package collection import "math" func geodeticDistAlgo(center [2]float64) ( algo func(min, max [2]float64, data interface{}, item bool) (dist float64), ) { const earthRadius = 6371e3 return func(min, max [2]float64, data interface{}, item bool) (dist float64) { return earthRadius * pointRectDistGeodeticDeg( center[1], center[0], min[1], min[0], max[1], max[0], ) } } func pointRectDistGeodeticDeg(pLat, pLng, minLat, minLng, maxLat, maxLng float64) float64 { result := pointRectDistGeodeticRad( pLat*math.Pi/180, pLng*math.Pi/180, minLat*math.Pi/180, minLng*math.Pi/180, maxLat*math.Pi/180, maxLng*math.Pi/180, ) return result } func pointRectDistGeodeticRad(φq, λq, φl, λl, φh, λh float64) float64 { // Algorithm from: // Schubert, E., Zimek, A., & Kriegel, H.-P. (2013). // Geodetic Distance Queries on R-Trees for Indexing Geographic Data. // Lecture Notes in Computer Science, 146–164. // doi:10.1007/978-3-642-40235-7_9 const ( twoΠ = 2 * math.Pi halfΠ = math.Pi / 2 ) // distance on the unit sphere computed using Haversine formula distRad := func(φa, λa, φb, λb float64) float64 { if φa == φb && λa == λb { return 0 } Δφ := φa - φb Δλ := λa - λb sinΔφ := math.Sin(Δφ / 2) sinΔλ := math.Sin(Δλ / 2) cosφa := math.Cos(φa) cosφb := math.Cos(φb) return 2 * math.Asin(math.Sqrt(sinΔφ*sinΔφ+sinΔλ*sinΔλ*cosφa*cosφb)) } // Simple case, point or invalid rect if φl >= φh && λl >= λh { return distRad(φl, λl, φq, λq) } if λl <= λq && λq <= λh { // q is between the bounding meridians of r // hence, q is north, south or within r if φl <= φq && φq <= φh { // Inside return 0 } if φq < φl { // South return φl - φq } return φq - φh // North } // determine if q is closer to the east or west edge of r to select edge for // tests below Δλe := λl - λq Δλw := λq - λh if Δλe < 0 { Δλe += twoΠ } if Δλw < 0 { Δλw += twoΠ } var Δλ float64 // distance to closest edge var λedge float64 // longitude of closest edge if Δλe <= Δλw { Δλ = Δλe λedge = λl } else { Δλ = Δλw λedge = λh } sinΔλ, cosΔλ := math.Sincos(Δλ) tanφq := math.Tan(φq) if Δλ >= halfΠ { // If Δλ > 90 degrees (1/2 pi in radians) we're in one of the corners // (NW/SW or NE/SE depending on the edge selected). Compare against the // center line to decide which case we fall into φmid := (φh + φl) / 2 if tanφq >= math.Tan(φmid)*cosΔλ { return distRad(φq, λq, φh, λedge) // North corner } return distRad(φq, λq, φl, λedge) // South corner } if tanφq >= math.Tan(φh)*cosΔλ { return distRad(φq, λq, φh, λedge) // North corner } if tanφq <= math.Tan(φl)*cosΔλ { return distRad(φq, λq, φl, λedge) // South corner } // We're to the East or West of the rect, compute distance using cross-track // Note that this is a simplification of the cross track distance formula // valid since the track in question is a meridian. return math.Asin(math.Cos(φq) * sinΔλ) }