package collection import ( "runtime" "github.com/tidwall/btree" "github.com/tidwall/geojson" "github.com/tidwall/geojson/geo" "github.com/tidwall/geojson/geometry" "github.com/tidwall/rtree" "github.com/tidwall/tile38/internal/deadline" "github.com/tidwall/tile38/internal/field" ) // yieldStep forces the iterator to yield goroutine every 256 steps. const yieldStep = 256 // Cursor allows for quickly paging through Scan, Within, Intersects, and Nearby type Cursor interface { Offset() uint64 Step(count uint64) } type itemT struct { id string obj geojson.Object expires int64 // unix nano expiration fields field.List } func byID(a, b *itemT) bool { return a.id < b.id } func byValue(a, b *itemT) bool { value1 := a.obj.String() value2 := b.obj.String() if value1 < value2 { return true } if value1 > value2 { return false } // the values match so we'll compare IDs, which are always unique. return byID(a, b) } func byExpires(a, b *itemT) bool { if a.expires < b.expires { return true } if a.expires > b.expires { return false } // the values match so we'll compare IDs, which are always unique. return byID(a, b) } func (item *itemT) Rect() geometry.Rect { if item.obj != nil { return item.obj.Rect() } return geometry.Rect{} } // Collection represents a collection of geojson objects. type Collection struct { items *btree.BTreeG[*itemT] // items sorted by id spatial *rtree.RTreeGN[float32, *itemT] // items geospatially indexed values *btree.BTreeG[*itemT] // items sorted by value+id expires *btree.BTreeG[*itemT] // items sorted by ex+id weight int points int objects int // geometry count nobjects int // non-geometry count } var optsNoLock = btree.Options{NoLocks: true} // New creates an empty collection func New() *Collection { col := &Collection{ items: btree.NewBTreeGOptions(byID, optsNoLock), values: btree.NewBTreeGOptions(byValue, optsNoLock), expires: btree.NewBTreeGOptions(byExpires, optsNoLock), spatial: &rtree.RTreeGN[float32, *itemT]{}, } return col } // Count returns the number of objects in collection. func (c *Collection) Count() int { return c.objects + c.nobjects } // StringCount returns the number of string values. func (c *Collection) StringCount() int { return c.nobjects } // PointCount returns the number of points (lat/lon coordinates) in collection. func (c *Collection) PointCount() int { return c.points } // TotalWeight calculates the in-memory cost of the collection in bytes. func (c *Collection) TotalWeight() int { return c.weight } // Bounds returns the bounds of all the items in the collection. func (c *Collection) Bounds() (minX, minY, maxX, maxY float64) { _, _, left := c.spatial.LeftMost() _, _, bottom := c.spatial.BottomMost() _, _, right := c.spatial.RightMost() _, _, top := c.spatial.TopMost() if left == nil { return } return left.Rect().Min.X, bottom.Rect().Min.Y, right.Rect().Max.X, top.Rect().Max.Y } func objIsSpatial(obj geojson.Object) bool { _, ok := obj.(geojson.Spatial) return ok } func (c *Collection) objWeight(item *itemT) int { var weight int weight += len(item.id) if objIsSpatial(item.obj) { weight += item.obj.NumPoints() * 16 } else { weight += len(item.obj.String()) } weight += item.fields.Weight() return weight } func (c *Collection) indexDelete(item *itemT) { if !item.obj.Empty() { c.spatial.Delete(rtreeItem(item)) } } func (c *Collection) indexInsert(item *itemT) { if !item.obj.Empty() { c.spatial.Insert(rtreeItem(item)) } } const dRNDTOWARDS = (1.0 - 1.0/8388608.0) /* Round towards zero */ const dRNDAWAY = (1.0 + 1.0/8388608.0) /* Round away from zero */ func rtreeValueDown(d float64) float32 { f := float32(d) if float64(f) > d { if d < 0 { f = float32(d * dRNDAWAY) } else { f = float32(d * dRNDTOWARDS) } } return f } func rtreeValueUp(d float64) float32 { f := float32(d) if float64(f) < d { if d < 0 { f = float32(d * dRNDTOWARDS) } else { f = float32(d * dRNDAWAY) } } return f } func rtreeItem(item *itemT) (min, max [2]float32, data *itemT) { min, max = rtreeRect(item.Rect()) return min, max, item } func rtreeRect(rect geometry.Rect) (min, max [2]float32) { return [2]float32{ rtreeValueDown(rect.Min.X), rtreeValueDown(rect.Min.Y), }, [2]float32{ rtreeValueUp(rect.Max.X), rtreeValueUp(rect.Max.Y), } } // Set adds or replaces an object in the collection and returns the fields // array. func (c *Collection) Set(id string, obj geojson.Object, fields field.List, ex int64) ( oldObject geojson.Object, oldFields, newFields field.List, ) { newItem := &itemT{ id: id, obj: obj, expires: ex, fields: fields, } // add the new item to main btree and remove the old one if needed oldItem, ok := c.items.Set(newItem) if ok { // the old item was removed, now let's remove it from the rtree/btree. if objIsSpatial(oldItem.obj) { c.indexDelete(oldItem) c.objects-- } else { c.values.Delete(oldItem) c.nobjects-- } // delete old item from the expires queue if oldItem.expires != 0 { c.expires.Delete(oldItem) } // decrement the point count c.points -= oldItem.obj.NumPoints() // decrement the weights c.weight -= c.objWeight(oldItem) } // insert the new item into the rtree or strings tree. if objIsSpatial(newItem.obj) { c.indexInsert(newItem) c.objects++ } else { c.values.Set(newItem) c.nobjects++ } // insert item into expires queue. if newItem.expires != 0 { c.expires.Set(newItem) } // increment the point count c.points += newItem.obj.NumPoints() // add the new weights c.weight += c.objWeight(newItem) if oldItem != nil { return oldItem.obj, oldItem.fields, newItem.fields } return nil, field.List{}, newItem.fields } // Delete removes an object and returns it. // If the object does not exist then the 'ok' return value will be false. func (c *Collection) Delete(id string) ( obj geojson.Object, fields field.List, ok bool, ) { oldItem, ok := c.items.Delete(&itemT{id: id}) if !ok { return nil, field.List{}, false } if objIsSpatial(oldItem.obj) { if !oldItem.obj.Empty() { c.indexDelete(oldItem) } c.objects-- } else { c.values.Delete(oldItem) c.nobjects-- } // delete old item from expires queue if oldItem.expires != 0 { c.expires.Delete(oldItem) } c.weight -= c.objWeight(oldItem) c.points -= oldItem.obj.NumPoints() return oldItem.obj, oldItem.fields, true } // Get returns an object. // If the object does not exist then the 'ok' return value will be false. func (c *Collection) Get(id string) ( obj geojson.Object, fields field.List, ex int64, ok bool, ) { item, ok := c.items.Get(&itemT{id: id}) if !ok { return nil, field.List{}, 0, false } return item.obj, item.fields, item.expires, true } // Scan iterates though the collection ids. func (c *Collection) Scan( desc bool, cursor Cursor, deadline *deadline.Deadline, iterator func(id string, obj geojson.Object, fields field.List) bool, ) bool { var keepon = true var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } iter := func(item *itemT) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) keepon = iterator(item.id, item.obj, item.fields) return keepon } if desc { c.items.Reverse(iter) } else { c.items.Scan(iter) } return keepon } // ScanRange iterates though the collection starting with specified id. func (c *Collection) ScanRange( start, end string, desc bool, cursor Cursor, deadline *deadline.Deadline, iterator func(id string, obj geojson.Object, fields field.List) bool, ) bool { var keepon = true var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } iter := func(item *itemT) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) if !desc { if item.id >= end { return false } } else { if item.id <= end { return false } } keepon = iterator(item.id, item.obj, item.fields) return keepon } if desc { c.items.Descend(&itemT{id: start}, iter) } else { c.items.Ascend(&itemT{id: start}, iter) } return keepon } // SearchValues iterates though the collection values. func (c *Collection) SearchValues( desc bool, cursor Cursor, deadline *deadline.Deadline, iterator func(id string, obj geojson.Object, fields field.List) bool, ) bool { var keepon = true var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } iter := func(item *itemT) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) keepon = iterator(item.id, item.obj, item.fields) return keepon } if desc { c.values.Reverse(iter) } else { c.values.Scan(iter) } return keepon } // SearchValuesRange iterates though the collection values. func (c *Collection) SearchValuesRange(start, end string, desc bool, cursor Cursor, deadline *deadline.Deadline, iterator func(id string, obj geojson.Object, fields field.List) bool, ) bool { var keepon = true var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } iter := func(item *itemT) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) keepon = iterator(item.id, item.obj, item.fields) return keepon } pstart := &itemT{obj: String(start)} pend := &itemT{obj: String(end)} if desc { // descend range c.values.Descend(pstart, func(item *itemT) bool { return bGT(c.values, item, pend) && iter(item) }) } else { c.values.Ascend(pstart, func(item *itemT) bool { return bLT(c.values, item, pend) && iter(item) }) } return keepon } func bLT(tr *btree.BTreeG[*itemT], a, b *itemT) bool { return tr.Less(a, b) } func bGT(tr *btree.BTreeG[*itemT], a, b *itemT) bool { return tr.Less(b, a) } // ScanGreaterOrEqual iterates though the collection starting with specified id. func (c *Collection) ScanGreaterOrEqual(id string, desc bool, cursor Cursor, deadline *deadline.Deadline, iterator func(id string, obj geojson.Object, fields field.List, ex int64) bool, ) bool { var keepon = true var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } iter := func(item *itemT) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) keepon = iterator(item.id, item.obj, item.fields, item.expires) return keepon } if desc { c.items.Descend(&itemT{id: id}, iter) } else { c.items.Ascend(&itemT{id: id}, iter) } return keepon } func (c *Collection) geoSearch( rect geometry.Rect, iter func(id string, obj geojson.Object, fields field.List) bool, ) bool { alive := true min, max := rtreeRect(rect) c.spatial.Search( min, max, func(_, _ [2]float32, item *itemT) bool { alive = iter(item.id, item.obj, item.fields) return alive }, ) return alive } func (c *Collection) geoSparse( obj geojson.Object, sparse uint8, iter func(id string, obj geojson.Object, fields field.List) (match, ok bool), ) bool { matches := make(map[string]bool) alive := true c.geoSparseInner(obj.Rect(), sparse, func(id string, o geojson.Object, fields field.List) ( match, ok bool, ) { ok = true if !matches[id] { match, ok = iter(id, o, fields) if match { matches[id] = true } } return match, ok }, ) return alive } func (c *Collection) geoSparseInner( rect geometry.Rect, sparse uint8, iter func(id string, obj geojson.Object, fields field.List) (match, ok bool), ) bool { if sparse > 0 { w := rect.Max.X - rect.Min.X h := rect.Max.Y - rect.Min.Y quads := [4]geometry.Rect{ { Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y + h/2}, Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Max.Y}, }, { Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2}, Max: geometry.Point{X: rect.Max.X, Y: rect.Max.Y}, }, { Min: geometry.Point{X: rect.Min.X, Y: rect.Min.Y}, Max: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y + h/2}, }, { Min: geometry.Point{X: rect.Min.X + w/2, Y: rect.Min.Y}, Max: geometry.Point{X: rect.Max.X, Y: rect.Min.Y + h/2}, }, } for _, quad := range quads { if !c.geoSparseInner(quad, sparse-1, iter) { return false } } return true } alive := true c.geoSearch(rect, func(id string, obj geojson.Object, fields field.List) bool { match, ok := iter(id, obj, fields) if !ok { alive = false return false } return !match }, ) return alive } // Within returns all object that are fully contained within an object or // bounding box. Set obj to nil in order to use the bounding box. func (c *Collection) Within( obj geojson.Object, sparse uint8, cursor Cursor, deadline *deadline.Deadline, iter func(id string, obj geojson.Object, fields field.List) bool, ) bool { var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } if sparse > 0 { return c.geoSparse(obj, sparse, func(id string, o geojson.Object, fields field.List) ( match, ok bool, ) { count++ if count <= offset { return false, true } nextStep(count, cursor, deadline) if match = o.Within(obj); match { ok = iter(id, o, fields) } return match, ok }, ) } return c.geoSearch(obj.Rect(), func(id string, o geojson.Object, fields field.List) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) if o.Within(obj) { return iter(id, o, fields) } return true }, ) } // Intersects returns all object that are intersect an object or bounding box. // Set obj to nil in order to use the bounding box. func (c *Collection) Intersects( obj geojson.Object, sparse uint8, cursor Cursor, deadline *deadline.Deadline, iter func(id string, obj geojson.Object, fields field.List) bool, ) bool { var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } if sparse > 0 { return c.geoSparse(obj, sparse, func(id string, o geojson.Object, fields field.List) ( match, ok bool, ) { count++ if count <= offset { return false, true } nextStep(count, cursor, deadline) if match = o.Intersects(obj); match { ok = iter(id, o, fields) } return match, ok }, ) } return c.geoSearch(obj.Rect(), func(id string, o geojson.Object, fields field.List) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) if o.Intersects(obj) { return iter(id, o, fields) } return true }, ) } // Nearby returns the nearest neighbors func (c *Collection) Nearby( target geojson.Object, cursor Cursor, deadline *deadline.Deadline, iter func(id string, obj geojson.Object, fields field.List, dist float64) bool, ) bool { // First look to see if there's at least one candidate in the circle's // outer rectangle. This is a fast-fail operation. if circle, ok := target.(*geojson.Circle); ok { meters := circle.Meters() if meters > 0 { center := circle.Center() minLat, minLon, maxLat, maxLon := geo.RectFromCenter(center.Y, center.X, meters) var exists bool min, max := rtreeRect(geometry.Rect{ Min: geometry.Point{ X: minLon, Y: minLat, }, Max: geometry.Point{ X: maxLon, Y: maxLat, }, }) c.spatial.Search( min, max, func(_, _ [2]float32, item *itemT) bool { exists = true return false }, ) if !exists { // no candidates return true } } } // do the kNN operation alive := true center := target.Center() var count uint64 var offset uint64 if cursor != nil { offset = cursor.Offset() cursor.Step(offset) } distFn := geodeticDistAlgo[*itemT]([2]float64{center.X, center.Y}) c.spatial.Nearby( func(min, max [2]float32, data *itemT, item bool) float32 { return float32(distFn( [2]float64{float64(min[0]), float64(min[1])}, [2]float64{float64(max[0]), float64(max[1])}, data, item, )) }, func(_, _ [2]float32, item *itemT, dist float32) bool { count++ if count <= offset { return true } nextStep(count, cursor, deadline) alive = iter(item.id, item.obj, item.fields, float64(dist)) return alive }, ) return alive } func nextStep(step uint64, cursor Cursor, deadline *deadline.Deadline) { if step&(yieldStep-1) == (yieldStep - 1) { runtime.Gosched() deadline.Check() } if cursor != nil { cursor.Step(1) } } // ScanExpires returns a list of all objects that have expired. func (c *Collection) ScanExpires(iter func(id string, expires int64) bool) { c.expires.Scan(func(item *itemT) bool { return iter(item.id, item.expires) }) }