tile38/vendor/github.com/yuin/gopher-lua/compile.go

1656 lines
44 KiB
Go
Raw Normal View History

2017-10-05 18:20:40 +03:00
package lua
import (
"fmt"
"github.com/yuin/gopher-lua/ast"
"math"
"reflect"
)
/* internal constants & structs {{{ */
const maxRegisters = 200
type expContextType int
const (
ecGlobal expContextType = iota
ecUpvalue
ecLocal
ecTable
ecVararg
ecMethod
ecNone
)
const regNotDefined = opMaxArgsA + 1
const labelNoJump = 0
type expcontext struct {
ctype expContextType
reg int
// varargopt >= 0: wants varargopt+1 results, i.e a = func()
// varargopt = -1: ignore results i.e func()
// varargopt = -2: receive all results i.e a = {func()}
varargopt int
}
type assigncontext struct {
ec *expcontext
keyrk int
valuerk int
keyks bool
needmove bool
}
type lblabels struct {
t int
f int
e int
b bool
}
type constLValueExpr struct {
ast.ExprBase
Value LValue
}
// }}}
/* utilities {{{ */
var _ecnone0 = &expcontext{ecNone, regNotDefined, 0}
var _ecnonem1 = &expcontext{ecNone, regNotDefined, -1}
var _ecnonem2 = &expcontext{ecNone, regNotDefined, -2}
var ecfuncdef = &expcontext{ecMethod, regNotDefined, 0}
func ecupdate(ec *expcontext, ctype expContextType, reg, varargopt int) {
ec.ctype = ctype
ec.reg = reg
ec.varargopt = varargopt
}
func ecnone(varargopt int) *expcontext {
switch varargopt {
case 0:
return _ecnone0
case -1:
return _ecnonem1
case -2:
return _ecnonem2
}
return &expcontext{ecNone, regNotDefined, varargopt}
}
func sline(pos ast.PositionHolder) int {
return pos.Line()
}
func eline(pos ast.PositionHolder) int {
return pos.LastLine()
}
func savereg(ec *expcontext, reg int) int {
if ec.ctype != ecLocal || ec.reg == regNotDefined {
return reg
}
return ec.reg
}
func raiseCompileError(context *funcContext, line int, format string, args ...interface{}) {
msg := fmt.Sprintf(format, args...)
panic(&CompileError{context: context, Line: line, Message: msg})
}
func isVarArgReturnExpr(expr ast.Expr) bool {
switch ex := expr.(type) {
case *ast.FuncCallExpr:
return !ex.AdjustRet
case *ast.Comma3Expr:
return true
}
return false
}
func lnumberValue(expr ast.Expr) (LNumber, bool) {
if ex, ok := expr.(*ast.NumberExpr); ok {
lv, err := parseNumber(ex.Value)
if err != nil {
lv = LNumber(math.NaN())
}
return lv, true
} else if ex, ok := expr.(*constLValueExpr); ok {
return ex.Value.(LNumber), true
}
return 0, false
}
/* utilities }}} */
type CompileError struct { // {{{
context *funcContext
Line int
Message string
}
func (e *CompileError) Error() string {
return fmt.Sprintf("compile error near line(%v) %v: %v", e.Line, e.context.Proto.SourceName, e.Message)
} // }}}
type codeStore struct { // {{{
codes []uint32
lines []int
pc int
}
func (cd *codeStore) Add(inst uint32, line int) {
if l := len(cd.codes); l <= 0 || cd.pc == l {
cd.codes = append(cd.codes, inst)
cd.lines = append(cd.lines, line)
} else {
cd.codes[cd.pc] = inst
cd.lines[cd.pc] = line
}
cd.pc++
}
func (cd *codeStore) AddABC(op int, a int, b int, c int, line int) {
cd.Add(opCreateABC(op, a, b, c), line)
}
func (cd *codeStore) AddABx(op int, a int, bx int, line int) {
cd.Add(opCreateABx(op, a, bx), line)
}
func (cd *codeStore) AddASbx(op int, a int, sbx int, line int) {
cd.Add(opCreateASbx(op, a, sbx), line)
}
func (cd *codeStore) PropagateKMV(top int, save *int, reg *int, inc int) {
lastinst := cd.Last()
if opGetArgA(lastinst) >= top {
switch opGetOpCode(lastinst) {
case OP_LOADK:
cindex := opGetArgBx(lastinst)
if cindex <= opMaxIndexRk {
cd.Pop()
*save = opRkAsk(cindex)
return
}
case OP_MOVE:
cd.Pop()
*save = opGetArgB(lastinst)
return
}
}
*save = *reg
*reg = *reg + inc
}
func (cd *codeStore) PropagateMV(top int, save *int, reg *int, inc int) {
lastinst := cd.Last()
if opGetArgA(lastinst) >= top {
switch opGetOpCode(lastinst) {
case OP_MOVE:
cd.Pop()
*save = opGetArgB(lastinst)
return
}
}
*save = *reg
*reg = *reg + inc
}
func (cd *codeStore) SetOpCode(pc int, v int) {
opSetOpCode(&cd.codes[pc], v)
}
func (cd *codeStore) SetA(pc int, v int) {
opSetArgA(&cd.codes[pc], v)
}
func (cd *codeStore) SetB(pc int, v int) {
opSetArgB(&cd.codes[pc], v)
}
func (cd *codeStore) SetC(pc int, v int) {
opSetArgC(&cd.codes[pc], v)
}
func (cd *codeStore) SetBx(pc int, v int) {
opSetArgBx(&cd.codes[pc], v)
}
func (cd *codeStore) SetSbx(pc int, v int) {
opSetArgSbx(&cd.codes[pc], v)
}
func (cd *codeStore) At(pc int) uint32 {
return cd.codes[pc]
}
func (cd *codeStore) List() []uint32 {
return cd.codes[:cd.pc]
}
func (cd *codeStore) PosList() []int {
return cd.lines[:cd.pc]
}
func (cd *codeStore) LastPC() int {
return cd.pc - 1
}
func (cd *codeStore) Last() uint32 {
if cd.pc == 0 {
return opInvalidInstruction
}
return cd.codes[cd.pc-1]
}
func (cd *codeStore) Pop() {
cd.pc--
} /* }}} Code */
/* {{{ VarNamePool */
type varNamePoolValue struct {
Index int
Name string
}
type varNamePool struct {
names []string
offset int
}
func newVarNamePool(offset int) *varNamePool {
return &varNamePool{make([]string, 0, 16), offset}
}
func (vp *varNamePool) Names() []string {
return vp.names
}
func (vp *varNamePool) List() []varNamePoolValue {
result := make([]varNamePoolValue, len(vp.names), len(vp.names))
for i, name := range vp.names {
result[i].Index = i + vp.offset
result[i].Name = name
}
return result
}
func (vp *varNamePool) LastIndex() int {
return vp.offset + len(vp.names)
}
func (vp *varNamePool) Find(name string) int {
for i := len(vp.names) - 1; i >= 0; i-- {
if vp.names[i] == name {
return i + vp.offset
}
}
return -1
}
func (vp *varNamePool) RegisterUnique(name string) int {
index := vp.Find(name)
if index < 0 {
return vp.Register(name)
}
return index
}
func (vp *varNamePool) Register(name string) int {
vp.names = append(vp.names, name)
return len(vp.names) - 1 + vp.offset
}
/* }}} VarNamePool */
/* FuncContext {{{ */
type codeBlock struct {
LocalVars *varNamePool
BreakLabel int
Parent *codeBlock
RefUpvalue bool
LineStart int
LastLine int
}
func newCodeBlock(localvars *varNamePool, blabel int, parent *codeBlock, pos ast.PositionHolder) *codeBlock {
bl := &codeBlock{localvars, blabel, parent, false, 0, 0}
if pos != nil {
bl.LineStart = pos.Line()
bl.LastLine = pos.LastLine()
}
return bl
}
type funcContext struct {
Proto *FunctionProto
Code *codeStore
Parent *funcContext
Upvalues *varNamePool
Block *codeBlock
Blocks []*codeBlock
regTop int
labelId int
labelPc map[int]int
}
func newFuncContext(sourcename string, parent *funcContext) *funcContext {
fc := &funcContext{
Proto: newFunctionProto(sourcename),
Code: &codeStore{make([]uint32, 0, 1024), make([]int, 0, 1024), 0},
Parent: parent,
Upvalues: newVarNamePool(0),
Block: newCodeBlock(newVarNamePool(0), labelNoJump, nil, nil),
regTop: 0,
labelId: 1,
labelPc: map[int]int{},
}
fc.Blocks = []*codeBlock{fc.Block}
return fc
}
func (fc *funcContext) NewLabel() int {
ret := fc.labelId
fc.labelId++
return ret
}
func (fc *funcContext) SetLabelPc(label int, pc int) {
fc.labelPc[label] = pc
}
func (fc *funcContext) GetLabelPc(label int) int {
return fc.labelPc[label]
}
func (fc *funcContext) ConstIndex(value LValue) int {
ctype := value.Type()
for i, lv := range fc.Proto.Constants {
if lv.Type() == ctype && lv == value {
return i
}
}
fc.Proto.Constants = append(fc.Proto.Constants, value)
v := len(fc.Proto.Constants) - 1
if v > opMaxArgBx {
raiseCompileError(fc, fc.Proto.LineDefined, "too many constants")
}
return v
}
func (fc *funcContext) RegisterLocalVar(name string) int {
ret := fc.Block.LocalVars.Register(name)
fc.Proto.DbgLocals = append(fc.Proto.DbgLocals, &DbgLocalInfo{Name: name, StartPc: fc.Code.LastPC() + 1})
fc.SetRegTop(fc.RegTop() + 1)
return ret
}
func (fc *funcContext) FindLocalVarAndBlock(name string) (int, *codeBlock) {
for block := fc.Block; block != nil; block = block.Parent {
if index := block.LocalVars.Find(name); index > -1 {
return index, block
}
}
return -1, nil
}
func (fc *funcContext) FindLocalVar(name string) int {
idx, _ := fc.FindLocalVarAndBlock(name)
return idx
}
func (fc *funcContext) LocalVars() []varNamePoolValue {
result := make([]varNamePoolValue, 0, 32)
for _, block := range fc.Blocks {
result = append(result, block.LocalVars.List()...)
}
return result
}
func (fc *funcContext) EnterBlock(blabel int, pos ast.PositionHolder) {
fc.Block = newCodeBlock(newVarNamePool(fc.RegTop()), blabel, fc.Block, pos)
fc.Blocks = append(fc.Blocks, fc.Block)
}
func (fc *funcContext) CloseUpvalues() int {
n := -1
if fc.Block.RefUpvalue {
n = fc.Block.Parent.LocalVars.LastIndex()
fc.Code.AddABC(OP_CLOSE, n, 0, 0, fc.Block.LastLine)
}
return n
}
func (fc *funcContext) LeaveBlock() int {
closed := fc.CloseUpvalues()
fc.EndScope()
fc.Block = fc.Block.Parent
fc.SetRegTop(fc.Block.LocalVars.LastIndex())
return closed
}
func (fc *funcContext) EndScope() {
for _, vr := range fc.Block.LocalVars.List() {
fc.Proto.DbgLocals[vr.Index].EndPc = fc.Code.LastPC()
}
}
func (fc *funcContext) SetRegTop(top int) {
if top > maxRegisters {
raiseCompileError(fc, fc.Proto.LineDefined, "too many local variables")
}
fc.regTop = top
}
func (fc *funcContext) RegTop() int {
return fc.regTop
}
/* FuncContext }}} */
func compileChunk(context *funcContext, chunk []ast.Stmt) { // {{{
for _, stmt := range chunk {
compileStmt(context, stmt)
}
} // }}}
func compileBlock(context *funcContext, chunk []ast.Stmt) { // {{{
if len(chunk) == 0 {
return
}
ph := &ast.Node{}
ph.SetLine(sline(chunk[0]))
ph.SetLastLine(eline(chunk[len(chunk)-1]))
context.EnterBlock(labelNoJump, ph)
for _, stmt := range chunk {
compileStmt(context, stmt)
}
context.LeaveBlock()
} // }}}
func compileStmt(context *funcContext, stmt ast.Stmt) { // {{{
switch st := stmt.(type) {
case *ast.AssignStmt:
compileAssignStmt(context, st)
case *ast.LocalAssignStmt:
compileLocalAssignStmt(context, st)
case *ast.FuncCallStmt:
compileFuncCallExpr(context, context.RegTop(), st.Expr.(*ast.FuncCallExpr), ecnone(-1))
case *ast.DoBlockStmt:
context.EnterBlock(labelNoJump, st)
compileChunk(context, st.Stmts)
context.LeaveBlock()
case *ast.WhileStmt:
compileWhileStmt(context, st)
case *ast.RepeatStmt:
compileRepeatStmt(context, st)
case *ast.FuncDefStmt:
compileFuncDefStmt(context, st)
case *ast.ReturnStmt:
compileReturnStmt(context, st)
case *ast.IfStmt:
compileIfStmt(context, st)
case *ast.BreakStmt:
compileBreakStmt(context, st)
case *ast.NumberForStmt:
compileNumberForStmt(context, st)
case *ast.GenericForStmt:
compileGenericForStmt(context, st)
}
} // }}}
func compileAssignStmtLeft(context *funcContext, stmt *ast.AssignStmt) (int, []*assigncontext) { // {{{
reg := context.RegTop()
acs := make([]*assigncontext, 0, len(stmt.Lhs))
for i, lhs := range stmt.Lhs {
islast := i == len(stmt.Lhs)-1
switch st := lhs.(type) {
case *ast.IdentExpr:
identtype := getIdentRefType(context, context, st)
ec := &expcontext{identtype, regNotDefined, 0}
switch identtype {
case ecGlobal:
context.ConstIndex(LString(st.Value))
case ecUpvalue:
context.Upvalues.RegisterUnique(st.Value)
case ecLocal:
if islast {
ec.reg = context.FindLocalVar(st.Value)
}
}
acs = append(acs, &assigncontext{ec, 0, 0, false, false})
case *ast.AttrGetExpr:
ac := &assigncontext{&expcontext{ecTable, regNotDefined, 0}, 0, 0, false, false}
compileExprWithKMVPropagation(context, st.Object, &reg, &ac.ec.reg)
compileExprWithKMVPropagation(context, st.Key, &reg, &ac.keyrk)
if _, ok := st.Key.(*ast.StringExpr); ok {
ac.keyks = true
}
acs = append(acs, ac)
default:
panic("invalid left expression.")
}
}
return reg, acs
} // }}}
func compileAssignStmtRight(context *funcContext, stmt *ast.AssignStmt, reg int, acs []*assigncontext) (int, []*assigncontext) { // {{{
lennames := len(stmt.Lhs)
lenexprs := len(stmt.Rhs)
namesassigned := 0
for namesassigned < lennames {
ac := acs[namesassigned]
ec := ac.ec
var expr ast.Expr = nil
if namesassigned >= lenexprs {
expr = &ast.NilExpr{}
expr.SetLine(sline(stmt.Lhs[namesassigned]))
expr.SetLastLine(eline(stmt.Lhs[namesassigned]))
} else if isVarArgReturnExpr(stmt.Rhs[namesassigned]) && (lenexprs-namesassigned-1) <= 0 {
varargopt := lennames - namesassigned - 1
regstart := reg
reginc := compileExpr(context, reg, stmt.Rhs[namesassigned], ecnone(varargopt))
reg += reginc
for i := namesassigned; i < namesassigned+int(reginc); i++ {
acs[i].needmove = true
if acs[i].ec.ctype == ecTable {
acs[i].valuerk = regstart + (i - namesassigned)
}
}
namesassigned = lennames
continue
}
if expr == nil {
expr = stmt.Rhs[namesassigned]
}
idx := reg
reginc := compileExpr(context, reg, expr, ec)
if ec.ctype == ecTable {
if _, ok := expr.(*ast.LogicalOpExpr); !ok {
context.Code.PropagateKMV(context.RegTop(), &ac.valuerk, &reg, reginc)
} else {
ac.valuerk = idx
reg += reginc
}
} else {
ac.needmove = reginc != 0
reg += reginc
}
namesassigned += 1
}
rightreg := reg - 1
// extra right exprs
for i := namesassigned; i < lenexprs; i++ {
varargopt := -1
if i != lenexprs-1 {
varargopt = 0
}
reg += compileExpr(context, reg, stmt.Rhs[i], ecnone(varargopt))
}
return rightreg, acs
} // }}}
func compileAssignStmt(context *funcContext, stmt *ast.AssignStmt) { // {{{
code := context.Code
lennames := len(stmt.Lhs)
reg, acs := compileAssignStmtLeft(context, stmt)
reg, acs = compileAssignStmtRight(context, stmt, reg, acs)
for i := lennames - 1; i >= 0; i-- {
ex := stmt.Lhs[i]
switch acs[i].ec.ctype {
case ecLocal:
if acs[i].needmove {
code.AddABC(OP_MOVE, context.FindLocalVar(ex.(*ast.IdentExpr).Value), reg, 0, sline(ex))
reg -= 1
}
case ecGlobal:
code.AddABx(OP_SETGLOBAL, reg, context.ConstIndex(LString(ex.(*ast.IdentExpr).Value)), sline(ex))
reg -= 1
case ecUpvalue:
code.AddABC(OP_SETUPVAL, reg, context.Upvalues.RegisterUnique(ex.(*ast.IdentExpr).Value), 0, sline(ex))
reg -= 1
case ecTable:
opcode := OP_SETTABLE
if acs[i].keyks {
opcode = OP_SETTABLEKS
}
code.AddABC(opcode, acs[i].ec.reg, acs[i].keyrk, acs[i].valuerk, sline(ex))
if !opIsK(acs[i].valuerk) {
reg -= 1
}
}
}
} // }}}
func compileRegAssignment(context *funcContext, names []string, exprs []ast.Expr, reg int, nvars int, line int) { // {{{
lennames := len(names)
lenexprs := len(exprs)
namesassigned := 0
ec := &expcontext{}
for namesassigned < lennames && namesassigned < lenexprs {
if isVarArgReturnExpr(exprs[namesassigned]) && (lenexprs-namesassigned-1) <= 0 {
varargopt := nvars - namesassigned
ecupdate(ec, ecVararg, reg, varargopt-1)
compileExpr(context, reg, exprs[namesassigned], ec)
reg += varargopt
namesassigned = lennames
} else {
ecupdate(ec, ecLocal, reg, 0)
compileExpr(context, reg, exprs[namesassigned], ec)
reg += 1
namesassigned += 1
}
}
// extra left names
if lennames > namesassigned {
restleft := lennames - namesassigned - 1
context.Code.AddABC(OP_LOADNIL, reg, reg+restleft, 0, line)
reg += restleft
}
// extra right exprs
for i := namesassigned; i < lenexprs; i++ {
varargopt := -1
if i != lenexprs-1 {
varargopt = 0
}
ecupdate(ec, ecNone, reg, varargopt)
reg += compileExpr(context, reg, exprs[i], ec)
}
} // }}}
func compileLocalAssignStmt(context *funcContext, stmt *ast.LocalAssignStmt) { // {{{
reg := context.RegTop()
if len(stmt.Names) == 1 && len(stmt.Exprs) == 1 {
if _, ok := stmt.Exprs[0].(*ast.FunctionExpr); ok {
context.RegisterLocalVar(stmt.Names[0])
compileRegAssignment(context, stmt.Names, stmt.Exprs, reg, len(stmt.Names), sline(stmt))
return
}
}
compileRegAssignment(context, stmt.Names, stmt.Exprs, reg, len(stmt.Names), sline(stmt))
for _, name := range stmt.Names {
context.RegisterLocalVar(name)
}
} // }}}
func compileReturnStmt(context *funcContext, stmt *ast.ReturnStmt) { // {{{
lenexprs := len(stmt.Exprs)
code := context.Code
reg := context.RegTop()
a := reg
lastisvaarg := false
if lenexprs == 1 {
switch ex := stmt.Exprs[0].(type) {
case *ast.IdentExpr:
if idx := context.FindLocalVar(ex.Value); idx > -1 {
code.AddABC(OP_RETURN, idx, 2, 0, sline(stmt))
return
}
case *ast.FuncCallExpr:
reg += compileExpr(context, reg, ex, ecnone(-2))
code.SetOpCode(code.LastPC(), OP_TAILCALL)
code.AddABC(OP_RETURN, a, 0, 0, sline(stmt))
return
}
}
for i, expr := range stmt.Exprs {
if i == lenexprs-1 && isVarArgReturnExpr(expr) {
compileExpr(context, reg, expr, ecnone(-2))
lastisvaarg = true
} else {
reg += compileExpr(context, reg, expr, ecnone(0))
}
}
count := reg - a + 1
if lastisvaarg {
count = 0
}
context.Code.AddABC(OP_RETURN, a, count, 0, sline(stmt))
} // }}}
func compileIfStmt(context *funcContext, stmt *ast.IfStmt) { // {{{
thenlabel := context.NewLabel()
elselabel := context.NewLabel()
endlabel := context.NewLabel()
compileBranchCondition(context, context.RegTop(), stmt.Condition, thenlabel, elselabel, false)
context.SetLabelPc(thenlabel, context.Code.LastPC())
compileBlock(context, stmt.Then)
if len(stmt.Else) > 0 {
context.Code.AddASbx(OP_JMP, 0, endlabel, sline(stmt))
}
context.SetLabelPc(elselabel, context.Code.LastPC())
if len(stmt.Else) > 0 {
compileBlock(context, stmt.Else)
context.SetLabelPc(endlabel, context.Code.LastPC())
}
} // }}}
func compileBranchCondition(context *funcContext, reg int, expr ast.Expr, thenlabel, elselabel int, hasnextcond bool) { // {{{
// TODO folding constants?
code := context.Code
flip := 0
jumplabel := elselabel
if hasnextcond {
flip = 1
jumplabel = thenlabel
}
switch ex := expr.(type) {
case *ast.FalseExpr, *ast.NilExpr:
if !hasnextcond {
code.AddASbx(OP_JMP, 0, elselabel, sline(expr))
return
}
case *ast.TrueExpr, *ast.NumberExpr, *ast.StringExpr:
if !hasnextcond {
return
}
case *ast.UnaryNotOpExpr:
compileBranchCondition(context, reg, ex.Expr, elselabel, thenlabel, !hasnextcond)
return
case *ast.LogicalOpExpr:
switch ex.Operator {
case "and":
nextcondlabel := context.NewLabel()
compileBranchCondition(context, reg, ex.Lhs, nextcondlabel, elselabel, false)
context.SetLabelPc(nextcondlabel, context.Code.LastPC())
compileBranchCondition(context, reg, ex.Rhs, thenlabel, elselabel, hasnextcond)
case "or":
nextcondlabel := context.NewLabel()
compileBranchCondition(context, reg, ex.Lhs, thenlabel, nextcondlabel, true)
context.SetLabelPc(nextcondlabel, context.Code.LastPC())
compileBranchCondition(context, reg, ex.Rhs, thenlabel, elselabel, hasnextcond)
}
return
case *ast.RelationalOpExpr:
compileRelationalOpExprAux(context, reg, ex, flip, jumplabel)
return
}
a := reg
compileExprWithMVPropagation(context, expr, &reg, &a)
code.AddABC(OP_TEST, a, 0, 0^flip, sline(expr))
code.AddASbx(OP_JMP, 0, jumplabel, sline(expr))
} // }}}
func compileWhileStmt(context *funcContext, stmt *ast.WhileStmt) { // {{{
thenlabel := context.NewLabel()
elselabel := context.NewLabel()
condlabel := context.NewLabel()
context.SetLabelPc(condlabel, context.Code.LastPC())
compileBranchCondition(context, context.RegTop(), stmt.Condition, thenlabel, elselabel, false)
context.SetLabelPc(thenlabel, context.Code.LastPC())
context.EnterBlock(elselabel, stmt)
compileChunk(context, stmt.Stmts)
context.CloseUpvalues()
context.Code.AddASbx(OP_JMP, 0, condlabel, eline(stmt))
context.LeaveBlock()
context.SetLabelPc(elselabel, context.Code.LastPC())
} // }}}
func compileRepeatStmt(context *funcContext, stmt *ast.RepeatStmt) { // {{{
initlabel := context.NewLabel()
thenlabel := context.NewLabel()
elselabel := context.NewLabel()
context.SetLabelPc(initlabel, context.Code.LastPC())
context.SetLabelPc(elselabel, context.Code.LastPC())
context.EnterBlock(thenlabel, stmt)
compileChunk(context, stmt.Stmts)
compileBranchCondition(context, context.RegTop(), stmt.Condition, thenlabel, elselabel, false)
context.SetLabelPc(thenlabel, context.Code.LastPC())
n := context.LeaveBlock()
if n > -1 {
label := context.NewLabel()
context.Code.AddASbx(OP_JMP, 0, label, eline(stmt))
context.SetLabelPc(elselabel, context.Code.LastPC())
context.Code.AddABC(OP_CLOSE, n, 0, 0, eline(stmt))
context.Code.AddASbx(OP_JMP, 0, initlabel, eline(stmt))
context.SetLabelPc(label, context.Code.LastPC())
}
} // }}}
func compileBreakStmt(context *funcContext, stmt *ast.BreakStmt) { // {{{
for block := context.Block; block != nil; block = block.Parent {
if label := block.BreakLabel; label != labelNoJump {
if block.RefUpvalue {
context.Code.AddABC(OP_CLOSE, block.Parent.LocalVars.LastIndex(), 0, 0, sline(stmt))
}
context.Code.AddASbx(OP_JMP, 0, label, sline(stmt))
return
}
}
raiseCompileError(context, sline(stmt), "no loop to break")
} // }}}
func compileFuncDefStmt(context *funcContext, stmt *ast.FuncDefStmt) { // {{{
if stmt.Name.Func == nil {
reg := context.RegTop()
var treg, kreg int
compileExprWithKMVPropagation(context, stmt.Name.Receiver, &reg, &treg)
kreg = loadRk(context, &reg, stmt.Func, LString(stmt.Name.Method))
compileExpr(context, reg, stmt.Func, ecfuncdef)
context.Code.AddABC(OP_SETTABLE, treg, kreg, reg, sline(stmt.Name.Receiver))
} else {
astmt := &ast.AssignStmt{Lhs: []ast.Expr{stmt.Name.Func}, Rhs: []ast.Expr{stmt.Func}}
astmt.SetLine(sline(stmt.Func))
astmt.SetLastLine(eline(stmt.Func))
compileAssignStmt(context, astmt)
}
} // }}}
func compileNumberForStmt(context *funcContext, stmt *ast.NumberForStmt) { // {{{
code := context.Code
endlabel := context.NewLabel()
ec := &expcontext{}
context.EnterBlock(endlabel, stmt)
reg := context.RegTop()
rindex := context.RegisterLocalVar("(for index)")
ecupdate(ec, ecLocal, rindex, 0)
compileExpr(context, reg, stmt.Init, ec)
reg = context.RegTop()
rlimit := context.RegisterLocalVar("(for limit)")
ecupdate(ec, ecLocal, rlimit, 0)
compileExpr(context, reg, stmt.Limit, ec)
reg = context.RegTop()
rstep := context.RegisterLocalVar("(for step)")
if stmt.Step == nil {
stmt.Step = &ast.NumberExpr{Value: "1"}
stmt.Step.SetLine(sline(stmt.Init))
}
ecupdate(ec, ecLocal, rstep, 0)
compileExpr(context, reg, stmt.Step, ec)
code.AddASbx(OP_FORPREP, rindex, 0, sline(stmt))
context.RegisterLocalVar(stmt.Name)
bodypc := code.LastPC()
compileChunk(context, stmt.Stmts)
context.LeaveBlock()
flpc := code.LastPC()
code.AddASbx(OP_FORLOOP, rindex, bodypc-(flpc+1), sline(stmt))
context.SetLabelPc(endlabel, code.LastPC())
code.SetSbx(bodypc, flpc-bodypc)
} // }}}
func compileGenericForStmt(context *funcContext, stmt *ast.GenericForStmt) { // {{{
code := context.Code
endlabel := context.NewLabel()
bodylabel := context.NewLabel()
fllabel := context.NewLabel()
nnames := len(stmt.Names)
context.EnterBlock(endlabel, stmt)
rgen := context.RegisterLocalVar("(for generator)")
context.RegisterLocalVar("(for state)")
context.RegisterLocalVar("(for control)")
compileRegAssignment(context, stmt.Names, stmt.Exprs, context.RegTop()-3, 3, sline(stmt))
code.AddASbx(OP_JMP, 0, fllabel, sline(stmt))
for _, name := range stmt.Names {
context.RegisterLocalVar(name)
}
context.SetLabelPc(bodylabel, code.LastPC())
compileChunk(context, stmt.Stmts)
context.LeaveBlock()
context.SetLabelPc(fllabel, code.LastPC())
code.AddABC(OP_TFORLOOP, rgen, 0, nnames, sline(stmt))
code.AddASbx(OP_JMP, 0, bodylabel, sline(stmt))
context.SetLabelPc(endlabel, code.LastPC())
} // }}}
func compileExpr(context *funcContext, reg int, expr ast.Expr, ec *expcontext) int { // {{{
code := context.Code
sreg := savereg(ec, reg)
sused := 1
if sreg < reg {
sused = 0
}
switch ex := expr.(type) {
case *ast.StringExpr:
code.AddABx(OP_LOADK, sreg, context.ConstIndex(LString(ex.Value)), sline(ex))
return sused
case *ast.NumberExpr:
num, err := parseNumber(ex.Value)
if err != nil {
num = LNumber(math.NaN())
}
code.AddABx(OP_LOADK, sreg, context.ConstIndex(num), sline(ex))
return sused
case *constLValueExpr:
code.AddABx(OP_LOADK, sreg, context.ConstIndex(ex.Value), sline(ex))
return sused
case *ast.NilExpr:
code.AddABC(OP_LOADNIL, sreg, sreg, 0, sline(ex))
return sused
case *ast.FalseExpr:
code.AddABC(OP_LOADBOOL, sreg, 0, 0, sline(ex))
return sused
case *ast.TrueExpr:
code.AddABC(OP_LOADBOOL, sreg, 1, 0, sline(ex))
return sused
case *ast.IdentExpr:
switch getIdentRefType(context, context, ex) {
case ecGlobal:
code.AddABx(OP_GETGLOBAL, sreg, context.ConstIndex(LString(ex.Value)), sline(ex))
case ecUpvalue:
code.AddABC(OP_GETUPVAL, sreg, context.Upvalues.RegisterUnique(ex.Value), 0, sline(ex))
case ecLocal:
b := context.FindLocalVar(ex.Value)
code.AddABC(OP_MOVE, sreg, b, 0, sline(ex))
}
return sused
case *ast.Comma3Expr:
if context.Proto.IsVarArg == 0 {
raiseCompileError(context, sline(ex), "cannot use '...' outside a vararg function")
}
context.Proto.IsVarArg &= ^VarArgNeedsArg
code.AddABC(OP_VARARG, sreg, 2+ec.varargopt, 0, sline(ex))
if context.RegTop() > (sreg+2+ec.varargopt) || ec.varargopt < -1 {
return 0
}
return (sreg + 1 + ec.varargopt) - reg
case *ast.AttrGetExpr:
a := sreg
b := reg
compileExprWithMVPropagation(context, ex.Object, &reg, &b)
c := reg
compileExprWithKMVPropagation(context, ex.Key, &reg, &c)
opcode := OP_GETTABLE
if _, ok := ex.Key.(*ast.StringExpr); ok {
opcode = OP_GETTABLEKS
}
code.AddABC(opcode, a, b, c, sline(ex))
return sused
case *ast.TableExpr:
compileTableExpr(context, reg, ex, ec)
return 1
case *ast.ArithmeticOpExpr:
compileArithmeticOpExpr(context, reg, ex, ec)
return sused
case *ast.StringConcatOpExpr:
compileStringConcatOpExpr(context, reg, ex, ec)
return sused
case *ast.UnaryMinusOpExpr, *ast.UnaryNotOpExpr, *ast.UnaryLenOpExpr:
compileUnaryOpExpr(context, reg, ex, ec)
return sused
case *ast.RelationalOpExpr:
compileRelationalOpExpr(context, reg, ex, ec)
return sused
case *ast.LogicalOpExpr:
compileLogicalOpExpr(context, reg, ex, ec)
return sused
case *ast.FuncCallExpr:
return compileFuncCallExpr(context, reg, ex, ec)
case *ast.FunctionExpr:
childcontext := newFuncContext(context.Proto.SourceName, context)
compileFunctionExpr(childcontext, ex, ec)
protono := len(context.Proto.FunctionPrototypes)
context.Proto.FunctionPrototypes = append(context.Proto.FunctionPrototypes, childcontext.Proto)
code.AddABx(OP_CLOSURE, sreg, protono, sline(ex))
for _, upvalue := range childcontext.Upvalues.List() {
localidx, block := context.FindLocalVarAndBlock(upvalue.Name)
if localidx > -1 {
code.AddABC(OP_MOVE, 0, localidx, 0, sline(ex))
block.RefUpvalue = true
} else {
upvalueidx := context.Upvalues.Find(upvalue.Name)
if upvalueidx < 0 {
upvalueidx = context.Upvalues.RegisterUnique(upvalue.Name)
}
code.AddABC(OP_GETUPVAL, 0, upvalueidx, 0, sline(ex))
}
}
return sused
default:
panic(fmt.Sprintf("expr %v not implemented.", reflect.TypeOf(ex).Elem().Name()))
}
panic("should not reach here")
return sused
} // }}}
func compileExprWithPropagation(context *funcContext, expr ast.Expr, reg *int, save *int, propergator func(int, *int, *int, int)) { // {{{
reginc := compileExpr(context, *reg, expr, ecnone(0))
if _, ok := expr.(*ast.LogicalOpExpr); ok {
*save = *reg
*reg = *reg + reginc
} else {
propergator(context.RegTop(), save, reg, reginc)
}
} // }}}
func compileExprWithKMVPropagation(context *funcContext, expr ast.Expr, reg *int, save *int) { // {{{
compileExprWithPropagation(context, expr, reg, save, context.Code.PropagateKMV)
} // }}}
func compileExprWithMVPropagation(context *funcContext, expr ast.Expr, reg *int, save *int) { // {{{
compileExprWithPropagation(context, expr, reg, save, context.Code.PropagateMV)
} // }}}
func constFold(exp ast.Expr) ast.Expr { // {{{
switch expr := exp.(type) {
case *ast.ArithmeticOpExpr:
lvalue, lisconst := lnumberValue(expr.Lhs)
rvalue, risconst := lnumberValue(expr.Rhs)
if lisconst && risconst {
switch expr.Operator {
case "+":
return &constLValueExpr{Value: lvalue + rvalue}
case "-":
return &constLValueExpr{Value: lvalue - rvalue}
case "*":
return &constLValueExpr{Value: lvalue * rvalue}
case "/":
return &constLValueExpr{Value: lvalue / rvalue}
case "%":
return &constLValueExpr{Value: luaModulo(lvalue, rvalue)}
case "^":
return &constLValueExpr{Value: LNumber(math.Pow(float64(lvalue), float64(rvalue)))}
default:
panic(fmt.Sprintf("unknown binop: %v", expr.Operator))
}
} else {
retexpr := *expr
retexpr.Lhs = constFold(expr.Lhs)
retexpr.Rhs = constFold(expr.Rhs)
return &retexpr
}
case *ast.UnaryMinusOpExpr:
expr.Expr = constFold(expr.Expr)
if value, ok := lnumberValue(expr.Expr); ok {
return &constLValueExpr{Value: LNumber(-value)}
}
return expr
default:
return exp
}
return exp
} // }}}
func compileFunctionExpr(context *funcContext, funcexpr *ast.FunctionExpr, ec *expcontext) { // {{{
context.Proto.LineDefined = sline(funcexpr)
context.Proto.LastLineDefined = eline(funcexpr)
if len(funcexpr.ParList.Names) > maxRegisters {
raiseCompileError(context, context.Proto.LineDefined, "register overflow")
}
context.Proto.NumParameters = uint8(len(funcexpr.ParList.Names))
if ec.ctype == ecMethod {
context.Proto.NumParameters += 1
context.RegisterLocalVar("self")
}
for _, name := range funcexpr.ParList.Names {
context.RegisterLocalVar(name)
}
if funcexpr.ParList.HasVargs {
if CompatVarArg {
context.Proto.IsVarArg = VarArgHasArg | VarArgNeedsArg
if context.Parent != nil {
context.RegisterLocalVar("arg")
}
}
context.Proto.IsVarArg |= VarArgIsVarArg
}
compileChunk(context, funcexpr.Stmts)
context.Code.AddABC(OP_RETURN, 0, 1, 0, eline(funcexpr))
context.EndScope()
context.Proto.Code = context.Code.List()
context.Proto.DbgSourcePositions = context.Code.PosList()
context.Proto.DbgUpvalues = context.Upvalues.Names()
context.Proto.NumUpvalues = uint8(len(context.Proto.DbgUpvalues))
for _, clv := range context.Proto.Constants {
sv := ""
if slv, ok := clv.(LString); ok {
sv = string(slv)
}
context.Proto.stringConstants = append(context.Proto.stringConstants, sv)
}
patchCode(context)
} // }}}
func compileTableExpr(context *funcContext, reg int, ex *ast.TableExpr, ec *expcontext) { // {{{
code := context.Code
/*
tablereg := savereg(ec, reg)
if tablereg == reg {
reg += 1
}
*/
tablereg := reg
reg++
code.AddABC(OP_NEWTABLE, tablereg, 0, 0, sline(ex))
tablepc := code.LastPC()
regbase := reg
arraycount := 0
lastvararg := false
for i, field := range ex.Fields {
islast := i == len(ex.Fields)-1
if field.Key == nil {
if islast && isVarArgReturnExpr(field.Value) {
reg += compileExpr(context, reg, field.Value, ecnone(-2))
lastvararg = true
} else {
reg += compileExpr(context, reg, field.Value, ecnone(0))
arraycount += 1
}
} else {
regorg := reg
b := reg
compileExprWithKMVPropagation(context, field.Key, &reg, &b)
c := reg
compileExprWithKMVPropagation(context, field.Value, &reg, &c)
opcode := OP_SETTABLE
if _, ok := field.Key.(*ast.StringExpr); ok {
opcode = OP_SETTABLEKS
}
code.AddABC(opcode, tablereg, b, c, sline(ex))
reg = regorg
}
flush := arraycount % FieldsPerFlush
if (arraycount != 0 && (flush == 0 || islast)) || lastvararg {
reg = regbase
num := flush
if num == 0 {
num = FieldsPerFlush
}
c := (arraycount-1)/FieldsPerFlush + 1
b := num
if islast && isVarArgReturnExpr(field.Value) {
b = 0
}
line := field.Value
if field.Key != nil {
line = field.Key
}
if c > 511 {
c = 0
}
code.AddABC(OP_SETLIST, tablereg, b, c, sline(line))
if c == 0 {
code.Add(uint32(c), sline(line))
}
}
}
code.SetB(tablepc, int2Fb(arraycount))
code.SetC(tablepc, int2Fb(len(ex.Fields)-arraycount))
if ec.ctype == ecLocal && ec.reg != tablereg {
code.AddABC(OP_MOVE, ec.reg, tablereg, 0, sline(ex))
}
} // }}}
func compileArithmeticOpExpr(context *funcContext, reg int, expr *ast.ArithmeticOpExpr, ec *expcontext) { // {{{
exp := constFold(expr)
if ex, ok := exp.(*constLValueExpr); ok {
exp.SetLine(sline(expr))
compileExpr(context, reg, ex, ec)
return
}
expr, _ = exp.(*ast.ArithmeticOpExpr)
a := savereg(ec, reg)
b := reg
compileExprWithKMVPropagation(context, expr.Lhs, &reg, &b)
c := reg
compileExprWithKMVPropagation(context, expr.Rhs, &reg, &c)
op := 0
switch expr.Operator {
case "+":
op = OP_ADD
case "-":
op = OP_SUB
case "*":
op = OP_MUL
case "/":
op = OP_DIV
case "%":
op = OP_MOD
case "^":
op = OP_POW
}
context.Code.AddABC(op, a, b, c, sline(expr))
} // }}}
func compileStringConcatOpExpr(context *funcContext, reg int, expr *ast.StringConcatOpExpr, ec *expcontext) { // {{{
code := context.Code
crange := 1
for current := expr.Rhs; current != nil; {
if ex, ok := current.(*ast.StringConcatOpExpr); ok {
crange += 1
current = ex.Rhs
} else {
current = nil
}
}
a := savereg(ec, reg)
basereg := reg
reg += compileExpr(context, reg, expr.Lhs, ecnone(0))
reg += compileExpr(context, reg, expr.Rhs, ecnone(0))
for pc := code.LastPC(); pc != 0 && opGetOpCode(code.At(pc)) == OP_CONCAT; pc-- {
code.Pop()
}
code.AddABC(OP_CONCAT, a, basereg, basereg+crange, sline(expr))
} // }}}
func compileUnaryOpExpr(context *funcContext, reg int, expr ast.Expr, ec *expcontext) { // {{{
opcode := 0
code := context.Code
var operandexpr ast.Expr
switch ex := expr.(type) {
case *ast.UnaryMinusOpExpr:
exp := constFold(ex)
if lvexpr, ok := exp.(*constLValueExpr); ok {
exp.SetLine(sline(expr))
compileExpr(context, reg, lvexpr, ec)
return
}
ex, _ = exp.(*ast.UnaryMinusOpExpr)
operandexpr = ex.Expr
opcode = OP_UNM
case *ast.UnaryNotOpExpr:
switch ex.Expr.(type) {
case *ast.TrueExpr:
code.AddABC(OP_LOADBOOL, savereg(ec, reg), 0, 0, sline(expr))
return
case *ast.FalseExpr, *ast.NilExpr:
code.AddABC(OP_LOADBOOL, savereg(ec, reg), 1, 0, sline(expr))
return
default:
opcode = OP_NOT
operandexpr = ex.Expr
}
case *ast.UnaryLenOpExpr:
opcode = OP_LEN
operandexpr = ex.Expr
}
a := savereg(ec, reg)
b := reg
compileExprWithMVPropagation(context, operandexpr, &reg, &b)
code.AddABC(opcode, a, b, 0, sline(expr))
} // }}}
func compileRelationalOpExprAux(context *funcContext, reg int, expr *ast.RelationalOpExpr, flip int, label int) { // {{{
code := context.Code
b := reg
compileExprWithKMVPropagation(context, expr.Lhs, &reg, &b)
c := reg
compileExprWithKMVPropagation(context, expr.Rhs, &reg, &c)
switch expr.Operator {
case "<":
code.AddABC(OP_LT, 0^flip, b, c, sline(expr))
case ">":
code.AddABC(OP_LT, 0^flip, c, b, sline(expr))
case "<=":
code.AddABC(OP_LE, 0^flip, b, c, sline(expr))
case ">=":
code.AddABC(OP_LE, 0^flip, c, b, sline(expr))
case "==":
code.AddABC(OP_EQ, 0^flip, b, c, sline(expr))
case "~=":
code.AddABC(OP_EQ, 1^flip, b, c, sline(expr))
}
code.AddASbx(OP_JMP, 0, label, sline(expr))
} // }}}
func compileRelationalOpExpr(context *funcContext, reg int, expr *ast.RelationalOpExpr, ec *expcontext) { // {{{
a := savereg(ec, reg)
code := context.Code
jumplabel := context.NewLabel()
compileRelationalOpExprAux(context, reg, expr, 1, jumplabel)
code.AddABC(OP_LOADBOOL, a, 0, 1, sline(expr))
context.SetLabelPc(jumplabel, code.LastPC())
code.AddABC(OP_LOADBOOL, a, 1, 0, sline(expr))
} // }}}
func compileLogicalOpExpr(context *funcContext, reg int, expr *ast.LogicalOpExpr, ec *expcontext) { // {{{
a := savereg(ec, reg)
code := context.Code
endlabel := context.NewLabel()
lb := &lblabels{context.NewLabel(), context.NewLabel(), endlabel, false}
nextcondlabel := context.NewLabel()
if expr.Operator == "and" {
compileLogicalOpExprAux(context, reg, expr.Lhs, ec, nextcondlabel, endlabel, false, lb)
context.SetLabelPc(nextcondlabel, code.LastPC())
compileLogicalOpExprAux(context, reg, expr.Rhs, ec, endlabel, endlabel, false, lb)
} else {
compileLogicalOpExprAux(context, reg, expr.Lhs, ec, endlabel, nextcondlabel, true, lb)
context.SetLabelPc(nextcondlabel, code.LastPC())
compileLogicalOpExprAux(context, reg, expr.Rhs, ec, endlabel, endlabel, false, lb)
}
if lb.b {
context.SetLabelPc(lb.f, code.LastPC())
code.AddABC(OP_LOADBOOL, a, 0, 1, sline(expr))
context.SetLabelPc(lb.t, code.LastPC())
code.AddABC(OP_LOADBOOL, a, 1, 0, sline(expr))
}
lastinst := code.Last()
if opGetOpCode(lastinst) == OP_JMP && opGetArgSbx(lastinst) == endlabel {
code.Pop()
}
context.SetLabelPc(endlabel, code.LastPC())
} // }}}
func compileLogicalOpExprAux(context *funcContext, reg int, expr ast.Expr, ec *expcontext, thenlabel, elselabel int, hasnextcond bool, lb *lblabels) { // {{{
// TODO folding constants?
code := context.Code
flip := 0
jumplabel := elselabel
if hasnextcond {
flip = 1
jumplabel = thenlabel
}
switch ex := expr.(type) {
case *ast.FalseExpr:
if elselabel == lb.e {
code.AddASbx(OP_JMP, 0, lb.f, sline(expr))
lb.b = true
} else {
code.AddASbx(OP_JMP, 0, elselabel, sline(expr))
}
return
case *ast.NilExpr:
if elselabel == lb.e {
compileExpr(context, reg, expr, ec)
code.AddASbx(OP_JMP, 0, lb.e, sline(expr))
} else {
code.AddASbx(OP_JMP, 0, elselabel, sline(expr))
}
return
case *ast.TrueExpr:
if thenlabel == lb.e {
code.AddASbx(OP_JMP, 0, lb.t, sline(expr))
lb.b = true
} else {
code.AddASbx(OP_JMP, 0, thenlabel, sline(expr))
}
return
case *ast.NumberExpr, *ast.StringExpr:
if thenlabel == lb.e {
compileExpr(context, reg, expr, ec)
code.AddASbx(OP_JMP, 0, lb.e, sline(expr))
} else {
code.AddASbx(OP_JMP, 0, thenlabel, sline(expr))
}
return
case *ast.LogicalOpExpr:
switch ex.Operator {
case "and":
nextcondlabel := context.NewLabel()
compileLogicalOpExprAux(context, reg, ex.Lhs, ec, nextcondlabel, elselabel, false, lb)
context.SetLabelPc(nextcondlabel, context.Code.LastPC())
compileLogicalOpExprAux(context, reg, ex.Rhs, ec, thenlabel, elselabel, hasnextcond, lb)
case "or":
nextcondlabel := context.NewLabel()
compileLogicalOpExprAux(context, reg, ex.Lhs, ec, thenlabel, nextcondlabel, true, lb)
context.SetLabelPc(nextcondlabel, context.Code.LastPC())
compileLogicalOpExprAux(context, reg, ex.Rhs, ec, thenlabel, elselabel, hasnextcond, lb)
}
return
case *ast.RelationalOpExpr:
if thenlabel == elselabel {
flip ^= 1
jumplabel = lb.t
lb.b = true
} else if thenlabel == lb.e {
jumplabel = lb.t
lb.b = true
} else if elselabel == lb.e {
jumplabel = lb.f
lb.b = true
}
compileRelationalOpExprAux(context, reg, ex, flip, jumplabel)
return
}
if !hasnextcond && thenlabel == elselabel {
reg += compileExpr(context, reg, expr, ec)
} else {
a := reg
sreg := savereg(ec, a)
reg += compileExpr(context, reg, expr, ecnone(0))
if sreg == a {
code.AddABC(OP_TEST, a, 0, 0^flip, sline(expr))
} else {
code.AddABC(OP_TESTSET, sreg, a, 0^flip, sline(expr))
}
}
code.AddASbx(OP_JMP, 0, jumplabel, sline(expr))
} // }}}
func compileFuncCallExpr(context *funcContext, reg int, expr *ast.FuncCallExpr, ec *expcontext) int { // {{{
funcreg := reg
if ec.ctype == ecLocal && ec.reg == (int(context.Proto.NumParameters)-1) {
funcreg = ec.reg
reg = ec.reg
}
argc := len(expr.Args)
islastvararg := false
name := "(anonymous)"
if expr.Func != nil { // hoge.func()
reg += compileExpr(context, reg, expr.Func, ecnone(0))
name = getExprName(context, expr.Func)
} else { // hoge:method()
b := reg
compileExprWithMVPropagation(context, expr.Receiver, &reg, &b)
c := loadRk(context, &reg, expr, LString(expr.Method))
context.Code.AddABC(OP_SELF, funcreg, b, c, sline(expr))
// increments a register for an implicit "self"
reg = b + 1
reg2 := funcreg + 2
if reg2 > reg {
reg = reg2
}
argc += 1
name = string(expr.Method)
}
for i, ar := range expr.Args {
islastvararg = (i == len(expr.Args)-1) && isVarArgReturnExpr(ar)
if islastvararg {
compileExpr(context, reg, ar, ecnone(-2))
} else {
reg += compileExpr(context, reg, ar, ecnone(0))
}
}
b := argc + 1
if islastvararg {
b = 0
}
context.Code.AddABC(OP_CALL, funcreg, b, ec.varargopt+2, sline(expr))
context.Proto.DbgCalls = append(context.Proto.DbgCalls, DbgCall{Pc: context.Code.LastPC(), Name: name})
if ec.varargopt == 0 && ec.ctype == ecLocal && funcreg != ec.reg {
context.Code.AddABC(OP_MOVE, ec.reg, funcreg, 0, sline(expr))
return 1
}
if context.RegTop() > (funcreg+2+ec.varargopt) || ec.varargopt < -1 {
return 0
}
return ec.varargopt + 1
} // }}}
func loadRk(context *funcContext, reg *int, expr ast.Expr, cnst LValue) int { // {{{
cindex := context.ConstIndex(cnst)
if cindex <= opMaxIndexRk {
return opRkAsk(cindex)
} else {
ret := *reg
*reg++
context.Code.AddABx(OP_LOADK, ret, cindex, sline(expr))
return ret
}
} // }}}
func getIdentRefType(context *funcContext, current *funcContext, expr *ast.IdentExpr) expContextType { // {{{
if current == nil {
return ecGlobal
} else if current.FindLocalVar(expr.Value) > -1 {
if current == context {
return ecLocal
}
return ecUpvalue
}
return getIdentRefType(context, current.Parent, expr)
} // }}}
func getExprName(context *funcContext, expr ast.Expr) string { // {{{
switch ex := expr.(type) {
case *ast.IdentExpr:
return ex.Value
case *ast.AttrGetExpr:
switch kex := ex.Key.(type) {
case *ast.StringExpr:
return kex.Value
}
return "?"
}
return "?"
} // }}}
func patchCode(context *funcContext) { // {{{
maxreg := 1
if np := int(context.Proto.NumParameters); np > 1 {
maxreg = np
}
moven := 0
code := context.Code.List()
for pc := 0; pc < len(code); pc++ {
inst := code[pc]
curop := opGetOpCode(inst)
switch curop {
case OP_CLOSURE:
pc += int(context.Proto.FunctionPrototypes[opGetArgBx(inst)].NumUpvalues)
moven = 0
continue
case OP_SETGLOBAL, OP_SETUPVAL, OP_EQ, OP_LT, OP_LE, OP_TEST,
OP_TAILCALL, OP_RETURN, OP_FORPREP, OP_FORLOOP, OP_TFORLOOP,
OP_SETLIST, OP_CLOSE:
/* nothing to do */
case OP_CALL:
if reg := opGetArgA(inst) + opGetArgC(inst) - 2; reg > maxreg {
maxreg = reg
}
case OP_VARARG:
if reg := opGetArgA(inst) + opGetArgB(inst) - 1; reg > maxreg {
maxreg = reg
}
case OP_SELF:
if reg := opGetArgA(inst) + 1; reg > maxreg {
maxreg = reg
}
case OP_LOADNIL:
if reg := opGetArgB(inst); reg > maxreg {
maxreg = reg
}
case OP_JMP: // jump to jump optimization
distance := 0
count := 0 // avoiding infinite loops
for jmp := inst; opGetOpCode(jmp) == OP_JMP && count < 5; jmp = context.Code.At(pc + distance + 1) {
d := context.GetLabelPc(opGetArgSbx(jmp)) - pc
if d > opMaxArgSbx {
if distance == 0 {
raiseCompileError(context, context.Proto.LineDefined, "too long to jump.")
}
break
}
distance = d
count++
}
if distance == 0 {
context.Code.SetOpCode(pc, OP_NOP)
} else {
context.Code.SetSbx(pc, distance)
}
default:
if reg := opGetArgA(inst); reg > maxreg {
maxreg = reg
}
}
// bulk move optimization(reducing op dipatch costs)
if curop == OP_MOVE {
moven++
} else {
if moven > 1 {
context.Code.SetOpCode(pc-moven, OP_MOVEN)
context.Code.SetC(pc-moven, intMin(moven-1, opMaxArgsC))
}
moven = 0
}
}
maxreg++
if maxreg > maxRegisters {
raiseCompileError(context, context.Proto.LineDefined, "register overflow(too many local variables)")
}
context.Proto.NumUsedRegisters = uint8(maxreg)
} // }}}
func Compile(chunk []ast.Stmt, name string) (proto *FunctionProto, err error) { // {{{
defer func() {
if rcv := recover(); rcv != nil {
if _, ok := rcv.(*CompileError); ok {
err = rcv.(error)
} else {
panic(rcv)
}
}
}()
err = nil
parlist := &ast.ParList{HasVargs: true, Names: []string{}}
funcexpr := &ast.FunctionExpr{ParList: parlist, Stmts: chunk}
context := newFuncContext(name, nil)
compileFunctionExpr(context, funcexpr, ecnone(0))
proto = context.Proto
return
} // }}}