package geojson import ( "bytes" "math" "strconv" "github.com/tidwall/gjson" "github.com/tidwall/tile38/geojson/poly" ) // BBox is a bounding box type BBox struct { Min Position Max Position } // New2DBBox creates a new bounding box func New2DBBox(minX, minY, maxX, maxY float64) BBox { return BBox{Min: Position{X: minX, Y: minY, Z: 0}, Max: Position{X: maxX, Y: maxY, Z: 0}} } func fillBBox(json string) (*BBox, error) { var bbox *BBox res := gjson.Get(json, "bbox") switch res.Type { default: return nil, errBBoxInvalidType case gjson.Null: case gjson.JSON: v := res.Array() if !(len(v) == 4 || len(v) == 6) { return nil, errBBoxInvalidNumberOfValues } bbox = &BBox{} for i := 0; i < len(v); i++ { if v[i].Type != gjson.Number { return nil, errBBoxInvalidValue } } bbox.Min.X = v[0].Float() bbox.Min.Y = v[1].Float() i := 2 if len(v) == 6 { bbox.Min.Z = v[2].Float() i = 3 } else { bbox.Min.Z = nilz } bbox.Max.X = v[i+0].Float() bbox.Max.Y = v[i+1].Float() if len(v) == 6 { bbox.Max.Z = v[i+2].Float() i = 3 } else { bbox.Max.Z = nilz } } return bbox, nil } func (b *BBox) isCordZDefined() bool { return b != nil && (b.Min.Z != nilz || b.Max.Z != nilz) } func (b *BBox) write(buf *bytes.Buffer) { if b == nil { return } hasZ := b.Min.Z != nilz && b.Max.Z != nilz buf.WriteString(`,"bbox":[`) buf.WriteString(strconv.FormatFloat(b.Min.X, 'f', -1, 64)) buf.WriteByte(',') buf.WriteString(strconv.FormatFloat(b.Min.Y, 'f', -1, 64)) if hasZ { buf.WriteByte(',') buf.WriteString(strconv.FormatFloat(b.Min.Z, 'f', -1, 64)) } buf.WriteByte(',') buf.WriteString(strconv.FormatFloat(b.Max.X, 'f', -1, 64)) buf.WriteByte(',') buf.WriteString(strconv.FormatFloat(b.Max.Y, 'f', -1, 64)) if hasZ { buf.WriteByte(',') buf.WriteString(strconv.FormatFloat(b.Max.Z, 'f', -1, 64)) } buf.WriteByte(']') } func (b BBox) center() Position { return Position{ (b.Max.X-b.Min.X)/2 + b.Min.X, (b.Max.Y-b.Min.Y)/2 + b.Min.Y, 0, } } func (b BBox) union(bbox BBox) BBox { if bbox.Min.X < b.Min.X { b.Min.X = bbox.Min.X } if bbox.Min.Y < b.Min.Y { b.Min.Y = bbox.Min.Y } if bbox.Max.X > b.Max.X { b.Max.X = bbox.Max.X } if bbox.Max.Y > b.Max.Y { b.Max.Y = bbox.Max.Y } return b } func (b BBox) exterior() []Position { return []Position{ {b.Min.X, b.Min.Y, 0}, {b.Min.X, b.Max.Y, 0}, {b.Max.X, b.Max.Y, 0}, {b.Max.X, b.Min.Y, 0}, {b.Min.X, b.Min.Y, 0}, } } func rectBBox(bbox BBox) poly.Rect { return poly.Rect{ Min: poly.Point{X: bbox.Min.X, Y: bbox.Min.Y, Z: 0}, Max: poly.Point{X: bbox.Max.X, Y: bbox.Max.Y, Z: 0}, } } // ExternalJSON is the simple json representation of the bounding box used for external applications. func (b BBox) ExternalJSON() string { sw, ne := b.Min, b.Max sw.Z, ne.Z = 0, 0 return `{"sw":` + sw.ExternalJSON() + `,"ne":` + ne.ExternalJSON() + `}` } // Sparse returns back an evenly distributed number of sub bboxs. func (b BBox) Sparse(amount byte) []BBox { if amount == 0 { return []BBox{b} } var bboxes []BBox split := 1 << amount var xsize, ysize float64 if b.Max.X < b.Min.X { // crosses the prime meridian xsize = (b.Min.X - b.Max.X) / float64(split) } else { xsize = (b.Max.X - b.Min.X) / float64(split) } if b.Max.Y < b.Min.Y { // crosses the equator ysize = (b.Min.Y - b.Max.Y) / float64(split) } else { ysize = (b.Max.Y - b.Min.Y) / float64(split) } for y := b.Min.Y; y < b.Max.Y; y += ysize { for x := b.Min.X; x < b.Max.X; x += xsize { bboxes = append(bboxes, BBox{ Min: Position{X: x, Y: y, Z: b.Min.Z}, Max: Position{X: x + xsize, Y: y + ysize, Z: b.Max.Z}, }) } } return bboxes } // BBoxesFromCenter calculates the bounding box surrounding a circle. func BBoxesFromCenter(lat, lon, meters float64) (outer BBox) { outer.Min.Y, outer.Min.X, outer.Max.Y, outer.Max.X = BBoxBounds(lat, lon, meters) if outer.Min.X == outer.Max.X { switch outer.Min.X { case -180: outer.Max.X = 180 case 180: outer.Min.X = -180 } } return outer } func BBoxBounds(lat, lon, meters float64) (latMin, lonMin, latMax, lonMax float64) { // see http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#Latitude lat = toRadians(lat) lon = toRadians(lon) r := meters / earthRadius // angular radius latMin = lat - r latMax = lat + r latT := math.Asin(math.Sin(lat) / math.Cos(r)) lonΔ := math.Acos((math.Cos(r) - math.Sin(latT)*math.Sin(lat)) / (math.Cos(latT) * math.Cos(lat))) lonMin = lon - lonΔ lonMax = lon + lonΔ // Adjust for north poll if latMax > math.Pi/2 { lonMin = -math.Pi latMax = math.Pi / 2 lonMax = math.Pi } // Adjust for south poll if latMin < -math.Pi/2 { latMin = -math.Pi / 2 lonMin = -math.Pi lonMax = math.Pi } // Adjust for wraparound. Remove this if the commented-out condition below this block is added. if lonMin < -math.Pi || lonMax > math.Pi { lonMin = -math.Pi lonMax = math.Pi } /* // Consider splitting area into two bboxes, using the below checks, and erasing above block for performance. See http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#PolesAnd180thMeridian // Adjust for wraparound if minimum longitude is less than -180 degrees. if lonMin < -math.Pi { // box 1: latMin = latMin latMax = latMax lonMin += 2*math.Pi lonMax = math.Pi // box 2: latMin = latMin latMax = latMax lonMin = -math.Pi lonMax = lonMax } // Adjust for wraparound if maximum longitude is greater than 180 degrees. if lonMax > math.Pi { // box 1: latMin = latMin latMax = latMax lonMin = lonMin lonMax = -math.Pi // box 2: latMin = latMin latMax = latMax lonMin = -math.Pi lonMax -= 2*math.Pi } */ lonMin = math.Mod(lonMin+3*math.Pi, 2*math.Pi) - math.Pi // normalise to -180..+180° lonMax = math.Mod(lonMax+3*math.Pi, 2*math.Pi) - math.Pi return toDegrees(latMin), toDegrees(lonMin), toDegrees(latMax), toDegrees(lonMax) }