mirror of https://github.com/tidwall/tile38.git
Z optimized, fixed #61
This commit is contained in:
parent
46072f614f
commit
8270d11024
|
@ -36,13 +36,13 @@ func (i *itemT) Less(item btree.Item, ctx interface{}) bool {
|
|||
}
|
||||
}
|
||||
|
||||
func (i *itemT) Rect() (minX, minY, maxX, maxY float64) {
|
||||
func (i *itemT) Rect() (minX, minY, minZ, maxX, maxY, maxZ float64) {
|
||||
bbox := i.object.CalculatedBBox()
|
||||
return bbox.Min.X, bbox.Min.Y, bbox.Max.X, bbox.Max.Y
|
||||
return bbox.Min.X, bbox.Min.Y, bbox.Min.Z, bbox.Max.X, bbox.Max.Y, bbox.Max.Z
|
||||
}
|
||||
|
||||
func (i *itemT) Point() (x, y float64) {
|
||||
x, y, _, _ = i.Rect()
|
||||
func (i *itemT) Point() (x, y, z float64) {
|
||||
x, y, z, _, _, _ = i.Rect()
|
||||
return
|
||||
}
|
||||
|
||||
|
@ -87,7 +87,7 @@ func (c *Collection) TotalWeight() int {
|
|||
}
|
||||
|
||||
// Bounds returns the bounds of all the items in the collection.
|
||||
func (c *Collection) Bounds() (minX, minY, maxX, maxY float64) {
|
||||
func (c *Collection) Bounds() (minX, minY, minZ, maxX, maxY, maxZ float64) {
|
||||
return c.index.Bounds()
|
||||
}
|
||||
|
||||
|
@ -333,7 +333,7 @@ func (c *Collection) ScanGreaterOrEqual(id string, cursor uint64, desc bool,
|
|||
}
|
||||
|
||||
func (c *Collection) geoSearch(cursor uint64, bbox geojson.BBox, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
return c.index.Search(cursor, bbox.Min.Y, bbox.Min.X, bbox.Max.Y, bbox.Max.X, func(item index.Item) bool {
|
||||
return c.index.Search(cursor, bbox.Min.Y, bbox.Min.X, bbox.Max.Y, bbox.Max.X, bbox.Min.Z, bbox.Max.Z, func(item index.Item) bool {
|
||||
var iitm *itemT
|
||||
iitm, ok := item.(*itemT)
|
||||
if !ok {
|
||||
|
@ -347,12 +347,13 @@ func (c *Collection) geoSearch(cursor uint64, bbox geojson.BBox, iterator func(i
|
|||
}
|
||||
|
||||
// Nearby returns all object that are nearby a point.
|
||||
func (c *Collection) Nearby(cursor uint64, sparse uint8, lat, lon, meters float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
func (c *Collection) Nearby(cursor uint64, sparse uint8, lat, lon, meters, minZ, maxZ float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
center := geojson.Position{X: lon, Y: lat, Z: 0}
|
||||
bbox := geojson.BBoxesFromCenter(lat, lon, meters)
|
||||
bboxes := bbox.Sparse(sparse)
|
||||
if sparse > 0 {
|
||||
for _, bbox := range bboxes {
|
||||
bbox.Min.Z, bbox.Max.Z = minZ, maxZ
|
||||
c.geoSearch(cursor, bbox, func(id string, obj geojson.Object, fields []float64) bool {
|
||||
if obj.Nearby(center, meters) {
|
||||
if iterator(id, obj, fields) {
|
||||
|
@ -364,6 +365,7 @@ func (c *Collection) Nearby(cursor uint64, sparse uint8, lat, lon, meters float6
|
|||
}
|
||||
return 0
|
||||
}
|
||||
bbox.Min.Z, bbox.Max.Z = minZ, maxZ
|
||||
return c.geoSearch(cursor, bbox, func(id string, obj geojson.Object, fields []float64) bool {
|
||||
if obj.Nearby(center, meters) {
|
||||
return iterator(id, obj, fields)
|
||||
|
@ -373,12 +375,12 @@ func (c *Collection) Nearby(cursor uint64, sparse uint8, lat, lon, meters float6
|
|||
}
|
||||
|
||||
// Within returns all object that are fully contained within an object or bounding box. Set obj to nil in order to use the bounding box.
|
||||
func (c *Collection) Within(cursor uint64, sparse uint8, obj geojson.Object, minLat, minLon, maxLat, maxLon float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
func (c *Collection) Within(cursor uint64, sparse uint8, obj geojson.Object, minLat, minLon, maxLat, maxLon, minZ, maxZ float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
var bbox geojson.BBox
|
||||
if obj != nil {
|
||||
bbox = obj.CalculatedBBox()
|
||||
} else {
|
||||
bbox = geojson.BBox{Min: geojson.Position{X: minLon, Y: minLat, Z: 0}, Max: geojson.Position{X: maxLon, Y: maxLat, Z: 0}}
|
||||
bbox = geojson.BBox{Min: geojson.Position{X: minLon, Y: minLat, Z: minZ}, Max: geojson.Position{X: maxLon, Y: maxLat, Z: maxZ}}
|
||||
}
|
||||
bboxes := bbox.Sparse(sparse)
|
||||
if sparse > 0 {
|
||||
|
@ -421,12 +423,12 @@ func (c *Collection) Within(cursor uint64, sparse uint8, obj geojson.Object, min
|
|||
}
|
||||
|
||||
// Intersects returns all object that are intersect an object or bounding box. Set obj to nil in order to use the bounding box.
|
||||
func (c *Collection) Intersects(cursor uint64, sparse uint8, obj geojson.Object, minLat, minLon, maxLat, maxLon float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
func (c *Collection) Intersects(cursor uint64, sparse uint8, obj geojson.Object, minLat, minLon, maxLat, maxLon, maxZ, minZ float64, iterator func(id string, obj geojson.Object, fields []float64) bool) (ncursor uint64) {
|
||||
var bbox geojson.BBox
|
||||
if obj != nil {
|
||||
bbox = obj.CalculatedBBox()
|
||||
} else {
|
||||
bbox = geojson.BBox{Min: geojson.Position{X: minLon, Y: minLat, Z: 0}, Max: geojson.Position{X: maxLon, Y: maxLat, Z: 0}}
|
||||
bbox = geojson.BBox{Min: geojson.Position{X: minLon, Y: minLat, Z: minZ}, Max: geojson.Position{X: maxLon, Y: maxLat, Z: maxZ}}
|
||||
}
|
||||
var bboxes []geojson.BBox
|
||||
if sparse > 0 {
|
||||
|
@ -436,8 +438,8 @@ func (c *Collection) Intersects(cursor uint64, sparse uint8, obj geojson.Object,
|
|||
for y := bbox.Min.Y; y < bbox.Max.Y; y += ypart {
|
||||
for x := bbox.Min.X; x < bbox.Max.X; x += xpart {
|
||||
bboxes = append(bboxes, geojson.BBox{
|
||||
Min: geojson.Position{X: x, Y: y, Z: 0},
|
||||
Max: geojson.Position{X: x + xpart, Y: y + ypart, Z: 0},
|
||||
Min: geojson.Position{X: x, Y: y, Z: minZ},
|
||||
Max: geojson.Position{X: x + xpart, Y: y + ypart, Z: maxZ},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
|
@ -73,19 +73,23 @@ func (c *Controller) cmdBounds(msg *server.Message) (string, error) {
|
|||
if msg.OutputType == server.JSON {
|
||||
buf.WriteString(`{"ok":true`)
|
||||
}
|
||||
bbox := geojson.New2DBBox(col.Bounds())
|
||||
minX, minY, minZ, maxX, maxY, maxZ := col.Bounds()
|
||||
|
||||
bbox := geojson.New2DBBox(minX, minY, maxX, maxY)
|
||||
if msg.OutputType == server.JSON {
|
||||
buf.WriteString(`,"bounds":`)
|
||||
buf.WriteString(bbox.ExternalJSON())
|
||||
} else {
|
||||
vals = append(vals, resp.ArrayValue([]resp.Value{
|
||||
resp.ArrayValue([]resp.Value{
|
||||
resp.FloatValue(bbox.Min.Y),
|
||||
resp.FloatValue(bbox.Min.X),
|
||||
resp.FloatValue(minX),
|
||||
resp.FloatValue(minY),
|
||||
resp.FloatValue(minZ),
|
||||
}),
|
||||
resp.ArrayValue([]resp.Value{
|
||||
resp.FloatValue(bbox.Max.Y),
|
||||
resp.FloatValue(bbox.Max.X),
|
||||
resp.FloatValue(maxX),
|
||||
resp.FloatValue(maxY),
|
||||
resp.FloatValue(maxZ),
|
||||
}),
|
||||
}))
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
package controller
|
||||
|
||||
import (
|
||||
"math"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
|
@ -196,7 +197,7 @@ func fenceMatchRoam(c *Controller, fence *liveFenceSwitches, tkey, tid string, o
|
|||
return
|
||||
}
|
||||
p := obj.CalculatedPoint()
|
||||
col.Nearby(0, 0, p.Y, p.X, fence.roam.meters,
|
||||
col.Nearby(0, 0, p.Y, p.X, fence.roam.meters, math.Inf(-1), math.Inf(+1),
|
||||
func(id string, obj geojson.Object, fields []float64) bool {
|
||||
var match bool
|
||||
if id == tid {
|
||||
|
|
|
@ -264,6 +264,8 @@ func (c *Controller) cmdNearby(msg *server.Message) (res string, err error) {
|
|||
if s.fence {
|
||||
return "", s
|
||||
}
|
||||
|
||||
minZ, maxZ := zMinMaxFromWheres(s.wheres)
|
||||
sw, err := c.newScanWriter(wr, msg, s.key, s.output, s.precision, s.glob, false, s.limit, s.wheres, s.nofields)
|
||||
if err != nil {
|
||||
return "", err
|
||||
|
@ -273,7 +275,7 @@ func (c *Controller) cmdNearby(msg *server.Message) (res string, err error) {
|
|||
}
|
||||
sw.writeHead()
|
||||
if sw.col != nil {
|
||||
s.cursor = sw.col.Nearby(s.cursor, s.sparse, s.lat, s.lon, s.meters, func(id string, o geojson.Object, fields []float64) bool {
|
||||
s.cursor = sw.col.Nearby(s.cursor, s.sparse, s.lat, s.lon, s.meters, minZ, maxZ, func(id string, o geojson.Object, fields []float64) bool {
|
||||
return sw.writeObject(id, o, fields, false)
|
||||
})
|
||||
}
|
||||
|
@ -316,14 +318,15 @@ func (c *Controller) cmdWithinOrIntersects(cmd string, msg *server.Message) (res
|
|||
wr.WriteString(`{"ok":true`)
|
||||
}
|
||||
sw.writeHead()
|
||||
minZ, maxZ := zMinMaxFromWheres(s.wheres)
|
||||
if cmd == "within" {
|
||||
s.cursor = sw.col.Within(s.cursor, s.sparse, s.o, s.minLat, s.minLon, s.maxLat, s.maxLon,
|
||||
s.cursor = sw.col.Within(s.cursor, s.sparse, s.o, s.minLat, s.minLon, s.maxLat, s.maxLon, minZ, maxZ,
|
||||
func(id string, o geojson.Object, fields []float64) bool {
|
||||
return sw.writeObject(id, o, fields, false)
|
||||
},
|
||||
)
|
||||
} else if cmd == "intersects" {
|
||||
s.cursor = sw.col.Intersects(s.cursor, s.sparse, s.o, s.minLat, s.minLon, s.maxLat, s.maxLon,
|
||||
s.cursor = sw.col.Intersects(s.cursor, s.sparse, s.o, s.minLat, s.minLon, s.maxLat, s.maxLon, minZ, maxZ,
|
||||
func(id string, o geojson.Object, fields []float64) bool {
|
||||
return sw.writeObject(id, o, fields, false)
|
||||
},
|
||||
|
|
|
@ -117,6 +117,19 @@ func (where whereT) match(value float64) bool {
|
|||
return true
|
||||
}
|
||||
|
||||
func zMinMaxFromWheres(wheres []whereT) (minZ, maxZ float64) {
|
||||
for _, w := range wheres {
|
||||
if w.field == "z" {
|
||||
minZ = w.min
|
||||
maxZ = w.max
|
||||
return
|
||||
}
|
||||
}
|
||||
minZ = math.Inf(-1)
|
||||
maxZ = math.Inf(+1)
|
||||
return
|
||||
}
|
||||
|
||||
type searchScanBaseTokens struct {
|
||||
key string
|
||||
cursor uint64
|
||||
|
|
|
@ -163,8 +163,8 @@ func (b BBox) Sparse(amount byte) []BBox {
|
|||
for y := b.Min.Y; y < b.Max.Y; y += ysize {
|
||||
for x := b.Min.X; x < b.Max.X; x += xsize {
|
||||
bboxes = append(bboxes, BBox{
|
||||
Min: Position{X: x, Y: y, Z: 0},
|
||||
Max: Position{X: x + xsize, Y: y + ysize, Z: 0},
|
||||
Min: Position{X: x, Y: y, Z: b.Min.Z},
|
||||
Max: Position{X: x + xsize, Y: y + ysize, Z: b.Max.Z},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,26 +1,30 @@
|
|||
package index
|
||||
|
||||
import "github.com/tidwall/tile38/index/rtree"
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/tidwall/tile38/index/rtree"
|
||||
)
|
||||
|
||||
// Item represents an index item.
|
||||
type Item interface {
|
||||
Point() (x, y float64)
|
||||
Rect() (minX, minY, maxX, maxY float64)
|
||||
Point() (x, y, z float64)
|
||||
Rect() (minX, minY, minZ, maxX, maxY, maxZ float64)
|
||||
}
|
||||
|
||||
// FlexItem can represent a point or a rectangle
|
||||
type FlexItem struct {
|
||||
MinX, MinY, MaxX, MaxY float64
|
||||
MinX, MinY, MinZ, MaxX, MaxY, MaxZ float64
|
||||
}
|
||||
|
||||
// Rect returns the rectangle
|
||||
func (item *FlexItem) Rect() (minX, minY, maxX, maxY float64) {
|
||||
return item.MinX, item.MinY, item.MaxX, item.MaxY
|
||||
func (item *FlexItem) Rect() (minX, minY, minZ, maxX, maxY, maxZ float64) {
|
||||
return item.MinX, item.MinY, item.MinZ, item.MaxX, item.MaxY, item.MaxZ
|
||||
}
|
||||
|
||||
// Point returns the point
|
||||
func (item *FlexItem) Point() (x, y float64) {
|
||||
return item.MinX, item.MinY
|
||||
func (item *FlexItem) Point() (x, y, z float64) {
|
||||
return item.MinX, item.MinY, item.MinZ
|
||||
}
|
||||
|
||||
// Index is a geospatial index
|
||||
|
@ -43,11 +47,11 @@ func New() *Index {
|
|||
|
||||
// Insert inserts an item into the index
|
||||
func (ix *Index) Insert(item Item) {
|
||||
minX, minY, maxX, maxY := item.Rect()
|
||||
minX, minY, minZ, maxX, maxY, maxZ := item.Rect()
|
||||
if minX == maxX && minY == maxY {
|
||||
x, y, normd := normPoint(minY, minX)
|
||||
if normd {
|
||||
nitem := &rtree.Rect{MinX: x, MinY: y, MaxX: x, MaxY: y}
|
||||
nitem := &rtree.Rect{MinX: x, MinY: y, MinZ: minZ, MaxX: x, MaxY: y, MaxZ: maxZ}
|
||||
ix.nr[nitem] = item
|
||||
ix.nrr[item] = []*rtree.Rect{nitem}
|
||||
ix.r.Insert(nitem)
|
||||
|
@ -60,7 +64,7 @@ func (ix *Index) Insert(item Item) {
|
|||
var nitems []*rtree.Rect
|
||||
for i := range mins {
|
||||
minX, minY, maxX, maxY := mins[i][0], mins[i][1], maxs[i][0], maxs[i][1]
|
||||
nitem := &rtree.Rect{MinX: minX, MinY: minY, MaxX: maxX, MaxY: maxY}
|
||||
nitem := &rtree.Rect{MinX: minX, MinY: minY, MinZ: minZ, MaxX: maxX, MaxY: maxY, MaxZ: maxZ}
|
||||
ix.nr[nitem] = item
|
||||
nitems = append(nitems, nitem)
|
||||
ix.r.Insert(nitem)
|
||||
|
@ -92,7 +96,7 @@ func (ix *Index) Remove(item Item) {
|
|||
// Count counts all items in the index.
|
||||
func (ix *Index) Count() int {
|
||||
count := 0
|
||||
ix.Search(0, -90, -180, 90, 180, func(item Item) bool {
|
||||
ix.Search(0, -90, -180, 90, 180, math.Inf(-1), math.Inf(+1), func(item Item) bool {
|
||||
count++
|
||||
return true
|
||||
})
|
||||
|
@ -100,7 +104,7 @@ func (ix *Index) Count() int {
|
|||
}
|
||||
|
||||
// Bounds returns the minimum bounding rectangle of all items in the index.
|
||||
func (ix *Index) Bounds() (MinX, MinY, MaxX, MaxY float64) {
|
||||
func (ix *Index) Bounds() (MinX, MinY, MinZ, MaxX, MaxY, MaxZ float64) {
|
||||
return ix.r.Bounds()
|
||||
}
|
||||
|
||||
|
@ -120,7 +124,7 @@ func (ix *Index) getRTreeItem(item rtree.Item) Item {
|
|||
}
|
||||
|
||||
// Search returns all items that intersect the bounding box.
|
||||
func (ix *Index) Search(cursor uint64, swLat, swLon, neLat, neLon float64, iterator func(item Item) bool) (ncursor uint64) {
|
||||
func (ix *Index) Search(cursor uint64, swLat, swLon, neLat, neLon, minZ, maxZ float64, iterator func(item Item) bool) (ncursor uint64) {
|
||||
var idx uint64
|
||||
var active = true
|
||||
var idm = make(map[Item]bool)
|
||||
|
@ -130,7 +134,7 @@ func (ix *Index) Search(cursor uint64, swLat, swLon, neLat, neLon float64, itera
|
|||
// There is only one rectangle.
|
||||
// It's possible that a r rect may span multiple entries. Check mulm map for spanning rects.
|
||||
if active {
|
||||
ix.r.Search(mins[0][0], mins[0][1], maxs[0][0], maxs[0][1], func(item rtree.Item) bool {
|
||||
ix.r.Search(mins[0][0], mins[0][1], minZ, maxs[0][0], maxs[0][1], maxZ, func(item rtree.Item) bool {
|
||||
if idx >= cursor {
|
||||
iitm := ix.getRTreeItem(item)
|
||||
if iitm != nil {
|
||||
|
@ -152,7 +156,7 @@ func (ix *Index) Search(cursor uint64, swLat, swLon, neLat, neLon float64, itera
|
|||
// There are multiple rectangles. Duplicates might occur.
|
||||
for i := range mins {
|
||||
if active {
|
||||
ix.r.Search(mins[i][0], mins[i][1], maxs[i][0], maxs[i][1], func(item rtree.Item) bool {
|
||||
ix.r.Search(mins[i][0], mins[i][1], minZ, maxs[i][0], maxs[i][1], maxZ, func(item rtree.Item) bool {
|
||||
if idx >= cursor {
|
||||
iitm := ix.getRTreeItem(item)
|
||||
if iitm != nil {
|
||||
|
|
|
@ -60,7 +60,7 @@ func TestRandomInserts(t *testing.T) {
|
|||
}
|
||||
count = 0
|
||||
items := make([]Item, 0, l)
|
||||
tr.Search(0, -90, -180, 90, 180, func(item Item) bool {
|
||||
tr.Search(0, -90, -180, 90, 180, 0, 0, func(item Item) bool {
|
||||
count++
|
||||
items = append(items, item)
|
||||
return true
|
||||
|
@ -70,7 +70,7 @@ func TestRandomInserts(t *testing.T) {
|
|||
}
|
||||
start = time.Now()
|
||||
count1 := 0
|
||||
tr.Search(0, 33, -115, 34, -114, func(item Item) bool {
|
||||
tr.Search(0, 33, -115, 34, -114, 0, 0, func(item Item) bool {
|
||||
count1++
|
||||
return true
|
||||
})
|
||||
|
@ -79,7 +79,7 @@ func TestRandomInserts(t *testing.T) {
|
|||
start = time.Now()
|
||||
count2 := 0
|
||||
|
||||
tr.Search(0, 33-180, -115-360, 34-180, -114-360, func(item Item) bool {
|
||||
tr.Search(0, 33-180, -115-360, 34-180, -114-360, 0, 0, func(item Item) bool {
|
||||
count2++
|
||||
return true
|
||||
})
|
||||
|
@ -87,7 +87,7 @@ func TestRandomInserts(t *testing.T) {
|
|||
|
||||
start = time.Now()
|
||||
count3 := 0
|
||||
tr.Search(0, -10, 170, 20, 200, func(item Item) bool {
|
||||
tr.Search(0, -10, 170, 20, 200, 0, 0, func(item Item) bool {
|
||||
count3++
|
||||
return true
|
||||
})
|
||||
|
@ -99,16 +99,16 @@ func TestRandomInserts(t *testing.T) {
|
|||
fmt.Printf("Searched %d items in %s.\n", count2, searchdur2.String())
|
||||
fmt.Printf("Searched %d items in %s.\n", count3, searchdur3.String())
|
||||
|
||||
tr.Search(0, -10, 170, 20, 200, func(item Item) bool {
|
||||
lat1, lon1, lat2, lon2 := item.Rect()
|
||||
tr.Search(0, -10, 170, 20, 200, 0, 0, func(item Item) bool {
|
||||
lat1, lon1, _, lat2, lon2, _ := item.Rect()
|
||||
if lat1 == lat2 && lon1 == lon2 {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
})
|
||||
|
||||
tr.Search(0, -10, 170, 20, 200, func(item Item) bool {
|
||||
lat1, lon1, lat2, lon2 := item.Rect()
|
||||
tr.Search(0, -10, 170, 20, 200, 0, 0, func(item Item) bool {
|
||||
lat1, lon1, _, lat2, lon2, _ := item.Rect()
|
||||
if lat1 != lat2 || lon1 != lon2 {
|
||||
return false
|
||||
}
|
||||
|
@ -173,7 +173,7 @@ func TestInsertVarious(t *testing.T) {
|
|||
t.Fatalf("count = %d, expect 1", count)
|
||||
}
|
||||
found := false
|
||||
tr.Search(0, -90, -180, 90, 180, func(item2 Item) bool {
|
||||
tr.Search(0, -90, -180, 90, 180, 0, 0, func(item2 Item) bool {
|
||||
if item2 == item {
|
||||
found = true
|
||||
}
|
||||
|
|
|
@ -2,46 +2,46 @@ package rtree
|
|||
|
||||
// Item is an rtree item
|
||||
type Item interface {
|
||||
Rect() (minX, minY, maxX, maxY float64)
|
||||
Rect() (minX, minY, minZ, maxX, maxY, maxZ float64)
|
||||
}
|
||||
|
||||
// Rect is a rectangle
|
||||
type Rect struct {
|
||||
MinX, MinY, MaxX, MaxY float64
|
||||
MinX, MinY, MinZ, MaxX, MaxY, MaxZ float64
|
||||
}
|
||||
|
||||
// Rect returns the rectangle
|
||||
func (item *Rect) Rect() (minX, minY, maxX, maxY float64) {
|
||||
return item.MinX, item.MinY, item.MaxX, item.MaxY
|
||||
func (item *Rect) Rect() (minX, minY, minZ, maxX, maxY, maxZ float64) {
|
||||
return item.MinX, item.MinY, item.MinZ, item.MaxX, item.MaxY, item.MaxZ
|
||||
}
|
||||
|
||||
// RTree is an implementation of an rtree
|
||||
type RTree struct {
|
||||
tr *d2RTree
|
||||
tr *d3RTree
|
||||
}
|
||||
|
||||
// New creates a new RTree
|
||||
func New() *RTree {
|
||||
return &RTree{
|
||||
tr: d2New(),
|
||||
tr: d3New(),
|
||||
}
|
||||
}
|
||||
|
||||
// Insert inserts item into rtree
|
||||
func (tr *RTree) Insert(item Item) {
|
||||
minX, minY, maxX, maxY := item.Rect()
|
||||
tr.tr.Insert([2]float64{minX, minY}, [2]float64{maxX, maxY}, item)
|
||||
minX, minY, minZ, maxX, maxY, maxZ := item.Rect()
|
||||
tr.tr.Insert([3]float64{minX, minY, minZ}, [3]float64{maxX, maxY, maxZ}, item)
|
||||
}
|
||||
|
||||
// Remove removes item from rtree
|
||||
func (tr *RTree) Remove(item Item) {
|
||||
minX, minY, maxX, maxY := item.Rect()
|
||||
tr.tr.Remove([2]float64{minX, minY}, [2]float64{maxX, maxY}, item)
|
||||
minX, minY, minZ, maxX, maxY, maxZ := item.Rect()
|
||||
tr.tr.Remove([3]float64{minX, minY, minZ}, [3]float64{maxX, maxY, maxZ}, item)
|
||||
}
|
||||
|
||||
// Search finds all items in bounding box.
|
||||
func (tr *RTree) Search(minX, minY, maxX, maxY float64, iterator func(item Item) bool) {
|
||||
tr.tr.Search([2]float64{minX, minY}, [2]float64{maxX, maxY}, func(data interface{}) bool {
|
||||
func (tr *RTree) Search(minX, minY, minZ, maxX, maxY, maxZ float64, iterator func(item Item) bool) {
|
||||
tr.tr.Search([3]float64{minX, minY, minZ}, [3]float64{maxX, maxY, maxZ}, func(data interface{}) bool {
|
||||
return iterator(data.(Item))
|
||||
})
|
||||
}
|
||||
|
@ -56,17 +56,17 @@ func (tr *RTree) RemoveAll() {
|
|||
tr.tr.RemoveAll()
|
||||
}
|
||||
|
||||
func (tr *RTree) Bounds() (minX, minY, maxX, maxY float64) {
|
||||
var rect d2rectT
|
||||
func (tr *RTree) Bounds() (minX, minY, minZ, maxX, maxY, maxZ float64) {
|
||||
var rect d3rectT
|
||||
if tr.tr.root != nil {
|
||||
if tr.tr.root.count > 0 {
|
||||
rect = tr.tr.root.branch[0].rect
|
||||
for i := 1; i < tr.tr.root.count; i++ {
|
||||
rect2 := tr.tr.root.branch[i].rect
|
||||
rect = d2combineRect(&rect, &rect2)
|
||||
rect = d3combineRect(&rect, &rect2)
|
||||
}
|
||||
}
|
||||
}
|
||||
minX, minY, maxX, maxY = rect.min[0], rect.min[1], rect.max[0], rect.max[1]
|
||||
minX, minY, minZ, maxX, maxY, maxZ = rect.min[0], rect.min[1], rect.min[2], rect.max[0], rect.max[1], rect.max[2]
|
||||
return
|
||||
}
|
||||
|
|
|
@ -38,10 +38,10 @@ func wp(min, max []float64) *Rect {
|
|||
MaxY: max[1],
|
||||
}
|
||||
}
|
||||
func wpp(x, y float64) *Rect {
|
||||
func wpp(x, y, z float64) *Rect {
|
||||
return &Rect{
|
||||
x, y,
|
||||
x, y,
|
||||
x, y, z,
|
||||
x, y, z,
|
||||
}
|
||||
}
|
||||
func TestA(t *testing.T) {
|
||||
|
@ -51,7 +51,7 @@ func TestA(t *testing.T) {
|
|||
tr.Insert(item1)
|
||||
tr.Insert(item2)
|
||||
var itemA Item
|
||||
tr.Search(21, 20, 25, 25, func(item Item) bool {
|
||||
tr.Search(21, 20, 0, 25, 25, 0, func(item Item) bool {
|
||||
itemA = item
|
||||
return true
|
||||
})
|
||||
|
@ -77,14 +77,14 @@ func TestMemory(t *testing.T) {
|
|||
}
|
||||
func TestBounds(t *testing.T) {
|
||||
tr := New()
|
||||
tr.Insert(wpp(10, 10))
|
||||
tr.Insert(wpp(10, 20))
|
||||
tr.Insert(wpp(10, 30))
|
||||
tr.Insert(wpp(20, 10))
|
||||
tr.Insert(wpp(30, 10))
|
||||
minX, minY, maxX, maxY := tr.Bounds()
|
||||
if minX != 10 || minY != 10 || maxX != 30 || maxY != 30 {
|
||||
t.Fatalf("expected 10,10 30,30, got %v,%v %v,%v\n", minX, minY, maxX, maxY)
|
||||
tr.Insert(wpp(10, 10, 0))
|
||||
tr.Insert(wpp(10, 20, 0))
|
||||
tr.Insert(wpp(10, 30, 0))
|
||||
tr.Insert(wpp(20, 10, 0))
|
||||
tr.Insert(wpp(30, 10, 0))
|
||||
minX, minY, minZ, maxX, maxY, maxZ := tr.Bounds()
|
||||
if minX != 10 || minY != 10 || minZ != 0 || maxX != 30 || maxY != 30 || maxZ != 0 {
|
||||
t.Fatalf("expected 10,10,0 30,30,0, got %v,%v %v,%v\n", minX, minY, minZ, maxX, maxY, maxZ)
|
||||
}
|
||||
}
|
||||
func BenchmarkInsert(b *testing.B) {
|
||||
|
|
|
@ -2,13 +2,13 @@ package rtree
|
|||
|
||||
import "math"
|
||||
|
||||
func d2fmin(a, b float64) float64 {
|
||||
func d3fmin(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
func d2fmax(a, b float64) float64 {
|
||||
func d3fmax(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
|
@ -16,13 +16,13 @@ func d2fmax(a, b float64) float64 {
|
|||
}
|
||||
|
||||
const (
|
||||
d2numDims = 2
|
||||
d2maxNodes = 8
|
||||
d2minNodes = d2maxNodes / 2
|
||||
d2useSphericalVolume = true // Better split classification, may be slower on some systems
|
||||
d3numDims = 3
|
||||
d3maxNodes = 8
|
||||
d3minNodes = d3maxNodes / 2
|
||||
d3useSphericalVolume = true // Better split classification, may be slower on some systems
|
||||
)
|
||||
|
||||
var d2unitSphereVolume = []float64{
|
||||
var d3unitSphereVolume = []float64{
|
||||
0.000000, 2.000000, 3.141593, // Dimension 0,1,2
|
||||
4.188790, 4.934802, 5.263789, // Dimension 3,4,5
|
||||
5.167713, 4.724766, 4.058712, // Dimension 6,7,8
|
||||
|
@ -30,69 +30,69 @@ var d2unitSphereVolume = []float64{
|
|||
1.335263, 0.910629, 0.599265, // Dimension 12,13,14
|
||||
0.381443, 0.235331, 0.140981, // Dimension 15,16,17
|
||||
0.082146, 0.046622, 0.025807, // Dimension 18,19,20
|
||||
}[d2numDims]
|
||||
}[d3numDims]
|
||||
|
||||
type d2RTree struct {
|
||||
root *d2nodeT ///< Root of tree
|
||||
type d3RTree struct {
|
||||
root *d3nodeT ///< Root of tree
|
||||
}
|
||||
|
||||
/// Minimal bounding rectangle (n-dimensional)
|
||||
type d2rectT struct {
|
||||
min [d2numDims]float64 ///< Min dimensions of bounding box
|
||||
max [d2numDims]float64 ///< Max dimensions of bounding box
|
||||
type d3rectT struct {
|
||||
min [d3numDims]float64 ///< Min dimensions of bounding box
|
||||
max [d3numDims]float64 ///< Max dimensions of bounding box
|
||||
}
|
||||
|
||||
/// May be data or may be another subtree
|
||||
/// The parents level determines this.
|
||||
/// If the parents level is 0, then this is data
|
||||
type d2branchT struct {
|
||||
rect d2rectT ///< Bounds
|
||||
child *d2nodeT ///< Child node
|
||||
type d3branchT struct {
|
||||
rect d3rectT ///< Bounds
|
||||
child *d3nodeT ///< Child node
|
||||
data interface{} ///< Data Id or Ptr
|
||||
}
|
||||
|
||||
/// d2nodeT for each branch level
|
||||
type d2nodeT struct {
|
||||
/// d3nodeT for each branch level
|
||||
type d3nodeT struct {
|
||||
count int ///< Count
|
||||
level int ///< Leaf is zero, others positive
|
||||
branch [d2maxNodes]d2branchT ///< Branch
|
||||
branch [d3maxNodes]d3branchT ///< Branch
|
||||
}
|
||||
|
||||
func (node *d2nodeT) isInternalNode() bool {
|
||||
func (node *d3nodeT) isInternalNode() bool {
|
||||
return (node.level > 0) // Not a leaf, but a internal node
|
||||
}
|
||||
func (node *d2nodeT) isLeaf() bool {
|
||||
func (node *d3nodeT) isLeaf() bool {
|
||||
return (node.level == 0) // A leaf, contains data
|
||||
}
|
||||
|
||||
/// A link list of nodes for reinsertion after a delete operation
|
||||
type d2listNodeT struct {
|
||||
next *d2listNodeT ///< Next in list
|
||||
node *d2nodeT ///< Node
|
||||
type d3listNodeT struct {
|
||||
next *d3listNodeT ///< Next in list
|
||||
node *d3nodeT ///< Node
|
||||
}
|
||||
|
||||
const d2notTaken = -1 // indicates that position
|
||||
const d3notTaken = -1 // indicates that position
|
||||
|
||||
/// Variables for finding a split partition
|
||||
type d2partitionVarsT struct {
|
||||
partition [d2maxNodes + 1]int
|
||||
type d3partitionVarsT struct {
|
||||
partition [d3maxNodes + 1]int
|
||||
total int
|
||||
minFill int
|
||||
count [2]int
|
||||
cover [2]d2rectT
|
||||
cover [2]d3rectT
|
||||
area [2]float64
|
||||
|
||||
branchBuf [d2maxNodes + 1]d2branchT
|
||||
branchBuf [d3maxNodes + 1]d3branchT
|
||||
branchCount int
|
||||
coverSplit d2rectT
|
||||
coverSplit d3rectT
|
||||
coverSplitArea float64
|
||||
}
|
||||
|
||||
func d2New() *d2RTree {
|
||||
func d3New() *d3RTree {
|
||||
// We only support machine word size simple data type eg. integer index or object pointer.
|
||||
// Since we are storing as union with non data branch
|
||||
return &d2RTree{
|
||||
root: &d2nodeT{},
|
||||
return &d3RTree{
|
||||
root: &d3nodeT{},
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -100,63 +100,63 @@ func d2New() *d2RTree {
|
|||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *d2RTree) Insert(min, max [d2numDims]float64, dataId interface{}) {
|
||||
var branch d2branchT
|
||||
func (tr *d3RTree) Insert(min, max [d3numDims]float64, dataId interface{}) {
|
||||
var branch d3branchT
|
||||
branch.data = dataId
|
||||
for axis := 0; axis < d2numDims; axis++ {
|
||||
for axis := 0; axis < d3numDims; axis++ {
|
||||
branch.rect.min[axis] = min[axis]
|
||||
branch.rect.max[axis] = max[axis]
|
||||
}
|
||||
d2insertRect(&branch, &tr.root, 0)
|
||||
d3insertRect(&branch, &tr.root, 0)
|
||||
}
|
||||
|
||||
/// Remove entry
|
||||
/// \param a_min Min of bounding rect
|
||||
/// \param a_max Max of bounding rect
|
||||
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
|
||||
func (tr *d2RTree) Remove(min, max [d2numDims]float64, dataId interface{}) {
|
||||
var rect d2rectT
|
||||
for axis := 0; axis < d2numDims; axis++ {
|
||||
func (tr *d3RTree) Remove(min, max [d3numDims]float64, dataId interface{}) {
|
||||
var rect d3rectT
|
||||
for axis := 0; axis < d3numDims; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
d2removeRect(&rect, dataId, &tr.root)
|
||||
d3removeRect(&rect, dataId, &tr.root)
|
||||
}
|
||||
|
||||
/// Find all within d2search rectangle
|
||||
/// \param a_min Min of d2search bounding rect
|
||||
/// \param a_max Max of d2search bounding rect
|
||||
/// \param a_searchResult d2search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// Find all within d3search rectangle
|
||||
/// \param a_min Min of d3search bounding rect
|
||||
/// \param a_max Max of d3search bounding rect
|
||||
/// \param a_searchResult d3search result array. Caller should set grow size. Function will reset, not append to array.
|
||||
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
|
||||
/// \param a_context User context to pass as parameter to a_resultCallback
|
||||
/// \return Returns the number of entries found
|
||||
func (tr *d2RTree) Search(min, max [d2numDims]float64, resultCallback func(data interface{}) bool) int {
|
||||
var rect d2rectT
|
||||
for axis := 0; axis < d2numDims; axis++ {
|
||||
func (tr *d3RTree) Search(min, max [d3numDims]float64, resultCallback func(data interface{}) bool) int {
|
||||
var rect d3rectT
|
||||
for axis := 0; axis < d3numDims; axis++ {
|
||||
rect.min[axis] = min[axis]
|
||||
rect.max[axis] = max[axis]
|
||||
}
|
||||
foundCount, _ := d2search(tr.root, rect, 0, resultCallback)
|
||||
foundCount, _ := d3search(tr.root, rect, 0, resultCallback)
|
||||
return foundCount
|
||||
}
|
||||
|
||||
/// Count the data elements in this container. This is slow as no internal counter is maintained.
|
||||
func (tr *d2RTree) Count() int {
|
||||
func (tr *d3RTree) Count() int {
|
||||
var count int
|
||||
d2countRec(tr.root, &count)
|
||||
d3countRec(tr.root, &count)
|
||||
return count
|
||||
}
|
||||
|
||||
/// Remove all entries from tree
|
||||
func (tr *d2RTree) RemoveAll() {
|
||||
func (tr *d3RTree) RemoveAll() {
|
||||
// Delete all existing nodes
|
||||
tr.root = &d2nodeT{}
|
||||
tr.root = &d3nodeT{}
|
||||
}
|
||||
|
||||
func d2countRec(node *d2nodeT, count *int) {
|
||||
func d3countRec(node *d3nodeT, count *int) {
|
||||
if node.isInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
d2countRec(node.branch[index].child, count)
|
||||
d3countRec(node.branch[index].child, count)
|
||||
}
|
||||
} else { // A leaf node
|
||||
*count += node.count
|
||||
|
@ -170,40 +170,40 @@ func d2countRec(node *d2nodeT, count *int) {
|
|||
// new_node to point to the new node. Old node updated to become one of two.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
func d2insertRectRec(branch *d2branchT, node *d2nodeT, newNode **d2nodeT, level int) bool {
|
||||
func d3insertRectRec(branch *d3branchT, node *d3nodeT, newNode **d3nodeT, level int) bool {
|
||||
// recurse until we reach the correct level for the new record. data records
|
||||
// will always be called with a_level == 0 (leaf)
|
||||
if node.level > level {
|
||||
// Still above level for insertion, go down tree recursively
|
||||
var otherNode *d2nodeT
|
||||
//var newBranch d2branchT
|
||||
var otherNode *d3nodeT
|
||||
//var newBranch d3branchT
|
||||
|
||||
// find the optimal branch for this record
|
||||
index := d2pickBranch(&branch.rect, node)
|
||||
index := d3pickBranch(&branch.rect, node)
|
||||
|
||||
// recursively insert this record into the picked branch
|
||||
childWasSplit := d2insertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
childWasSplit := d3insertRectRec(branch, node.branch[index].child, &otherNode, level)
|
||||
|
||||
if !childWasSplit {
|
||||
// Child was not split. Merge the bounding box of the new record with the
|
||||
// existing bounding box
|
||||
node.branch[index].rect = d2combineRect(&branch.rect, &(node.branch[index].rect))
|
||||
node.branch[index].rect = d3combineRect(&branch.rect, &(node.branch[index].rect))
|
||||
return false
|
||||
} else {
|
||||
// Child was split. The old branches are now re-partitioned to two nodes
|
||||
// so we have to re-calculate the bounding boxes of each node
|
||||
node.branch[index].rect = d2nodeCover(node.branch[index].child)
|
||||
var newBranch d2branchT
|
||||
node.branch[index].rect = d3nodeCover(node.branch[index].child)
|
||||
var newBranch d3branchT
|
||||
newBranch.child = otherNode
|
||||
newBranch.rect = d2nodeCover(otherNode)
|
||||
newBranch.rect = d3nodeCover(otherNode)
|
||||
|
||||
// The old node is already a child of a_node. Now add the newly-created
|
||||
// node to a_node as well. a_node might be split because of that.
|
||||
return d2addBranch(&newBranch, node, newNode)
|
||||
return d3addBranch(&newBranch, node, newNode)
|
||||
}
|
||||
} else if node.level == level {
|
||||
// We have reached level for insertion. Add rect, split if necessary
|
||||
return d2addBranch(branch, node, newNode)
|
||||
return d3addBranch(branch, node, newNode)
|
||||
} else {
|
||||
// Should never occur
|
||||
return false
|
||||
|
@ -211,32 +211,32 @@ func d2insertRectRec(branch *d2branchT, node *d2nodeT, newNode **d2nodeT, level
|
|||
}
|
||||
|
||||
// Insert a data rectangle into an index structure.
|
||||
// d2insertRect provides for splitting the root;
|
||||
// d3insertRect provides for splitting the root;
|
||||
// returns 1 if root was split, 0 if it was not.
|
||||
// The level argument specifies the number of steps up from the leaf
|
||||
// level to insert; e.g. a data rectangle goes in at level = 0.
|
||||
// InsertRect2 does the recursion.
|
||||
//
|
||||
func d2insertRect(branch *d2branchT, root **d2nodeT, level int) bool {
|
||||
var newNode *d2nodeT
|
||||
func d3insertRect(branch *d3branchT, root **d3nodeT, level int) bool {
|
||||
var newNode *d3nodeT
|
||||
|
||||
if d2insertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
if d3insertRectRec(branch, *root, &newNode, level) { // Root split
|
||||
|
||||
// Grow tree taller and new root
|
||||
newRoot := &d2nodeT{}
|
||||
newRoot := &d3nodeT{}
|
||||
newRoot.level = (*root).level + 1
|
||||
|
||||
var newBranch d2branchT
|
||||
var newBranch d3branchT
|
||||
|
||||
// add old root node as a child of the new root
|
||||
newBranch.rect = d2nodeCover(*root)
|
||||
newBranch.rect = d3nodeCover(*root)
|
||||
newBranch.child = *root
|
||||
d2addBranch(&newBranch, newRoot, nil)
|
||||
d3addBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// add the split node as a child of the new root
|
||||
newBranch.rect = d2nodeCover(newNode)
|
||||
newBranch.rect = d3nodeCover(newNode)
|
||||
newBranch.child = newNode
|
||||
d2addBranch(&newBranch, newRoot, nil)
|
||||
d3addBranch(&newBranch, newRoot, nil)
|
||||
|
||||
// set the new root as the root node
|
||||
*root = newRoot
|
||||
|
@ -247,10 +247,10 @@ func d2insertRect(branch *d2branchT, root **d2nodeT, level int) bool {
|
|||
}
|
||||
|
||||
// Find the smallest rectangle that includes all rectangles in branches of a node.
|
||||
func d2nodeCover(node *d2nodeT) d2rectT {
|
||||
func d3nodeCover(node *d3nodeT) d3rectT {
|
||||
rect := node.branch[0].rect
|
||||
for index := 1; index < node.count; index++ {
|
||||
rect = d2combineRect(&rect, &(node.branch[index].rect))
|
||||
rect = d3combineRect(&rect, &(node.branch[index].rect))
|
||||
}
|
||||
return rect
|
||||
}
|
||||
|
@ -259,20 +259,20 @@ func d2nodeCover(node *d2nodeT) d2rectT {
|
|||
// Returns 0 if node not split. Old node updated.
|
||||
// Returns 1 if node split, sets *new_node to address of new node.
|
||||
// Old node updated, becomes one of two.
|
||||
func d2addBranch(branch *d2branchT, node *d2nodeT, newNode **d2nodeT) bool {
|
||||
if node.count < d2maxNodes { // Split won't be necessary
|
||||
func d3addBranch(branch *d3branchT, node *d3nodeT, newNode **d3nodeT) bool {
|
||||
if node.count < d3maxNodes { // Split won't be necessary
|
||||
node.branch[node.count] = *branch
|
||||
node.count++
|
||||
return false
|
||||
} else {
|
||||
d2splitNode(node, branch, newNode)
|
||||
d3splitNode(node, branch, newNode)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Disconnect a dependent node.
|
||||
// Caller must return (or stop using iteration index) after this as count has changed
|
||||
func d2disconnectBranch(node *d2nodeT, index int) {
|
||||
func d3disconnectBranch(node *d3nodeT, index int) {
|
||||
// Remove element by swapping with the last element to prevent gaps in array
|
||||
node.branch[index] = node.branch[node.count-1]
|
||||
node.branch[node.count-1].data = nil
|
||||
|
@ -285,20 +285,20 @@ func d2disconnectBranch(node *d2nodeT, index int) {
|
|||
// least total area for the covering rectangles in the current node.
|
||||
// In case of a tie, pick the one which was smaller before, to get
|
||||
// the best resolution when searching.
|
||||
func d2pickBranch(rect *d2rectT, node *d2nodeT) int {
|
||||
func d3pickBranch(rect *d3rectT, node *d3nodeT) int {
|
||||
var firstTime bool = true
|
||||
var increase float64
|
||||
var bestIncr float64 = -1
|
||||
var area float64
|
||||
var bestArea float64
|
||||
var best int
|
||||
var tempRect d2rectT
|
||||
var tempRect d3rectT
|
||||
|
||||
for index := 0; index < node.count; index++ {
|
||||
curRect := &node.branch[index].rect
|
||||
area = d2calcRectVolume(curRect)
|
||||
tempRect = d2combineRect(rect, curRect)
|
||||
increase = d2calcRectVolume(&tempRect) - area
|
||||
area = d3calcRectVolume(curRect)
|
||||
tempRect = d3combineRect(rect, curRect)
|
||||
increase = d3calcRectVolume(&tempRect) - area
|
||||
if (increase < bestIncr) || firstTime {
|
||||
best = index
|
||||
bestArea = area
|
||||
|
@ -314,12 +314,12 @@ func d2pickBranch(rect *d2rectT, node *d2nodeT) int {
|
|||
}
|
||||
|
||||
// Combine two rectangles into larger one containing both
|
||||
func d2combineRect(rectA, rectB *d2rectT) d2rectT {
|
||||
var newRect d2rectT
|
||||
func d3combineRect(rectA, rectB *d3rectT) d3rectT {
|
||||
var newRect d3rectT
|
||||
|
||||
for index := 0; index < d2numDims; index++ {
|
||||
newRect.min[index] = d2fmin(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = d2fmax(rectA.max[index], rectB.max[index])
|
||||
for index := 0; index < d3numDims; index++ {
|
||||
newRect.min[index] = d3fmin(rectA.min[index], rectB.min[index])
|
||||
newRect.max[index] = d3fmax(rectA.max[index], rectB.max[index])
|
||||
}
|
||||
|
||||
return newRect
|
||||
|
@ -329,41 +329,41 @@ func d2combineRect(rectA, rectB *d2rectT) d2rectT {
|
|||
// Divides the nodes branches and the extra one between two nodes.
|
||||
// Old node is one of the new ones, and one really new one is created.
|
||||
// Tries more than one method for choosing a partition, uses best result.
|
||||
func d2splitNode(node *d2nodeT, branch *d2branchT, newNode **d2nodeT) {
|
||||
func d3splitNode(node *d3nodeT, branch *d3branchT, newNode **d3nodeT) {
|
||||
// Could just use local here, but member or external is faster since it is reused
|
||||
var localVars d2partitionVarsT
|
||||
var localVars d3partitionVarsT
|
||||
parVars := &localVars
|
||||
|
||||
// Load all the branches into a buffer, initialize old node
|
||||
d2getBranches(node, branch, parVars)
|
||||
d3getBranches(node, branch, parVars)
|
||||
|
||||
// Find partition
|
||||
d2choosePartition(parVars, d2minNodes)
|
||||
d3choosePartition(parVars, d3minNodes)
|
||||
|
||||
// Create a new node to hold (about) half of the branches
|
||||
*newNode = &d2nodeT{}
|
||||
*newNode = &d3nodeT{}
|
||||
(*newNode).level = node.level
|
||||
|
||||
// Put branches from buffer into 2 nodes according to the chosen partition
|
||||
node.count = 0
|
||||
d2loadNodes(node, *newNode, parVars)
|
||||
d3loadNodes(node, *newNode, parVars)
|
||||
}
|
||||
|
||||
// Calculate the n-dimensional volume of a rectangle
|
||||
func d2rectVolume(rect *d2rectT) float64 {
|
||||
func d3rectVolume(rect *d3rectT) float64 {
|
||||
var volume float64 = 1
|
||||
for index := 0; index < d2numDims; index++ {
|
||||
for index := 0; index < d3numDims; index++ {
|
||||
volume *= rect.max[index] - rect.min[index]
|
||||
}
|
||||
return volume
|
||||
}
|
||||
|
||||
// The exact volume of the bounding sphere for the given d2rectT
|
||||
func d2rectSphericalVolume(rect *d2rectT) float64 {
|
||||
// The exact volume of the bounding sphere for the given d3rectT
|
||||
func d3rectSphericalVolume(rect *d3rectT) float64 {
|
||||
var sumOfSquares float64 = 0
|
||||
var radius float64
|
||||
|
||||
for index := 0; index < d2numDims; index++ {
|
||||
for index := 0; index < d3numDims; index++ {
|
||||
halfExtent := (rect.max[index] - rect.min[index]) * 0.5
|
||||
sumOfSquares += halfExtent * halfExtent
|
||||
}
|
||||
|
@ -371,43 +371,43 @@ func d2rectSphericalVolume(rect *d2rectT) float64 {
|
|||
radius = math.Sqrt(sumOfSquares)
|
||||
|
||||
// Pow maybe slow, so test for common dims just use x*x, x*x*x.
|
||||
if d2numDims == 5 {
|
||||
return (radius * radius * radius * radius * radius * d2unitSphereVolume)
|
||||
} else if d2numDims == 4 {
|
||||
return (radius * radius * radius * radius * d2unitSphereVolume)
|
||||
} else if d2numDims == 3 {
|
||||
return (radius * radius * radius * d2unitSphereVolume)
|
||||
} else if d2numDims == 2 {
|
||||
return (radius * radius * d2unitSphereVolume)
|
||||
if d3numDims == 5 {
|
||||
return (radius * radius * radius * radius * radius * d3unitSphereVolume)
|
||||
} else if d3numDims == 4 {
|
||||
return (radius * radius * radius * radius * d3unitSphereVolume)
|
||||
} else if d3numDims == 3 {
|
||||
return (radius * radius * radius * d3unitSphereVolume)
|
||||
} else if d3numDims == 2 {
|
||||
return (radius * radius * d3unitSphereVolume)
|
||||
} else {
|
||||
return (math.Pow(radius, d2numDims) * d2unitSphereVolume)
|
||||
return (math.Pow(radius, d3numDims) * d3unitSphereVolume)
|
||||
}
|
||||
}
|
||||
|
||||
// Use one of the methods to calculate retangle volume
|
||||
func d2calcRectVolume(rect *d2rectT) float64 {
|
||||
if d2useSphericalVolume {
|
||||
return d2rectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
func d3calcRectVolume(rect *d3rectT) float64 {
|
||||
if d3useSphericalVolume {
|
||||
return d3rectSphericalVolume(rect) // Slower but helps certain merge cases
|
||||
} else { // RTREE_USE_SPHERICAL_VOLUME
|
||||
return d2rectVolume(rect) // Faster but can cause poor merges
|
||||
return d3rectVolume(rect) // Faster but can cause poor merges
|
||||
} // RTREE_USE_SPHERICAL_VOLUME
|
||||
}
|
||||
|
||||
// Load branch buffer with branches from full node plus the extra branch.
|
||||
func d2getBranches(node *d2nodeT, branch *d2branchT, parVars *d2partitionVarsT) {
|
||||
func d3getBranches(node *d3nodeT, branch *d3branchT, parVars *d3partitionVarsT) {
|
||||
// Load the branch buffer
|
||||
for index := 0; index < d2maxNodes; index++ {
|
||||
for index := 0; index < d3maxNodes; index++ {
|
||||
parVars.branchBuf[index] = node.branch[index]
|
||||
}
|
||||
parVars.branchBuf[d2maxNodes] = *branch
|
||||
parVars.branchCount = d2maxNodes + 1
|
||||
parVars.branchBuf[d3maxNodes] = *branch
|
||||
parVars.branchCount = d3maxNodes + 1
|
||||
|
||||
// Calculate rect containing all in the set
|
||||
parVars.coverSplit = parVars.branchBuf[0].rect
|
||||
for index := 1; index < d2maxNodes+1; index++ {
|
||||
parVars.coverSplit = d2combineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
for index := 1; index < d3maxNodes+1; index++ {
|
||||
parVars.coverSplit = d3combineRect(&parVars.coverSplit, &parVars.branchBuf[index].rect)
|
||||
}
|
||||
parVars.coverSplitArea = d2calcRectVolume(&parVars.coverSplit)
|
||||
parVars.coverSplitArea = d3calcRectVolume(&parVars.coverSplit)
|
||||
}
|
||||
|
||||
// Method #0 for choosing a partition:
|
||||
|
@ -421,24 +421,24 @@ func d2getBranches(node *d2nodeT, branch *d2branchT, parVars *d2partitionVarsT)
|
|||
// If one group gets too full (more would force other group to violate min
|
||||
// fill requirement) then other group gets the rest.
|
||||
// These last are the ones that can go in either group most easily.
|
||||
func d2choosePartition(parVars *d2partitionVarsT, minFill int) {
|
||||
func d3choosePartition(parVars *d3partitionVarsT, minFill int) {
|
||||
var biggestDiff float64
|
||||
var group, chosen, betterGroup int
|
||||
|
||||
d2initParVars(parVars, parVars.branchCount, minFill)
|
||||
d2pickSeeds(parVars)
|
||||
d3initParVars(parVars, parVars.branchCount, minFill)
|
||||
d3pickSeeds(parVars)
|
||||
|
||||
for ((parVars.count[0] + parVars.count[1]) < parVars.total) &&
|
||||
(parVars.count[0] < (parVars.total - parVars.minFill)) &&
|
||||
(parVars.count[1] < (parVars.total - parVars.minFill)) {
|
||||
biggestDiff = -1
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if d2notTaken == parVars.partition[index] {
|
||||
if d3notTaken == parVars.partition[index] {
|
||||
curRect := &parVars.branchBuf[index].rect
|
||||
rect0 := d2combineRect(curRect, &parVars.cover[0])
|
||||
rect1 := d2combineRect(curRect, &parVars.cover[1])
|
||||
growth0 := d2calcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := d2calcRectVolume(&rect1) - parVars.area[1]
|
||||
rect0 := d3combineRect(curRect, &parVars.cover[0])
|
||||
rect1 := d3combineRect(curRect, &parVars.cover[1])
|
||||
growth0 := d3calcRectVolume(&rect0) - parVars.area[0]
|
||||
growth1 := d3calcRectVolume(&rect1) - parVars.area[1]
|
||||
diff := growth1 - growth0
|
||||
if diff >= 0 {
|
||||
group = 0
|
||||
|
@ -457,7 +457,7 @@ func d2choosePartition(parVars *d2partitionVarsT, minFill int) {
|
|||
}
|
||||
}
|
||||
}
|
||||
d2classify(chosen, betterGroup, parVars)
|
||||
d3classify(chosen, betterGroup, parVars)
|
||||
}
|
||||
|
||||
// If one group too full, put remaining rects in the other
|
||||
|
@ -468,26 +468,26 @@ func d2choosePartition(parVars *d2partitionVarsT, minFill int) {
|
|||
group = 0
|
||||
}
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
if d2notTaken == parVars.partition[index] {
|
||||
d2classify(index, group, parVars)
|
||||
if d3notTaken == parVars.partition[index] {
|
||||
d3classify(index, group, parVars)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy branches from the buffer into two nodes according to the partition.
|
||||
func d2loadNodes(nodeA, nodeB *d2nodeT, parVars *d2partitionVarsT) {
|
||||
func d3loadNodes(nodeA, nodeB *d3nodeT, parVars *d3partitionVarsT) {
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
targetNodeIndex := parVars.partition[index]
|
||||
targetNodes := []*d2nodeT{nodeA, nodeB}
|
||||
targetNodes := []*d3nodeT{nodeA, nodeB}
|
||||
|
||||
// It is assured that d2addBranch here will not cause a node split.
|
||||
d2addBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
// It is assured that d3addBranch here will not cause a node split.
|
||||
d3addBranch(&parVars.branchBuf[index], targetNodes[targetNodeIndex], nil)
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize a d2partitionVarsT structure.
|
||||
func d2initParVars(parVars *d2partitionVarsT, maxRects, minFill int) {
|
||||
// Initialize a d3partitionVarsT structure.
|
||||
func d3initParVars(parVars *d3partitionVarsT, maxRects, minFill int) {
|
||||
parVars.count[0] = 0
|
||||
parVars.count[1] = 0
|
||||
parVars.area[0] = 0
|
||||
|
@ -495,24 +495,24 @@ func d2initParVars(parVars *d2partitionVarsT, maxRects, minFill int) {
|
|||
parVars.total = maxRects
|
||||
parVars.minFill = minFill
|
||||
for index := 0; index < maxRects; index++ {
|
||||
parVars.partition[index] = d2notTaken
|
||||
parVars.partition[index] = d3notTaken
|
||||
}
|
||||
}
|
||||
|
||||
func d2pickSeeds(parVars *d2partitionVarsT) {
|
||||
func d3pickSeeds(parVars *d3partitionVarsT) {
|
||||
var seed0, seed1 int
|
||||
var worst, waste float64
|
||||
var area [d2maxNodes + 1]float64
|
||||
var area [d3maxNodes + 1]float64
|
||||
|
||||
for index := 0; index < parVars.total; index++ {
|
||||
area[index] = d2calcRectVolume(&parVars.branchBuf[index].rect)
|
||||
area[index] = d3calcRectVolume(&parVars.branchBuf[index].rect)
|
||||
}
|
||||
|
||||
worst = -parVars.coverSplitArea - 1
|
||||
for indexA := 0; indexA < parVars.total-1; indexA++ {
|
||||
for indexB := indexA + 1; indexB < parVars.total; indexB++ {
|
||||
oneRect := d2combineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = d2calcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
oneRect := d3combineRect(&parVars.branchBuf[indexA].rect, &parVars.branchBuf[indexB].rect)
|
||||
waste = d3calcRectVolume(&oneRect) - area[indexA] - area[indexB]
|
||||
if waste > worst {
|
||||
worst = waste
|
||||
seed0 = indexA
|
||||
|
@ -521,35 +521,35 @@ func d2pickSeeds(parVars *d2partitionVarsT) {
|
|||
}
|
||||
}
|
||||
|
||||
d2classify(seed0, 0, parVars)
|
||||
d2classify(seed1, 1, parVars)
|
||||
d3classify(seed0, 0, parVars)
|
||||
d3classify(seed1, 1, parVars)
|
||||
}
|
||||
|
||||
// Put a branch in one of the groups.
|
||||
func d2classify(index, group int, parVars *d2partitionVarsT) {
|
||||
func d3classify(index, group int, parVars *d3partitionVarsT) {
|
||||
parVars.partition[index] = group
|
||||
|
||||
// Calculate combined rect
|
||||
if parVars.count[group] == 0 {
|
||||
parVars.cover[group] = parVars.branchBuf[index].rect
|
||||
} else {
|
||||
parVars.cover[group] = d2combineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
parVars.cover[group] = d3combineRect(&parVars.branchBuf[index].rect, &parVars.cover[group])
|
||||
}
|
||||
|
||||
// Calculate volume of combined rect
|
||||
parVars.area[group] = d2calcRectVolume(&parVars.cover[group])
|
||||
parVars.area[group] = d3calcRectVolume(&parVars.cover[group])
|
||||
|
||||
parVars.count[group]++
|
||||
}
|
||||
|
||||
// Delete a data rectangle from an index structure.
|
||||
// Pass in a pointer to a d2rectT, the tid of the record, ptr to ptr to root node.
|
||||
// Pass in a pointer to a d3rectT, the tid of the record, ptr to ptr to root node.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
// d2removeRect provides for eliminating the root.
|
||||
func d2removeRect(rect *d2rectT, id interface{}, root **d2nodeT) bool {
|
||||
var reInsertList *d2listNodeT
|
||||
// d3removeRect provides for eliminating the root.
|
||||
func d3removeRect(rect *d3rectT, id interface{}, root **d3nodeT) bool {
|
||||
var reInsertList *d3listNodeT
|
||||
|
||||
if !d2removeRectRec(rect, id, *root, &reInsertList) {
|
||||
if !d3removeRectRec(rect, id, *root, &reInsertList) {
|
||||
// Found and deleted a data item
|
||||
// Reinsert any branches from eliminated nodes
|
||||
for reInsertList != nil {
|
||||
|
@ -557,7 +557,7 @@ func d2removeRect(rect *d2rectT, id interface{}, root **d2nodeT) bool {
|
|||
|
||||
for index := 0; index < tempNode.count; index++ {
|
||||
// TODO go over this code. should I use (tempNode->m_level - 1)?
|
||||
d2insertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
d3insertRect(&tempNode.branch[index], root, tempNode.level)
|
||||
}
|
||||
reInsertList = reInsertList.next
|
||||
}
|
||||
|
@ -575,21 +575,21 @@ func d2removeRect(rect *d2rectT, id interface{}, root **d2nodeT) bool {
|
|||
}
|
||||
|
||||
// Delete a rectangle from non-root part of an index structure.
|
||||
// Called by d2removeRect. Descends tree recursively,
|
||||
// Called by d3removeRect. Descends tree recursively,
|
||||
// merges branches on the way back up.
|
||||
// Returns 1 if record not found, 0 if success.
|
||||
func d2removeRectRec(rect *d2rectT, id interface{}, node *d2nodeT, listNode **d2listNodeT) bool {
|
||||
func d3removeRectRec(rect *d3rectT, id interface{}, node *d3nodeT, listNode **d3listNodeT) bool {
|
||||
if node.isInternalNode() { // not a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if d2overlap(*rect, node.branch[index].rect) {
|
||||
if !d2removeRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= d2minNodes {
|
||||
if d3overlap(*rect, node.branch[index].rect) {
|
||||
if !d3removeRectRec(rect, id, node.branch[index].child, listNode) {
|
||||
if node.branch[index].child.count >= d3minNodes {
|
||||
// child removed, just resize parent rect
|
||||
node.branch[index].rect = d2nodeCover(node.branch[index].child)
|
||||
node.branch[index].rect = d3nodeCover(node.branch[index].child)
|
||||
} else {
|
||||
// child removed, not enough entries in node, eliminate node
|
||||
d2reInsert(node.branch[index].child, listNode)
|
||||
d2disconnectBranch(node, index) // Must return after this call as count has changed
|
||||
d3reInsert(node.branch[index].child, listNode)
|
||||
d3disconnectBranch(node, index) // Must return after this call as count has changed
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
@ -599,7 +599,7 @@ func d2removeRectRec(rect *d2rectT, id interface{}, node *d2nodeT, listNode **d2
|
|||
} else { // A leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if node.branch[index].data == id {
|
||||
d2disconnectBranch(node, index) // Must return after this call as count has changed
|
||||
d3disconnectBranch(node, index) // Must return after this call as count has changed
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
@ -607,9 +607,9 @@ func d2removeRectRec(rect *d2rectT, id interface{}, node *d2nodeT, listNode **d2
|
|||
}
|
||||
}
|
||||
|
||||
// Decide whether two rectangles d2overlap.
|
||||
func d2overlap(rectA, rectB d2rectT) bool {
|
||||
for index := 0; index < d2numDims; index++ {
|
||||
// Decide whether two rectangles d3overlap.
|
||||
func d3overlap(rectA, rectB d3rectT) bool {
|
||||
for index := 0; index < d3numDims; index++ {
|
||||
if rectA.min[index] > rectB.max[index] ||
|
||||
rectB.min[index] > rectA.max[index] {
|
||||
return false
|
||||
|
@ -620,21 +620,21 @@ func d2overlap(rectA, rectB d2rectT) bool {
|
|||
|
||||
// Add a node to the reinsertion list. All its branches will later
|
||||
// be reinserted into the index structure.
|
||||
func d2reInsert(node *d2nodeT, listNode **d2listNodeT) {
|
||||
newListNode := &d2listNodeT{}
|
||||
func d3reInsert(node *d3nodeT, listNode **d3listNodeT) {
|
||||
newListNode := &d3listNodeT{}
|
||||
newListNode.node = node
|
||||
newListNode.next = *listNode
|
||||
*listNode = newListNode
|
||||
}
|
||||
|
||||
// d2search in an index tree or subtree for all data retangles that d2overlap the argument rectangle.
|
||||
func d2search(node *d2nodeT, rect d2rectT, foundCount int, resultCallback func(data interface{}) bool) (int, bool) {
|
||||
// d3search in an index tree or subtree for all data retangles that d3overlap the argument rectangle.
|
||||
func d3search(node *d3nodeT, rect d3rectT, foundCount int, resultCallback func(data interface{}) bool) (int, bool) {
|
||||
if node.isInternalNode() {
|
||||
// This is an internal node in the tree
|
||||
for index := 0; index < node.count; index++ {
|
||||
if d2overlap(rect, node.branch[index].rect) {
|
||||
if d3overlap(rect, node.branch[index].rect) {
|
||||
var ok bool
|
||||
foundCount, ok = d2search(node.branch[index].child, rect, foundCount, resultCallback)
|
||||
foundCount, ok = d3search(node.branch[index].child, rect, foundCount, resultCallback)
|
||||
if !ok {
|
||||
// The callback indicated to stop searching
|
||||
return foundCount, false
|
||||
|
@ -644,7 +644,7 @@ func d2search(node *d2nodeT, rect d2rectT, foundCount int, resultCallback func(d
|
|||
} else {
|
||||
// This is a leaf node
|
||||
for index := 0; index < node.count; index++ {
|
||||
if d2overlap(rect, node.branch[index].rect) {
|
||||
if d3overlap(rect, node.branch[index].rect) {
|
||||
id := node.branch[index].data
|
||||
foundCount++
|
||||
if !resultCallback(id) {
|
||||
|
|
Loading…
Reference in New Issue