// Copyright 2011 The Snappy-Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package snappy import ( "bytes" "encoding/binary" "flag" "fmt" "io" "io/ioutil" "math/rand" "net/http" "os" "os/exec" "path/filepath" "runtime" "strings" "testing" ) var ( download = flag.Bool("download", false, "If true, download any missing files before running benchmarks") testdataDir = flag.String("testdataDir", "testdata", "Directory containing the test data") benchdataDir = flag.String("benchdataDir", "testdata/bench", "Directory containing the benchmark data") ) // goEncoderShouldMatchCppEncoder is whether to test that the algorithm used by // Go's encoder matches byte-for-byte what the C++ snappy encoder produces, on // this GOARCH. There is more than one valid encoding of any given input, and // there is more than one good algorithm along the frontier of trading off // throughput for output size. Nonetheless, we presume that the C++ encoder's // algorithm is a good one and has been tested on a wide range of inputs, so // matching that exactly should mean that the Go encoder's algorithm is also // good, without needing to gather our own corpus of test data. // // The exact algorithm used by the C++ code is potentially endian dependent, as // it puns a byte pointer to a uint32 pointer to load, hash and compare 4 bytes // at a time. The Go implementation is endian agnostic, in that its output is // the same (as little-endian C++ code), regardless of the CPU's endianness. // // Thus, when comparing Go's output to C++ output generated beforehand, such as // the "testdata/pi.txt.rawsnappy" file generated by C++ code on a little- // endian system, we can run that test regardless of the runtime.GOARCH value. // // When comparing Go's output to dynamically generated C++ output, i.e. the // result of fork/exec'ing a C++ program, we can run that test only on // little-endian systems, because the C++ output might be different on // big-endian systems. The runtime package doesn't export endianness per se, // but we can restrict this match-C++ test to common little-endian systems. const goEncoderShouldMatchCppEncoder = runtime.GOARCH == "386" || runtime.GOARCH == "amd64" || runtime.GOARCH == "arm" func TestMaxEncodedLenOfMaxBlockSize(t *testing.T) { got := maxEncodedLenOfMaxBlockSize want := MaxEncodedLen(maxBlockSize) if got != want { t.Fatalf("got %d, want %d", got, want) } } func cmp(a, b []byte) error { if bytes.Equal(a, b) { return nil } if len(a) != len(b) { return fmt.Errorf("got %d bytes, want %d", len(a), len(b)) } for i := range a { if a[i] != b[i] { return fmt.Errorf("byte #%d: got 0x%02x, want 0x%02x", i, a[i], b[i]) } } return nil } func roundtrip(b, ebuf, dbuf []byte) error { d, err := Decode(dbuf, Encode(ebuf, b)) if err != nil { return fmt.Errorf("decoding error: %v", err) } if err := cmp(d, b); err != nil { return fmt.Errorf("roundtrip mismatch: %v", err) } return nil } func TestEmpty(t *testing.T) { if err := roundtrip(nil, nil, nil); err != nil { t.Fatal(err) } } func TestSmallCopy(t *testing.T) { for _, ebuf := range [][]byte{nil, make([]byte, 20), make([]byte, 64)} { for _, dbuf := range [][]byte{nil, make([]byte, 20), make([]byte, 64)} { for i := 0; i < 32; i++ { s := "aaaa" + strings.Repeat("b", i) + "aaaabbbb" if err := roundtrip([]byte(s), ebuf, dbuf); err != nil { t.Errorf("len(ebuf)=%d, len(dbuf)=%d, i=%d: %v", len(ebuf), len(dbuf), i, err) } } } } } func TestSmallRand(t *testing.T) { rng := rand.New(rand.NewSource(1)) for n := 1; n < 20000; n += 23 { b := make([]byte, n) for i := range b { b[i] = uint8(rng.Intn(256)) } if err := roundtrip(b, nil, nil); err != nil { t.Fatal(err) } } } func TestSmallRegular(t *testing.T) { for n := 1; n < 20000; n += 23 { b := make([]byte, n) for i := range b { b[i] = uint8(i%10 + 'a') } if err := roundtrip(b, nil, nil); err != nil { t.Fatal(err) } } } func TestInvalidVarint(t *testing.T) { testCases := []struct { desc string input string }{{ "invalid varint, final byte has continuation bit set", "\xff", }, { "invalid varint, value overflows uint64", "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x00", }, { // https://github.com/google/snappy/blob/master/format_description.txt // says that "the stream starts with the uncompressed length [as a // varint] (up to a maximum of 2^32 - 1)". "valid varint (as uint64), but value overflows uint32", "\x80\x80\x80\x80\x10", }} for _, tc := range testCases { input := []byte(tc.input) if _, err := DecodedLen(input); err != ErrCorrupt { t.Errorf("%s: DecodedLen: got %v, want ErrCorrupt", tc.desc, err) } if _, err := Decode(nil, input); err != ErrCorrupt { t.Errorf("%s: Decode: got %v, want ErrCorrupt", tc.desc, err) } } } func TestDecode(t *testing.T) { lit40Bytes := make([]byte, 40) for i := range lit40Bytes { lit40Bytes[i] = byte(i) } lit40 := string(lit40Bytes) testCases := []struct { desc string input string want string wantErr error }{{ `decodedLen=0; valid input`, "\x00", "", nil, }, { `decodedLen=3; tagLiteral, 0-byte length; length=3; valid input`, "\x03" + "\x08\xff\xff\xff", "\xff\xff\xff", nil, }, { `decodedLen=2; tagLiteral, 0-byte length; length=3; not enough dst bytes`, "\x02" + "\x08\xff\xff\xff", "", ErrCorrupt, }, { `decodedLen=3; tagLiteral, 0-byte length; length=3; not enough src bytes`, "\x03" + "\x08\xff\xff", "", ErrCorrupt, }, { `decodedLen=40; tagLiteral, 0-byte length; length=40; valid input`, "\x28" + "\x9c" + lit40, lit40, nil, }, { `decodedLen=1; tagLiteral, 1-byte length; not enough length bytes`, "\x01" + "\xf0", "", ErrCorrupt, }, { `decodedLen=3; tagLiteral, 1-byte length; length=3; valid input`, "\x03" + "\xf0\x02\xff\xff\xff", "\xff\xff\xff", nil, }, { `decodedLen=1; tagLiteral, 2-byte length; not enough length bytes`, "\x01" + "\xf4\x00", "", ErrCorrupt, }, { `decodedLen=3; tagLiteral, 2-byte length; length=3; valid input`, "\x03" + "\xf4\x02\x00\xff\xff\xff", "\xff\xff\xff", nil, }, { `decodedLen=1; tagLiteral, 3-byte length; not enough length bytes`, "\x01" + "\xf8\x00\x00", "", ErrCorrupt, }, { `decodedLen=3; tagLiteral, 3-byte length; length=3; valid input`, "\x03" + "\xf8\x02\x00\x00\xff\xff\xff", "\xff\xff\xff", nil, }, { `decodedLen=1; tagLiteral, 4-byte length; not enough length bytes`, "\x01" + "\xfc\x00\x00\x00", "", ErrCorrupt, }, { `decodedLen=1; tagLiteral, 4-byte length; length=3; not enough dst bytes`, "\x01" + "\xfc\x02\x00\x00\x00\xff\xff\xff", "", ErrCorrupt, }, { `decodedLen=4; tagLiteral, 4-byte length; length=3; not enough src bytes`, "\x04" + "\xfc\x02\x00\x00\x00\xff", "", ErrCorrupt, }, { `decodedLen=3; tagLiteral, 4-byte length; length=3; valid input`, "\x03" + "\xfc\x02\x00\x00\x00\xff\xff\xff", "\xff\xff\xff", nil, }, { `decodedLen=4; tagCopy1, 1 extra length|offset byte; not enough extra bytes`, "\x04" + "\x01", "", ErrCorrupt, }, { `decodedLen=4; tagCopy2, 2 extra length|offset bytes; not enough extra bytes`, "\x04" + "\x02\x00", "", ErrCorrupt, }, { `decodedLen=4; tagCopy4, 4 extra length|offset bytes; not enough extra bytes`, "\x04" + "\x03\x00\x00\x00", "", ErrCorrupt, }, { `decodedLen=4; tagLiteral (4 bytes "abcd"); valid input`, "\x04" + "\x0cabcd", "abcd", nil, }, { `decodedLen=13; tagLiteral (4 bytes "abcd"); tagCopy1; length=9 offset=4; valid input`, "\x0d" + "\x0cabcd" + "\x15\x04", "abcdabcdabcda", nil, }, { `decodedLen=8; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=4; valid input`, "\x08" + "\x0cabcd" + "\x01\x04", "abcdabcd", nil, }, { `decodedLen=8; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=2; valid input`, "\x08" + "\x0cabcd" + "\x01\x02", "abcdcdcd", nil, }, { `decodedLen=8; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=1; valid input`, "\x08" + "\x0cabcd" + "\x01\x01", "abcddddd", nil, }, { `decodedLen=8; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=0; zero offset`, "\x08" + "\x0cabcd" + "\x01\x00", "", ErrCorrupt, }, { `decodedLen=9; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=4; inconsistent dLen`, "\x09" + "\x0cabcd" + "\x01\x04", "", ErrCorrupt, }, { `decodedLen=8; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=5; offset too large`, "\x08" + "\x0cabcd" + "\x01\x05", "", ErrCorrupt, }, { `decodedLen=7; tagLiteral (4 bytes "abcd"); tagCopy1; length=4 offset=4; length too large`, "\x07" + "\x0cabcd" + "\x01\x04", "", ErrCorrupt, }, { `decodedLen=6; tagLiteral (4 bytes "abcd"); tagCopy2; length=2 offset=3; valid input`, "\x06" + "\x0cabcd" + "\x06\x03\x00", "abcdbc", nil, }, { `decodedLen=6; tagLiteral (4 bytes "abcd"); tagCopy4; length=2 offset=3; valid input`, "\x06" + "\x0cabcd" + "\x07\x03\x00\x00\x00", "abcdbc", nil, }} const ( // notPresentXxx defines a range of byte values [0xa0, 0xc5) that are // not present in either the input or the output. It is written to dBuf // to check that Decode does not write bytes past the end of // dBuf[:dLen]. // // The magic number 37 was chosen because it is prime. A more 'natural' // number like 32 might lead to a false negative if, for example, a // byte was incorrectly copied 4*8 bytes later. notPresentBase = 0xa0 notPresentLen = 37 ) var dBuf [100]byte loop: for i, tc := range testCases { input := []byte(tc.input) for _, x := range input { if notPresentBase <= x && x < notPresentBase+notPresentLen { t.Errorf("#%d (%s): input shouldn't contain %#02x\ninput: % x", i, tc.desc, x, input) continue loop } } dLen, n := binary.Uvarint(input) if n <= 0 { t.Errorf("#%d (%s): invalid varint-encoded dLen", i, tc.desc) continue } if dLen > uint64(len(dBuf)) { t.Errorf("#%d (%s): dLen %d is too large", i, tc.desc, dLen) continue } for j := range dBuf { dBuf[j] = byte(notPresentBase + j%notPresentLen) } g, gotErr := Decode(dBuf[:], input) if got := string(g); got != tc.want || gotErr != tc.wantErr { t.Errorf("#%d (%s):\ngot %q, %v\nwant %q, %v", i, tc.desc, got, gotErr, tc.want, tc.wantErr) continue } for j, x := range dBuf { if uint64(j) < dLen { continue } if w := byte(notPresentBase + j%notPresentLen); x != w { t.Errorf("#%d (%s): Decode overrun: dBuf[%d] was modified: got %#02x, want %#02x\ndBuf: % x", i, tc.desc, j, x, w, dBuf) continue loop } } } } func TestDecodeCopy4(t *testing.T) { dots := strings.Repeat(".", 65536) input := strings.Join([]string{ "\x89\x80\x04", // decodedLen = 65545. "\x0cpqrs", // 4-byte literal "pqrs". "\xf4\xff\xff" + dots, // 65536-byte literal dots. "\x13\x04\x00\x01\x00", // tagCopy4; length=5 offset=65540. }, "") gotBytes, err := Decode(nil, []byte(input)) if err != nil { t.Fatal(err) } got := string(gotBytes) want := "pqrs" + dots + "pqrs." if len(got) != len(want) { t.Fatalf("got %d bytes, want %d", len(got), len(want)) } if got != want { for i := 0; i < len(got); i++ { if g, w := got[i], want[i]; g != w { t.Fatalf("byte #%d: got %#02x, want %#02x", i, g, w) } } } } // TestDecodeLengthOffset tests decoding an encoding of the form literal + // copy-length-offset + literal. For example: "abcdefghijkl" + "efghij" + "AB". func TestDecodeLengthOffset(t *testing.T) { const ( prefix = "abcdefghijklmnopqr" suffix = "ABCDEFGHIJKLMNOPQR" // notPresentXxx defines a range of byte values [0xa0, 0xc5) that are // not present in either the input or the output. It is written to // gotBuf to check that Decode does not write bytes past the end of // gotBuf[:totalLen]. // // The magic number 37 was chosen because it is prime. A more 'natural' // number like 32 might lead to a false negative if, for example, a // byte was incorrectly copied 4*8 bytes later. notPresentBase = 0xa0 notPresentLen = 37 ) var gotBuf, wantBuf, inputBuf [128]byte for length := 1; length <= 18; length++ { for offset := 1; offset <= 18; offset++ { loop: for suffixLen := 0; suffixLen <= 18; suffixLen++ { totalLen := len(prefix) + length + suffixLen inputLen := binary.PutUvarint(inputBuf[:], uint64(totalLen)) inputBuf[inputLen] = tagLiteral + 4*byte(len(prefix)-1) inputLen++ inputLen += copy(inputBuf[inputLen:], prefix) inputBuf[inputLen+0] = tagCopy2 + 4*byte(length-1) inputBuf[inputLen+1] = byte(offset) inputBuf[inputLen+2] = 0x00 inputLen += 3 if suffixLen > 0 { inputBuf[inputLen] = tagLiteral + 4*byte(suffixLen-1) inputLen++ inputLen += copy(inputBuf[inputLen:], suffix[:suffixLen]) } input := inputBuf[:inputLen] for i := range gotBuf { gotBuf[i] = byte(notPresentBase + i%notPresentLen) } got, err := Decode(gotBuf[:], input) if err != nil { t.Errorf("length=%d, offset=%d; suffixLen=%d: %v", length, offset, suffixLen, err) continue } wantLen := 0 wantLen += copy(wantBuf[wantLen:], prefix) for i := 0; i < length; i++ { wantBuf[wantLen] = wantBuf[wantLen-offset] wantLen++ } wantLen += copy(wantBuf[wantLen:], suffix[:suffixLen]) want := wantBuf[:wantLen] for _, x := range input { if notPresentBase <= x && x < notPresentBase+notPresentLen { t.Errorf("length=%d, offset=%d; suffixLen=%d: input shouldn't contain %#02x\ninput: % x", length, offset, suffixLen, x, input) continue loop } } for i, x := range gotBuf { if i < totalLen { continue } if w := byte(notPresentBase + i%notPresentLen); x != w { t.Errorf("length=%d, offset=%d; suffixLen=%d; totalLen=%d: "+ "Decode overrun: gotBuf[%d] was modified: got %#02x, want %#02x\ngotBuf: % x", length, offset, suffixLen, totalLen, i, x, w, gotBuf) continue loop } } for _, x := range want { if notPresentBase <= x && x < notPresentBase+notPresentLen { t.Errorf("length=%d, offset=%d; suffixLen=%d: want shouldn't contain %#02x\nwant: % x", length, offset, suffixLen, x, want) continue loop } } if !bytes.Equal(got, want) { t.Errorf("length=%d, offset=%d; suffixLen=%d:\ninput % x\ngot % x\nwant % x", length, offset, suffixLen, input, got, want) continue } } } } } const ( goldenText = "Mark.Twain-Tom.Sawyer.txt" goldenCompressed = goldenText + ".rawsnappy" ) func TestDecodeGoldenInput(t *testing.T) { tDir := filepath.FromSlash(*testdataDir) src, err := ioutil.ReadFile(filepath.Join(tDir, goldenCompressed)) if err != nil { t.Fatalf("ReadFile: %v", err) } got, err := Decode(nil, src) if err != nil { t.Fatalf("Decode: %v", err) } want, err := ioutil.ReadFile(filepath.Join(tDir, goldenText)) if err != nil { t.Fatalf("ReadFile: %v", err) } if err := cmp(got, want); err != nil { t.Fatal(err) } } func TestEncodeGoldenInput(t *testing.T) { tDir := filepath.FromSlash(*testdataDir) src, err := ioutil.ReadFile(filepath.Join(tDir, goldenText)) if err != nil { t.Fatalf("ReadFile: %v", err) } got := Encode(nil, src) want, err := ioutil.ReadFile(filepath.Join(tDir, goldenCompressed)) if err != nil { t.Fatalf("ReadFile: %v", err) } if err := cmp(got, want); err != nil { t.Fatal(err) } } func TestExtendMatchGoldenInput(t *testing.T) { tDir := filepath.FromSlash(*testdataDir) src, err := ioutil.ReadFile(filepath.Join(tDir, goldenText)) if err != nil { t.Fatalf("ReadFile: %v", err) } for i, tc := range extendMatchGoldenTestCases { got := extendMatch(src, tc.i, tc.j) if got != tc.want { t.Errorf("test #%d: i, j = %5d, %5d: got %5d (= j + %6d), want %5d (= j + %6d)", i, tc.i, tc.j, got, got-tc.j, tc.want, tc.want-tc.j) } } } func TestExtendMatch(t *testing.T) { // ref is a simple, reference implementation of extendMatch. ref := func(src []byte, i, j int) int { for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 { } return j } nums := []int{0, 1, 2, 7, 8, 9, 29, 30, 31, 32, 33, 34, 38, 39, 40} for yIndex := 40; yIndex > 30; yIndex-- { xxx := bytes.Repeat([]byte("x"), 40) if yIndex < len(xxx) { xxx[yIndex] = 'y' } for _, i := range nums { for _, j := range nums { if i >= j { continue } got := extendMatch(xxx, i, j) want := ref(xxx, i, j) if got != want { t.Errorf("yIndex=%d, i=%d, j=%d: got %d, want %d", yIndex, i, j, got, want) } } } } } const snappytoolCmdName = "cmd/snappytool/snappytool" func skipTestSameEncodingAsCpp() (msg string) { if !goEncoderShouldMatchCppEncoder { return fmt.Sprintf("skipping testing that the encoding is byte-for-byte identical to C++: GOARCH=%s", runtime.GOARCH) } if _, err := os.Stat(snappytoolCmdName); err != nil { return fmt.Sprintf("could not find snappytool: %v", err) } return "" } func runTestSameEncodingAsCpp(src []byte) error { got := Encode(nil, src) cmd := exec.Command(snappytoolCmdName, "-e") cmd.Stdin = bytes.NewReader(src) want, err := cmd.Output() if err != nil { return fmt.Errorf("could not run snappytool: %v", err) } return cmp(got, want) } func TestSameEncodingAsCppShortCopies(t *testing.T) { if msg := skipTestSameEncodingAsCpp(); msg != "" { t.Skip(msg) } src := bytes.Repeat([]byte{'a'}, 20) for i := 0; i <= len(src); i++ { if err := runTestSameEncodingAsCpp(src[:i]); err != nil { t.Errorf("i=%d: %v", i, err) } } } func TestSameEncodingAsCppLongFiles(t *testing.T) { if msg := skipTestSameEncodingAsCpp(); msg != "" { t.Skip(msg) } bDir := filepath.FromSlash(*benchdataDir) failed := false for i, tf := range testFiles { if err := downloadBenchmarkFiles(t, tf.filename); err != nil { t.Fatalf("failed to download testdata: %s", err) } data := readFile(t, filepath.Join(bDir, tf.filename)) if n := tf.sizeLimit; 0 < n && n < len(data) { data = data[:n] } if err := runTestSameEncodingAsCpp(data); err != nil { t.Errorf("i=%d: %v", i, err) failed = true } } if failed { t.Errorf("was the snappytool program built against the C++ snappy library version " + "d53de187 or later, commited on 2016-04-05? See " + "https://github.com/google/snappy/commit/d53de18799418e113e44444252a39b12a0e4e0cc") } } // TestSlowForwardCopyOverrun tests the "expand the pattern" algorithm // described in decode_amd64.s and its claim of a 10 byte overrun worst case. func TestSlowForwardCopyOverrun(t *testing.T) { const base = 100 for length := 1; length < 18; length++ { for offset := 1; offset < 18; offset++ { highWaterMark := base d := base l := length o := offset // makeOffsetAtLeast8 for o < 8 { if end := d + 8; highWaterMark < end { highWaterMark = end } l -= o d += o o += o } // fixUpSlowForwardCopy a := d d += l // finishSlowForwardCopy for l > 0 { if end := a + 8; highWaterMark < end { highWaterMark = end } a += 8 l -= 8 } dWant := base + length overrun := highWaterMark - dWant if d != dWant || overrun < 0 || 10 < overrun { t.Errorf("length=%d, offset=%d: d and overrun: got (%d, %d), want (%d, something in [0, 10])", length, offset, d, overrun, dWant) } } } } // TestEncodeNoiseThenRepeats encodes input for which the first half is very // incompressible and the second half is very compressible. The encoded form's // length should be closer to 50% of the original length than 100%. func TestEncodeNoiseThenRepeats(t *testing.T) { for _, origLen := range []int{256 * 1024, 2048 * 1024} { src := make([]byte, origLen) rng := rand.New(rand.NewSource(1)) firstHalf, secondHalf := src[:origLen/2], src[origLen/2:] for i := range firstHalf { firstHalf[i] = uint8(rng.Intn(256)) } for i := range secondHalf { secondHalf[i] = uint8(i >> 8) } dst := Encode(nil, src) if got, want := len(dst), origLen*3/4; got >= want { t.Errorf("origLen=%d: got %d encoded bytes, want less than %d", origLen, got, want) } } } func TestFramingFormat(t *testing.T) { // src is comprised of alternating 1e5-sized sequences of random // (incompressible) bytes and repeated (compressible) bytes. 1e5 was chosen // because it is larger than maxBlockSize (64k). src := make([]byte, 1e6) rng := rand.New(rand.NewSource(1)) for i := 0; i < 10; i++ { if i%2 == 0 { for j := 0; j < 1e5; j++ { src[1e5*i+j] = uint8(rng.Intn(256)) } } else { for j := 0; j < 1e5; j++ { src[1e5*i+j] = uint8(i) } } } buf := new(bytes.Buffer) if _, err := NewWriter(buf).Write(src); err != nil { t.Fatalf("Write: encoding: %v", err) } dst, err := ioutil.ReadAll(NewReader(buf)) if err != nil { t.Fatalf("ReadAll: decoding: %v", err) } if err := cmp(dst, src); err != nil { t.Fatal(err) } } func TestWriterGoldenOutput(t *testing.T) { buf := new(bytes.Buffer) w := NewBufferedWriter(buf) defer w.Close() w.Write([]byte("abcd")) // Not compressible. w.Flush() w.Write(bytes.Repeat([]byte{'A'}, 150)) // Compressible. w.Flush() // The next chunk is also compressible, but a naive, greedy encoding of the // overall length 67 copy as a length 64 copy (the longest expressible as a // tagCopy1 or tagCopy2) plus a length 3 remainder would be two 3-byte // tagCopy2 tags (6 bytes), since the minimum length for a tagCopy1 is 4 // bytes. Instead, we could do it shorter, in 5 bytes: a 3-byte tagCopy2 // (of length 60) and a 2-byte tagCopy1 (of length 7). w.Write(bytes.Repeat([]byte{'B'}, 68)) w.Write([]byte("efC")) // Not compressible. w.Write(bytes.Repeat([]byte{'C'}, 20)) // Compressible. w.Write(bytes.Repeat([]byte{'B'}, 20)) // Compressible. w.Write([]byte("g")) // Not compressible. w.Flush() got := buf.String() want := strings.Join([]string{ magicChunk, "\x01\x08\x00\x00", // Uncompressed chunk, 8 bytes long (including 4 byte checksum). "\x68\x10\xe6\xb6", // Checksum. "\x61\x62\x63\x64", // Uncompressed payload: "abcd". "\x00\x11\x00\x00", // Compressed chunk, 17 bytes long (including 4 byte checksum). "\x5f\xeb\xf2\x10", // Checksum. "\x96\x01", // Compressed payload: Uncompressed length (varint encoded): 150. "\x00\x41", // Compressed payload: tagLiteral, length=1, "A". "\xfe\x01\x00", // Compressed payload: tagCopy2, length=64, offset=1. "\xfe\x01\x00", // Compressed payload: tagCopy2, length=64, offset=1. "\x52\x01\x00", // Compressed payload: tagCopy2, length=21, offset=1. "\x00\x18\x00\x00", // Compressed chunk, 24 bytes long (including 4 byte checksum). "\x30\x85\x69\xeb", // Checksum. "\x70", // Compressed payload: Uncompressed length (varint encoded): 112. "\x00\x42", // Compressed payload: tagLiteral, length=1, "B". "\xee\x01\x00", // Compressed payload: tagCopy2, length=60, offset=1. "\x0d\x01", // Compressed payload: tagCopy1, length=7, offset=1. "\x08\x65\x66\x43", // Compressed payload: tagLiteral, length=3, "efC". "\x4e\x01\x00", // Compressed payload: tagCopy2, length=20, offset=1. "\x4e\x5a\x00", // Compressed payload: tagCopy2, length=20, offset=90. "\x00\x67", // Compressed payload: tagLiteral, length=1, "g". }, "") if got != want { t.Fatalf("\ngot: % x\nwant: % x", got, want) } } func TestEmitLiteral(t *testing.T) { testCases := []struct { length int want string }{ {1, "\x00"}, {2, "\x04"}, {59, "\xe8"}, {60, "\xec"}, {61, "\xf0\x3c"}, {62, "\xf0\x3d"}, {254, "\xf0\xfd"}, {255, "\xf0\xfe"}, {256, "\xf0\xff"}, {257, "\xf4\x00\x01"}, {65534, "\xf4\xfd\xff"}, {65535, "\xf4\xfe\xff"}, {65536, "\xf4\xff\xff"}, } dst := make([]byte, 70000) nines := bytes.Repeat([]byte{0x99}, 65536) for _, tc := range testCases { lit := nines[:tc.length] n := emitLiteral(dst, lit) if !bytes.HasSuffix(dst[:n], lit) { t.Errorf("length=%d: did not end with that many literal bytes", tc.length) continue } got := string(dst[:n-tc.length]) if got != tc.want { t.Errorf("length=%d:\ngot % x\nwant % x", tc.length, got, tc.want) continue } } } func TestEmitCopy(t *testing.T) { testCases := []struct { offset int length int want string }{ {8, 04, "\x01\x08"}, {8, 11, "\x1d\x08"}, {8, 12, "\x2e\x08\x00"}, {8, 13, "\x32\x08\x00"}, {8, 59, "\xea\x08\x00"}, {8, 60, "\xee\x08\x00"}, {8, 61, "\xf2\x08\x00"}, {8, 62, "\xf6\x08\x00"}, {8, 63, "\xfa\x08\x00"}, {8, 64, "\xfe\x08\x00"}, {8, 65, "\xee\x08\x00\x05\x08"}, {8, 66, "\xee\x08\x00\x09\x08"}, {8, 67, "\xee\x08\x00\x0d\x08"}, {8, 68, "\xfe\x08\x00\x01\x08"}, {8, 69, "\xfe\x08\x00\x05\x08"}, {8, 80, "\xfe\x08\x00\x3e\x08\x00"}, {256, 04, "\x21\x00"}, {256, 11, "\x3d\x00"}, {256, 12, "\x2e\x00\x01"}, {256, 13, "\x32\x00\x01"}, {256, 59, "\xea\x00\x01"}, {256, 60, "\xee\x00\x01"}, {256, 61, "\xf2\x00\x01"}, {256, 62, "\xf6\x00\x01"}, {256, 63, "\xfa\x00\x01"}, {256, 64, "\xfe\x00\x01"}, {256, 65, "\xee\x00\x01\x25\x00"}, {256, 66, "\xee\x00\x01\x29\x00"}, {256, 67, "\xee\x00\x01\x2d\x00"}, {256, 68, "\xfe\x00\x01\x21\x00"}, {256, 69, "\xfe\x00\x01\x25\x00"}, {256, 80, "\xfe\x00\x01\x3e\x00\x01"}, {2048, 04, "\x0e\x00\x08"}, {2048, 11, "\x2a\x00\x08"}, {2048, 12, "\x2e\x00\x08"}, {2048, 13, "\x32\x00\x08"}, {2048, 59, "\xea\x00\x08"}, {2048, 60, "\xee\x00\x08"}, {2048, 61, "\xf2\x00\x08"}, {2048, 62, "\xf6\x00\x08"}, {2048, 63, "\xfa\x00\x08"}, {2048, 64, "\xfe\x00\x08"}, {2048, 65, "\xee\x00\x08\x12\x00\x08"}, {2048, 66, "\xee\x00\x08\x16\x00\x08"}, {2048, 67, "\xee\x00\x08\x1a\x00\x08"}, {2048, 68, "\xfe\x00\x08\x0e\x00\x08"}, {2048, 69, "\xfe\x00\x08\x12\x00\x08"}, {2048, 80, "\xfe\x00\x08\x3e\x00\x08"}, } dst := make([]byte, 1024) for _, tc := range testCases { n := emitCopy(dst, tc.offset, tc.length) got := string(dst[:n]) if got != tc.want { t.Errorf("offset=%d, length=%d:\ngot % x\nwant % x", tc.offset, tc.length, got, tc.want) } } } func TestNewBufferedWriter(t *testing.T) { // Test all 32 possible sub-sequences of these 5 input slices. // // Their lengths sum to 400,000, which is over 6 times the Writer ibuf // capacity: 6 * maxBlockSize is 393,216. inputs := [][]byte{ bytes.Repeat([]byte{'a'}, 40000), bytes.Repeat([]byte{'b'}, 150000), bytes.Repeat([]byte{'c'}, 60000), bytes.Repeat([]byte{'d'}, 120000), bytes.Repeat([]byte{'e'}, 30000), } loop: for i := 0; i < 1<<uint(len(inputs)); i++ { var want []byte buf := new(bytes.Buffer) w := NewBufferedWriter(buf) for j, input := range inputs { if i&(1<<uint(j)) == 0 { continue } if _, err := w.Write(input); err != nil { t.Errorf("i=%#02x: j=%d: Write: %v", i, j, err) continue loop } want = append(want, input...) } if err := w.Close(); err != nil { t.Errorf("i=%#02x: Close: %v", i, err) continue } got, err := ioutil.ReadAll(NewReader(buf)) if err != nil { t.Errorf("i=%#02x: ReadAll: %v", i, err) continue } if err := cmp(got, want); err != nil { t.Errorf("i=%#02x: %v", i, err) continue } } } func TestFlush(t *testing.T) { buf := new(bytes.Buffer) w := NewBufferedWriter(buf) defer w.Close() if _, err := w.Write(bytes.Repeat([]byte{'x'}, 20)); err != nil { t.Fatalf("Write: %v", err) } if n := buf.Len(); n != 0 { t.Fatalf("before Flush: %d bytes were written to the underlying io.Writer, want 0", n) } if err := w.Flush(); err != nil { t.Fatalf("Flush: %v", err) } if n := buf.Len(); n == 0 { t.Fatalf("after Flush: %d bytes were written to the underlying io.Writer, want non-0", n) } } func TestReaderUncompressedDataOK(t *testing.T) { r := NewReader(strings.NewReader(magicChunk + "\x01\x08\x00\x00" + // Uncompressed chunk, 8 bytes long (including 4 byte checksum). "\x68\x10\xe6\xb6" + // Checksum. "\x61\x62\x63\x64", // Uncompressed payload: "abcd". )) g, err := ioutil.ReadAll(r) if err != nil { t.Fatal(err) } if got, want := string(g), "abcd"; got != want { t.Fatalf("got %q, want %q", got, want) } } func TestReaderUncompressedDataNoPayload(t *testing.T) { r := NewReader(strings.NewReader(magicChunk + "\x01\x04\x00\x00" + // Uncompressed chunk, 4 bytes long. "", // No payload; corrupt input. )) if _, err := ioutil.ReadAll(r); err != ErrCorrupt { t.Fatalf("got %v, want %v", err, ErrCorrupt) } } func TestReaderUncompressedDataTooLong(t *testing.T) { // https://github.com/google/snappy/blob/master/framing_format.txt section // 4.3 says that "the maximum legal chunk length... is 65540", or 0x10004. const n = 0x10005 r := NewReader(strings.NewReader(magicChunk + "\x01\x05\x00\x01" + // Uncompressed chunk, n bytes long. strings.Repeat("\x00", n), )) if _, err := ioutil.ReadAll(r); err != ErrCorrupt { t.Fatalf("got %v, want %v", err, ErrCorrupt) } } func TestReaderReset(t *testing.T) { gold := bytes.Repeat([]byte("All that is gold does not glitter,\n"), 10000) buf := new(bytes.Buffer) if _, err := NewWriter(buf).Write(gold); err != nil { t.Fatalf("Write: %v", err) } encoded, invalid, partial := buf.String(), "invalid", "partial" r := NewReader(nil) for i, s := range []string{encoded, invalid, partial, encoded, partial, invalid, encoded, encoded} { if s == partial { r.Reset(strings.NewReader(encoded)) if _, err := r.Read(make([]byte, 101)); err != nil { t.Errorf("#%d: %v", i, err) continue } continue } r.Reset(strings.NewReader(s)) got, err := ioutil.ReadAll(r) switch s { case encoded: if err != nil { t.Errorf("#%d: %v", i, err) continue } if err := cmp(got, gold); err != nil { t.Errorf("#%d: %v", i, err) continue } case invalid: if err == nil { t.Errorf("#%d: got nil error, want non-nil", i) continue } } } } func TestWriterReset(t *testing.T) { gold := bytes.Repeat([]byte("Not all those who wander are lost;\n"), 10000) const n = 20 for _, buffered := range []bool{false, true} { var w *Writer if buffered { w = NewBufferedWriter(nil) defer w.Close() } else { w = NewWriter(nil) } var gots, wants [][]byte failed := false for i := 0; i <= n; i++ { buf := new(bytes.Buffer) w.Reset(buf) want := gold[:len(gold)*i/n] if _, err := w.Write(want); err != nil { t.Errorf("#%d: Write: %v", i, err) failed = true continue } if buffered { if err := w.Flush(); err != nil { t.Errorf("#%d: Flush: %v", i, err) failed = true continue } } got, err := ioutil.ReadAll(NewReader(buf)) if err != nil { t.Errorf("#%d: ReadAll: %v", i, err) failed = true continue } gots = append(gots, got) wants = append(wants, want) } if failed { continue } for i := range gots { if err := cmp(gots[i], wants[i]); err != nil { t.Errorf("#%d: %v", i, err) } } } } func TestWriterResetWithoutFlush(t *testing.T) { buf0 := new(bytes.Buffer) buf1 := new(bytes.Buffer) w := NewBufferedWriter(buf0) if _, err := w.Write([]byte("xxx")); err != nil { t.Fatalf("Write #0: %v", err) } // Note that we don't Flush the Writer before calling Reset. w.Reset(buf1) if _, err := w.Write([]byte("yyy")); err != nil { t.Fatalf("Write #1: %v", err) } if err := w.Flush(); err != nil { t.Fatalf("Flush: %v", err) } got, err := ioutil.ReadAll(NewReader(buf1)) if err != nil { t.Fatalf("ReadAll: %v", err) } if err := cmp(got, []byte("yyy")); err != nil { t.Fatal(err) } } type writeCounter int func (c *writeCounter) Write(p []byte) (int, error) { *c++ return len(p), nil } // TestNumUnderlyingWrites tests that each Writer flush only makes one or two // Write calls on its underlying io.Writer, depending on whether or not the // flushed buffer was compressible. func TestNumUnderlyingWrites(t *testing.T) { testCases := []struct { input []byte want int }{ {bytes.Repeat([]byte{'x'}, 100), 1}, {bytes.Repeat([]byte{'y'}, 100), 1}, {[]byte("ABCDEFGHIJKLMNOPQRST"), 2}, } var c writeCounter w := NewBufferedWriter(&c) defer w.Close() for i, tc := range testCases { c = 0 if _, err := w.Write(tc.input); err != nil { t.Errorf("#%d: Write: %v", i, err) continue } if err := w.Flush(); err != nil { t.Errorf("#%d: Flush: %v", i, err) continue } if int(c) != tc.want { t.Errorf("#%d: got %d underlying writes, want %d", i, c, tc.want) continue } } } func benchDecode(b *testing.B, src []byte) { encoded := Encode(nil, src) // Bandwidth is in amount of uncompressed data. b.SetBytes(int64(len(src))) b.ResetTimer() for i := 0; i < b.N; i++ { Decode(src, encoded) } } func benchEncode(b *testing.B, src []byte) { // Bandwidth is in amount of uncompressed data. b.SetBytes(int64(len(src))) dst := make([]byte, MaxEncodedLen(len(src))) b.ResetTimer() for i := 0; i < b.N; i++ { Encode(dst, src) } } func testOrBenchmark(b testing.TB) string { if _, ok := b.(*testing.B); ok { return "benchmark" } return "test" } func readFile(b testing.TB, filename string) []byte { src, err := ioutil.ReadFile(filename) if err != nil { b.Skipf("skipping %s: %v", testOrBenchmark(b), err) } if len(src) == 0 { b.Fatalf("%s has zero length", filename) } return src } // expand returns a slice of length n containing repeated copies of src. func expand(src []byte, n int) []byte { dst := make([]byte, n) for x := dst; len(x) > 0; { i := copy(x, src) x = x[i:] } return dst } func benchWords(b *testing.B, n int, decode bool) { // Note: the file is OS-language dependent so the resulting values are not // directly comparable for non-US-English OS installations. data := expand(readFile(b, "/usr/share/dict/words"), n) if decode { benchDecode(b, data) } else { benchEncode(b, data) } } func BenchmarkWordsDecode1e1(b *testing.B) { benchWords(b, 1e1, true) } func BenchmarkWordsDecode1e2(b *testing.B) { benchWords(b, 1e2, true) } func BenchmarkWordsDecode1e3(b *testing.B) { benchWords(b, 1e3, true) } func BenchmarkWordsDecode1e4(b *testing.B) { benchWords(b, 1e4, true) } func BenchmarkWordsDecode1e5(b *testing.B) { benchWords(b, 1e5, true) } func BenchmarkWordsDecode1e6(b *testing.B) { benchWords(b, 1e6, true) } func BenchmarkWordsEncode1e1(b *testing.B) { benchWords(b, 1e1, false) } func BenchmarkWordsEncode1e2(b *testing.B) { benchWords(b, 1e2, false) } func BenchmarkWordsEncode1e3(b *testing.B) { benchWords(b, 1e3, false) } func BenchmarkWordsEncode1e4(b *testing.B) { benchWords(b, 1e4, false) } func BenchmarkWordsEncode1e5(b *testing.B) { benchWords(b, 1e5, false) } func BenchmarkWordsEncode1e6(b *testing.B) { benchWords(b, 1e6, false) } func BenchmarkRandomEncode(b *testing.B) { rng := rand.New(rand.NewSource(1)) data := make([]byte, 1<<20) for i := range data { data[i] = uint8(rng.Intn(256)) } benchEncode(b, data) } // testFiles' values are copied directly from // https://raw.githubusercontent.com/google/snappy/master/snappy_unittest.cc // The label field is unused in snappy-go. var testFiles = []struct { label string filename string sizeLimit int }{ {"html", "html", 0}, {"urls", "urls.10K", 0}, {"jpg", "fireworks.jpeg", 0}, {"jpg_200", "fireworks.jpeg", 200}, {"pdf", "paper-100k.pdf", 0}, {"html4", "html_x_4", 0}, {"txt1", "alice29.txt", 0}, {"txt2", "asyoulik.txt", 0}, {"txt3", "lcet10.txt", 0}, {"txt4", "plrabn12.txt", 0}, {"pb", "geo.protodata", 0}, {"gaviota", "kppkn.gtb", 0}, } const ( // The benchmark data files are at this canonical URL. benchURL = "https://raw.githubusercontent.com/google/snappy/master/testdata/" ) func downloadBenchmarkFiles(b testing.TB, basename string) (errRet error) { bDir := filepath.FromSlash(*benchdataDir) filename := filepath.Join(bDir, basename) if stat, err := os.Stat(filename); err == nil && stat.Size() != 0 { return nil } if !*download { b.Skipf("test data not found; skipping %s without the -download flag", testOrBenchmark(b)) } // Download the official snappy C++ implementation reference test data // files for benchmarking. if err := os.MkdirAll(bDir, 0777); err != nil && !os.IsExist(err) { return fmt.Errorf("failed to create %s: %s", bDir, err) } f, err := os.Create(filename) if err != nil { return fmt.Errorf("failed to create %s: %s", filename, err) } defer f.Close() defer func() { if errRet != nil { os.Remove(filename) } }() url := benchURL + basename resp, err := http.Get(url) if err != nil { return fmt.Errorf("failed to download %s: %s", url, err) } defer resp.Body.Close() if s := resp.StatusCode; s != http.StatusOK { return fmt.Errorf("downloading %s: HTTP status code %d (%s)", url, s, http.StatusText(s)) } _, err = io.Copy(f, resp.Body) if err != nil { return fmt.Errorf("failed to download %s to %s: %s", url, filename, err) } return nil } func benchFile(b *testing.B, i int, decode bool) { if err := downloadBenchmarkFiles(b, testFiles[i].filename); err != nil { b.Fatalf("failed to download testdata: %s", err) } bDir := filepath.FromSlash(*benchdataDir) data := readFile(b, filepath.Join(bDir, testFiles[i].filename)) if n := testFiles[i].sizeLimit; 0 < n && n < len(data) { data = data[:n] } if decode { benchDecode(b, data) } else { benchEncode(b, data) } } // Naming convention is kept similar to what snappy's C++ implementation uses. func Benchmark_UFlat0(b *testing.B) { benchFile(b, 0, true) } func Benchmark_UFlat1(b *testing.B) { benchFile(b, 1, true) } func Benchmark_UFlat2(b *testing.B) { benchFile(b, 2, true) } func Benchmark_UFlat3(b *testing.B) { benchFile(b, 3, true) } func Benchmark_UFlat4(b *testing.B) { benchFile(b, 4, true) } func Benchmark_UFlat5(b *testing.B) { benchFile(b, 5, true) } func Benchmark_UFlat6(b *testing.B) { benchFile(b, 6, true) } func Benchmark_UFlat7(b *testing.B) { benchFile(b, 7, true) } func Benchmark_UFlat8(b *testing.B) { benchFile(b, 8, true) } func Benchmark_UFlat9(b *testing.B) { benchFile(b, 9, true) } func Benchmark_UFlat10(b *testing.B) { benchFile(b, 10, true) } func Benchmark_UFlat11(b *testing.B) { benchFile(b, 11, true) } func Benchmark_ZFlat0(b *testing.B) { benchFile(b, 0, false) } func Benchmark_ZFlat1(b *testing.B) { benchFile(b, 1, false) } func Benchmark_ZFlat2(b *testing.B) { benchFile(b, 2, false) } func Benchmark_ZFlat3(b *testing.B) { benchFile(b, 3, false) } func Benchmark_ZFlat4(b *testing.B) { benchFile(b, 4, false) } func Benchmark_ZFlat5(b *testing.B) { benchFile(b, 5, false) } func Benchmark_ZFlat6(b *testing.B) { benchFile(b, 6, false) } func Benchmark_ZFlat7(b *testing.B) { benchFile(b, 7, false) } func Benchmark_ZFlat8(b *testing.B) { benchFile(b, 8, false) } func Benchmark_ZFlat9(b *testing.B) { benchFile(b, 9, false) } func Benchmark_ZFlat10(b *testing.B) { benchFile(b, 10, false) } func Benchmark_ZFlat11(b *testing.B) { benchFile(b, 11, false) } func BenchmarkExtendMatch(b *testing.B) { tDir := filepath.FromSlash(*testdataDir) src, err := ioutil.ReadFile(filepath.Join(tDir, goldenText)) if err != nil { b.Fatalf("ReadFile: %v", err) } b.ResetTimer() for i := 0; i < b.N; i++ { for _, tc := range extendMatchGoldenTestCases { extendMatch(src, tc.i, tc.j) } } }