The returned distance value for the kNN test was failing on a
Apple M1 machine. The test expected a hardcoded value.
amd64: 13053.885940801563
apple: 13053.885940801567
Not sure why the difference between the two cpus but I changed
the test to not compare for exact equality.
This commit allows for buffering any GeoJSON object.
For example:
INTERSECTS fleet BUFFER 1000 OBJECT {...LineString...}
This will buffer add a 1 kilometer buffer to a linesting and
search the 'fleet' collection for all objects that
intersect the buffered linestring.
This commit also allows for performing INTERSECTS with a POINT
type. Thus allowing for a polygon-over-point operation, which is
an inverted point-in-polygon.
The big change is that the GeoJSON package has been completely
rewritten to fix a few of geometry calculation bugs, increase
performance, and to better follow the GeoJSON spec RFC 7946.
GeoJSON updates
- A LineString now requires at least two points.
- All json members, even foreign, now persist with the object.
- The bbox member persists too but is no longer used for geometry
calculations. This is change in behavior. Previously Tile38 would
treat the bbox as the object's physical rectangle.
- Corrections to geometry intersects and within calculations.
Faster spatial queries
- The performance of Point-in-polygon and object intersect operations
are greatly improved for complex polygons and line strings. It went
from O(n) to roughly O(log n).
- The same for all collection types with many children, including
FeatureCollection, GeometryCollection, MultiPoint, MultiLineString,
and MultiPolygon.
Codebase changes
- The pkg directory has been renamed to internal
- The GeoJSON internal package has been moved to a seperate repo at
https://github.com/tidwall/geojson. It's now vendored.
Please look out for higher memory usage for datasets using complex
shapes. A complex shape is one that has 64 or more points. For these
shapes it's expected that there will be increase of least 54 bytes per
point.