// Copyright 2018 Joshua J Baker. All rights reserved. // Use of this source code is governed by an MIT-style // license that can be found in the LICENSE file. package geometry import ( "encoding/binary" "reflect" "unsafe" ) // IndexKind is the kind of index to use in the options. type IndexKind byte // IndexKind types const ( None IndexKind = iota RTree QuadTree ) func (kind IndexKind) String() string { switch kind { default: return "Unknown" case None: return "None" case RTree: return "RTree" case QuadTree: return "QuadTree" } } // IndexOptions are segment indexing options type IndexOptions struct { Kind IndexKind MinPoints int } // DefaultIndexOptions ... var DefaultIndexOptions = &IndexOptions{ Kind: QuadTree, MinPoints: 64, } // Series is just a series of points with utilities for efficiently accessing // segments from rectangle queries, making stuff like point-in-polygon lookups // very quick. type Series interface { Rect() Rect Empty() bool Convex() bool Clockwise() bool NumPoints() int NumSegments() int PointAt(index int) Point SegmentAt(index int) Segment Search(rect Rect, iter func(seg Segment, index int) bool) Index() interface{} Valid() bool } func seriesCopyPoints(series Series) []Point { points := make([]Point, series.NumPoints()) for i := 0; i < len(points); i++ { points[i] = series.PointAt(i) } return points } // baseSeries is a concrete type containing all that is needed to make a Series. type baseSeries struct { closed bool // points create a closed shape clockwise bool // points move clockwise convex bool // points create a convex shape indexKind IndexKind // index kind index interface{} // actual index rect Rect // minumum bounding rectangle points []Point // original points } // makeSeries returns a processed baseSeries. func makeSeries( points []Point, copyPoints, closed bool, opts *IndexOptions, ) baseSeries { if opts == nil { opts = DefaultIndexOptions } var series baseSeries series.closed = closed if copyPoints { series.points = make([]Point, len(points)) copy(series.points, points) } else { series.points = points } series.convex, series.rect, series.clockwise = processPoints(points, closed) if opts.MinPoints != 0 && len(points) >= opts.MinPoints { series.indexKind = opts.Kind series.buildIndex() } return series } // Index ... func (series *baseSeries) Index() interface{} { return series.index } // Clockwise ... func (series *baseSeries) Clockwise() bool { return series.clockwise } func (series *baseSeries) Move(deltaX, deltaY float64) Series { points := make([]Point, len(series.points)) for i := 0; i < len(series.points); i++ { points[i].X = series.points[i].X + deltaX points[i].Y = series.points[i].Y + deltaY } nseries := makeSeries(points, false, series.closed, nil) nseries.indexKind = series.indexKind if series.Index() != nil { nseries.buildIndex() } return &nseries } // Empty returns true if the series does not take up space. func (series *baseSeries) Empty() bool { if series == nil { return true } return (series.closed && len(series.points) < 3) || len(series.points) < 2 } // Valid ... func (series *baseSeries) Valid() bool { for _, point := range series.points { if !point.Valid() { return false } } return true } // Rect returns the series rectangle func (series *baseSeries) Rect() Rect { return series.rect } // Convex returns true if the points create a convex loop or linestring func (series *baseSeries) Convex() bool { return series.convex } // Closed return true if the shape is closed func (series *baseSeries) Closed() bool { return series.closed } // NumPoints returns the number of points in the series func (series *baseSeries) NumPoints() int { return len(series.points) } // PointAt returns the point at index func (series *baseSeries) PointAt(index int) Point { return series.points[index] } // Search finds a searches for segments that intersect the provided rectangle func (series *baseSeries) Search( rect Rect, iter func(seg Segment, idx int) bool, ) { switch v := series.index.(type) { default: n := series.NumSegments() for i := 0; i < n; i++ { seg := series.SegmentAt(i) if seg.Rect().IntersectsRect(rect) { if !iter(seg, i) { return } } } case *byte: // convert the byte pointer back to a valid slice data := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(v)), Len: int((^uint(0)) >> 1), Cap: int((^uint(0)) >> 1), })) n := binary.LittleEndian.Uint32(data[1:]) data = data[:n:n] switch data[0] { case 1: rCompressSearch(data, 5, series, rect, iter) case 2: qCompressSearch(data, 5, series, series.rect, rect, iter) } } } // NumSegments ... func (series *baseSeries) NumSegments() int { if series.closed { if len(series.points) < 3 { return 0 } if series.points[len(series.points)-1] == series.points[0] { return len(series.points) - 1 } return len(series.points) } if len(series.points) < 2 { return 0 } return len(series.points) - 1 } // SegmentAt ... func (series *baseSeries) SegmentAt(index int) Segment { var seg Segment seg.A = series.points[index] if index == len(series.points)-1 { seg.B = series.points[0] } else { seg.B = series.points[index+1] } return seg } // processPoints tests if the ring is convex, calculates the outer // rectangle, and inserts segments into a boxtree in one pass. func processPoints(points []Point, closed bool) ( convex bool, rect Rect, clockwise bool, ) { if (closed && len(points) < 3) || len(points) < 2 { return } var concave bool var dir int var a, b, c Point var cwc float64 for i := 0; i < len(points); i++ { // process the rectangle inflation if i == 0 { rect = Rect{points[i], points[i]} } else { if points[i].X < rect.Min.X { rect.Min.X = points[i].X } else if points[i].X > rect.Max.X { rect.Max.X = points[i].X } if points[i].Y < rect.Min.Y { rect.Min.Y = points[i].Y } else if points[i].Y > rect.Max.Y { rect.Max.Y = points[i].Y } } // gather some point positions for concave and clockwise detection a = points[i] if i == len(points)-1 { b = points[0] c = points[1] } else if i == len(points)-2 { b = points[i+1] c = points[0] } else { b = points[i+1] c = points[i+2] } // process the clockwise detection cwc += (b.X - a.X) * (b.Y + a.Y) // process the convex calculation if concave { continue } zCrossProduct := (b.X-a.X)*(c.Y-b.Y) - (b.Y-a.Y)*(c.X-b.X) if dir == 0 { if zCrossProduct < 0 { dir = -1 } else if zCrossProduct > 0 { dir = 1 } } else if zCrossProduct < 0 { if dir == 1 { concave = true } } else if zCrossProduct > 0 { if dir == -1 { concave = true } } } return !concave, rect, cwc > 0 } func (series *baseSeries) clearIndex() { series.index = nil } func (series *baseSeries) setCompressed(data []byte) { binary.LittleEndian.PutUint32(data[1:], uint32(len(data))) smaller := make([]byte, len(data)) copy(smaller, data) // use the byte point instead of a double reference to the byte slice series.index = &smaller[0] } func (series *baseSeries) buildIndex() { if series.index != nil { // already built return } switch series.indexKind { case RTree: tr := new(rTree) n := series.NumSegments() for i := 0; i < n; i++ { rect := series.SegmentAt(i).Rect() tr.Insert( []float64{rect.Min.X, rect.Min.Y}, []float64{rect.Max.X, rect.Max.Y}, i) } series.setCompressed( tr.compress([]byte{1, 0, 0, 0, 0}), ) case QuadTree: root := new(qNode) n := series.NumSegments() for i := 0; i < n; i++ { seg := series.SegmentAt(i) root.insert(series, series.rect, seg.Rect(), i, 0) } series.setCompressed( root.compress([]byte{2, 0, 0, 0, 0}, series.rect), ) } }