT for each branch level type d3nodeT struct { count int ///< Count level int ///< Leaf is zero, others positive branch [d3maxNodes]d3branchT ///< Branch } func (node *d3nodeT) isInternalNode() bool { return (node.level > 0) // Not a leaf, but a internal node } func (node *d3nodeT) isLeaf() bool { return (node.level == 0) // A leaf, contains data } /// A link list of nodes for reinsertion after a delete operation type d3listNodeT struct { next *d3listNodeT ///< Next in list node *d3nodeT ///< Node } const d3notTaken = -1 // indicates that position /// Variables for finding a split partition type d3partitionVarsT struct { partition [d3maxNodes + 1]int total int minFill int count [2]int cover [2]d3rectT area [2]float64 branchBuf [d3maxNodes + 1]d3branchT branchCount int coverSplit d3rectT coverSplitArea float64 } func d3New() *d3RTree { // We only support machine word size simple data type eg. integer index or object pointer. // Since we are storing as union with non data branch return &d3RTree{ root: &d3nodeT{}, } } /// Insert entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. func (tr *d3RTree) Insert(min, max [d3numDims]float64, dataId interface{}) { var branch d3branchT branch.data = dataId for axis := 0; axis < d3numDims; axis++ { branch.rect.min[axis] = min[axis] branch.rect.max[axis] = max[axis] } d3insertRect(&branch, &tr.root, 0) } /// Remove entry /// \param a_min Min of bounding rect /// \param a_max Max of bounding rect /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed. func (tr *d3RTree) Remove(min, max [d3numDims]float64, dataId interface{}) { var rect d3rectT for axis := 0; axis < d3numDims; axis++ { rect.min[axis] = min[axis] rect.max[axis] = max[axis] } d3removeRect(&rect, dataId, &tr.root) } /// Find all within d3search rectangle /// \param a_min Min of d3search bounding rect /// \param a_max Max of d3search bounding rect /// \param a_searchResult d3search result array. Caller should set grow size. Function will reset, not append to array. /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching /// \param a_context User context to pass as parameter to a_resultCallback /// \return Returns the number of entries found func (tr *d3RTree) Search(min, max [d3numDims]float64, resultCallback func(data interface{}) bool) int { var rect d3rectT for axis := 0; axis < d3numDims; axis++ { rect.min[axis] = min[axis] rect.max[axis] = max[axis] } foundCount, _ := d3search(tr.root, rect, 0, resultCallback) return foundCount } /// Count the data elements in this container. This is slow as no internal counter is maintained. func (tr *d3RTree) Count() int { var count int d3countRec(tr.root, &count) return count } /// Remove all entries from tree func (tr *d3RTree) RemoveAll() { // Delete all existing nodes tr.root = &d3nodeT{} } func d3countRec(node *d3nodeT, count *int) { if node.isInternalNode() { // not a leaf node for index := 0; index < node.count; index++ { d3countRec(node.branch[index].child, count) } } else { // A leaf node *count += node.count } } // Inserts a new data rectangle into the index structure. // Recursively descends tree, propagates splits back up. // Returns 0 if node was not split. Old node updated. // If node was split, returns 1 and sets the pointer pointed to by // new_node to point to the new node. Old node updated to become one of two. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. func d3insertRectRec(branch *d3branchT, node *d3nodeT, newNode **d3nodeT, level int) bool { // recurse until we reach the correct level for the new record. data records // will always be called with a_level == 0 (leaf) if node.level > level { // Still above level for insertion, go down tree recursively var otherNode *d3nodeT //var newBranch d3branchT // find the optimal branch for this record index := d3pickBranch(&branch.rect, node) // recursively insert this record into the picked branch childWasSplit := d3insertRectRec(branch, node.branch[index].child, &otherNode, level) if !childWasSplit { // Child was not split. Merge the bounding box of the new record with the // existing bounding box node.branch[index].rect = d3combineRect(&branch.rect, &(node.branch[index].rect)) return false } else { // Child was split. The old branches are now re-partitioned to two nodes // so we have to re-calculate the bounding boxes of each node node.branch[index].rect = d3nodeCover(node.branch[index].child) var newBranch d3branchT newBranch.child = otherNode newBranch.rect = d3nodeCover(otherNode) // The old node is already a child of a_node. Now add the newly-created // node to a_node as well. a_node might be split because of that. return d3addBranch(&newBranch, node, newNode) } } else if node.level == level { // We have reached level for insertion. Add rect, split if necessary return d3addBranch(branch, node, newNode) } else { // Should never occur return false } } // Insert a data rectangle into an index structure. // d3insertRect provides for splitting the root; // returns 1 if root was split, 0 if it was not. // The level argument specifies the number of steps up from the leaf // level to insert; e.g. a data rectangle goes in at level = 0. // InsertRect2 does the recursion. // func d3insertRect(branch *d3branchT, root **d3nodeT, level int) bool { var newNode *d3nodeT if d3insertRectRec(branch, *root, &newNode, level) { // Root split // Grow tree taller and new root newRoot := &d3nodeT{} newRoot.level = (*root).level + 1 var newBranch d3branchT // add old root node as a child of the new root newBranch.rect = d3nodeCover(*root) newBranch.child = *root d3addBranch(&newBranch, newRoot, nil) // add the split node as a child of the new root newBranch.rect = d3nodeCover(newNode) newBranch.child = newNode d3addBranch(&newBranch, newRoot, nil) // set the new root as the root node *root = newRoot return true } return false } // Find the smallest rectangle that includes all rectangles in branches of a node. func d3nodeCover(node *d3nodeT) d3rectT { rect := node.branch[0].rect for index := 1; index < node.count; index++ { rect = d3combineRect(&rect, &(node.branch[index].rect)) } return rect } // Add a branch to a node. Split the node if necessary. // Returns 0 if node not split. Old node updated. // Returns 1 if node split, sets *new_node to address of new node. // Old node updated, becomes one of two. func d3addBranch(branch *d3branchT, node *d3nodeT, newNode **d3nodeT) bool { if node.count < d3maxNodes { // Split won't be necessary node.branch[node.count] = *branch node.count++ return false } else { d3splitNode(node, branch, newNode) return true } } // Disconnect a dependent node. // Caller must return (or stop using iteration index) after this as count has changed func d3disconnectBranch(node *d3nodeT, index int) { // Remove element by swapping with the last element to prevent gaps in array node.branch[index] = node.branch[node.count-1] node.branch[node.count-1].data = nil node.branch[node.count-1].child = nil node.count-- } // Pick a branch. Pick the one that will need the smallest increase // in area to accommodate the new rectangle. This will result in the // least total area for the covering rectangles in the current node. // In case of a tie, pick the one which was smaller before, to get // the best resolution when searching. func d3pickBranch(rect *d3rectT, node *d3nodeT) int { var firstTime bool = true var increase float64 var bestIncr float64 = -1 var area float64 var bestArea float64 var best int var tempRect d3rectT for index := 0; index < node.count; index++ { curRect := &node.branch[index].rect area = d3calcRectVolume(curRect) tempRect = d3combineRect(rect, curRect) increase = d3calcRectVolume(&tempRect) - area if (increase < bestIncr) || firstTime { best = index bestArea = area bestIncr = increase firstTime = false } else if (increase == bestIncr) && (area < bestArea) { best = index bestArea = area bestIncr = increase } } return best } // Combine two rectangles into larger one containing both func d3combineRect(rectA, rectB *d3rectT) d3rectT { var newRect d3rectT for index := 0; index < d3numDims; index++ { newRect.min[index] = d3fmin(rectA.min[index], rectB.min[index]) newRect.max[index] = d3fmax(rectA.max[index], rectB.max[index]) } return newRect } // Split a node. // Divides the nodes branches and the extra one between two nodes. // Old node is one of the new ones, and one really new one is created. // Tries more than one method for choosing a partition, uses best result. func d3splitNode(node *d3nodeT, branch *d3branchT, newNode **d3nodeT) { // Could just use local here, but member or external is faster since it is reused var localVars d3partitionVarsT parVars := &localVars // Load all the branches into a buffer, initialize old node d3getBranches(node, branch, parVars) // Find partition d3choosePartition(parVars, d3minNodes) // Create a new node to hold (about) half of the branches *newNode = &d3nodeT{} (*newNode).level = node.level // Put branches from buffer into 2 nodes according to the chosen partition node.count = 0 d3loadNodes(node, *newNode, parVars) } // Calculate the n-dimensional volume of a rectangle func d3rectVolume(rect *d3rectT) float64 { var volume float64 = 1 for index := 0; index < d3numDims; index++ { volume *= rect.max[index] - rect.min[index] } return volume } // The exact volume of the bounding sphere for the given d3rectT func d3rectSphericalVolume(rect *d3rectT) float64 { var sumOfSquares float64 = 0 var radius float64 for index := 0; index < d3numDims; index++ { halfExtent := (rect.max[index] - rect.min[index]) * 0.5 sumOfSquares += halfExtent * halfExtent } radius = math.Sqrt(sumOfSquares) // Pow maybe slow, so test for common dims just use x*x, x*x*x. if d3numDims == 5 { return (radius * radius * radius * radius * radius * d3unitSphereVolume) } else if d3numDims == 4 { return (radius * radius * radius * radius * d3unitSphereVolume) } else if d3numDims == 3 { return (radius * radius * radius * d3unitSphereVolume) } else if d3numDims == 2 { return (radius * radius * d3unitSphereVolume) } else { return (math.Pow(radius, d3numDims) * d3unitSphereVolume) } } // Use one of the methods to calculate retangle volume func d3calcRectVolume(rect *d3rectT) float64 { if d3useSphericalVolume { return d3rectSphericalVolume(rect) // Slower but helps certain merge cases } else { // RTREE_USE_SPHERICAL_VOLUME return d3rectVolume(rect) // Faster but can cause poor merges } // RTREE_USE_SPHERICAL_VOLUME } // Load branch buffer with branches from full node plus the extra branch. func d3getBranches(node *d3nodeT, branch *d3branchT, parVars *d3partitionVarsT) { // Load the branch buffer for index := 0; index < d3maxNodes; index++ { parVars.branchBuf[index] = node.branch[index] } parVars.branchBuf[d3maxNodes] = *branch parVars.branchCount = d3maxNodes + 1 // Calculate rect containing all in the set parVars.coverSplit = parVars.branchBuf[0].rect for index := 1; index < d3maxNodes+1; index++ { parVars.coverSplit = d3combineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect) } parVars.coverSplitArea = d3calcRectVolume(&parVars.coverSplit) } // Method #0 for choosing a partition: // As the seeds for the two groups, pick the two rects that would waste the // most area if covered by a single rectangle, i.e. evidently the worst pair // to have in the same group. // Of the remaining, one at a time is chosen to be put in one of the two groups. // The one chosen is the one with the greatest difference in area expansion // depending on which group - the rect most strongly attracted to one group // and repelled from the other. // If one group gets too full (more would force other group to violate min // fill requirement) then other group gets the rest. // These last are the ones that can go in either group most easily. func d3choosePartition(parVars *d3partitionVarsT, minFill int) { var biggestDiff float64 var group, chosen, betterGroup int d3initParVars(parVars, parVars.branchCount, minFill) d3pickSeeds(parVars) for ((parVars.count[0] + parVars.count[1]) < parVars.total) && (parVars.count[0] < (parVars.total - parVars.minFill)) && (parVars.count[1] < (parVars.total - parVars.minFill)) { biggestDiff = -1 for index := 0; index < parVars.total; index++ { if d3notTaken == parVars.partition[index] { curRect := &parVars.branchBuf[index].rect rect0 := d3combineRect(curRect, &parVars.cover[0]) rect1 := d3combineRect(curRect, &parVars.cover[1]) growth0 := d3calcRectVolume(&rect0) - parVars.area[0] growth1 := d3calcRectVolume(&rect1) - parVars.area[1] diff := growth1 - growth0 if diff >= 0 { group = 0 } else { group = 1 diff = -diff } if diff > biggestDiff { biggestDiff = diff chosen = index betterGroup = group } else if (diff == biggestDiff) && (parVars.count[group] < parVars.count[betterGroup]) { chosen = index betterGroup = group } } } d3classify(chosen, betterGroup, parVars) } // If one group too full, put remaining rects in the other if (parVars.count[0] + parVars.count[1]) < parVars.total { if parVars.count[0] >= parVars.total-parVars.minFill { group = 1 } else { group = 0 } for index := 0; index < parVars.total; index++ { if d3notTaken == parVars.partition[index] { d3classify(index, group, parVars) } } } } // Copy branches from the buffer into two nodes according to the partition. func d3loadNodes(nodeA, nodeB *d3nodeT, parVars *d3partitionVarsT) { for index := 0; index < parVars.total; index++ { targetNodeIndex := parVars.partition[index] targetNodes := []*d3nodeT{nodeA, nodeB} // It is assured that d3addBranch here will not cause a node split. d3addBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil) } } // Initialize a d3partitionVarsT structure. func d3initParVars(parVars *d3partitionVarsT, maxRects, minFill int) { parVars.count[0] = 0 parVars.count[1] = 0 parVars.area[0] = 0 parVars.area[1] = 0 parVars.total = maxRects parVars.minFill = minFill for index := 0; index < maxRects; index++ { parVars.partition[index] = d3notTaken } } func d3pickSeeds(parVars *d3partitionVarsT) { var seed0, seed1 int var worst, waste float64 var area [d3maxNodes + 1]float64 for index := 0; index < parVars.total; index++ { area[index] = d3calcRectVolume(&parVars.branchBuf[index].rect) } worst = -parVars.coverSplitArea - 1 for indexA := 0; indexA < parVars.total-1; indexA++ { for indexB := indexA + 1; indexB < parVars.total; indexB++ { oneRect := d3combineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect) waste = d3calcRectVolume(&oneRect) - area[indexA] - area[indexB] if waste > worst { worst = waste seed0 = indexA seed1 = indexB } } } d3classify(seed0, 0, parVars) d3classify(seed1, 1, parVars) } // Put a branch in one of the groups. func d3classify(index, group int, parVars *d3partitionVarsT) { parVars.partition[index] = group // Calculate combined rect if parVars.count[group] == 0 { parVars.cover[group] = parVars.branchBuf[index].rect } else { parVars.cover[group] = d3combineRect(&parVars.branchBuf[index].rect, &parVars.cover[group]) } // Calculate volume of combined rect parVars.area[group] = d3calcRectVolume(&parVars.cover[group]) parVars.count[group]++ } // Delete a data rectangle from an index structure. // Pass in a pointer to a d3rectT, the tid of the record, ptr to ptr to root node. // Returns 1 if record not found, 0 if success. // d3removeRect provides for eliminating the root. func d3removeRect(rect *d3rectT, id interface{}, root **d3nodeT) bool { var reInsertList *d3listNodeT if !d3removeRectRec(rect, id, *root, &reInsertList) { // Found and deleted a data item // Reinsert any branches from eliminated nodes for reInsertList != nil { tempNode := reInsertList.node for index := 0; index < tempNode.count; index++ { // TODO go over this code. should I use (tempNode->m_level - 1)? d3insertRect(&tempNode.branch[index], root, tempNode.level) } reInsertList = reInsertList.next } // Check for redundant root (not leaf, 1 child) and eliminate TODO replace // if with while? In case there is a whole branch of redundant roots... if (*root).count == 1 && (*root).isInternalNode() { tempNode := (*root).branch[0].child *root = tempNode } return false } else { return true } } // Delete a rectangle from non-root part of an index structure. // Called by d3removeRect. Descends tree recursively, // merges branches on the way back up. // Returns 1 if record not found, 0 if success. func d3removeRectRec(rect *d3rectT, id interface{}, node *d3nodeT, listNode **d3listNodeT) bool { if node.isInternalNode() { // not a leaf node for index := 0; index < node.count; index++ { if d3overlap(*rect, node.branch[index].rect) { if !d3removeRectRec(rect, id, node.branch[index].child, listNode) { if node.branch[index].child.count >= d3minNodes { // child removed, just resize parent rect node.branch[index].rect = d3nodeCover(node.branch[index].child) } else { // child removed, not enough entries in node, eliminate node d3reInsert(node.branch[index].child, listNode) d3disconnectBranch(node, index) // Must return after this call as count has changed } return false } } } return true } else { // A leaf node for index := 0; index < node.count; index++ { if node.branch[index].data == id { d3disconnectBranch(node, index) // Must return after this call as count has changed return false } } return true } } // Decide whether two rectangles d3overlap. func d3overlap(rectA, rectB d3rectT) bool { for index := 0; index < d3numDims; index++ { if rectA.min[index] > rectB.max[index] || rectB.min[index] > rectA.max[index] { return false } } return true } // Add a node to the reinsertion list. All its branches will later // be reinserted into the index structure. func d3reInsert(node *d3nodeT, listNode **d3listNodeT) { newListNode := &d3listNodeT{} newListNode.node = node newListNode.next = *listNode *listNode = newListNode } // d3search in an index tree or subtree for all data retangles that d3overlap the argument rectangle. func d3search(node *d3nodeT, rect d3rectT, foundCount int, resultCallback func(data interface{}) bool) (int, bool) { if node.isInternalNode() { // This is an internal node in the tree for index := 0; index < node.count; index++ { if d3overlap(rect, node.branch[index].rect) { var ok bool foundCount, ok = d3search(node.branch[index].child, rect, foundCount, resultCallback) if !ok { // The callback indicated to stop searching return foundCount, false } } } } else { // This is a leaf node for index := 0; index < node.count; index++ { if d3overlap(rect, node.branch[index].rect) { id := node.branch[index].data foundCount++ if !resultCallback(id) { return foundCount, false // Don't continue searching } } } } return foundCount, true // Continue searching }