tile38/internal/collection/geodesic.go

120 lines
3.0 KiB
Go
Raw Normal View History

2021-07-11 20:09:51 +03:00
package collection
import "math"
func geodeticDistAlgo[T any](center [2]float64) (
algo func(min, max [2]float64, data T, item bool) (dist float64),
2021-07-11 20:09:51 +03:00
) {
const earthRadius = 6371e3
return func(min, max [2]float64, data T, item bool) (dist float64) {
2021-07-11 20:09:51 +03:00
return earthRadius * pointRectDistGeodeticDeg(
center[1], center[0],
min[1], min[0],
max[1], max[0],
)
}
}
func pointRectDistGeodeticDeg(pLat, pLng, minLat, minLng, maxLat, maxLng float64) float64 {
result := pointRectDistGeodeticRad(
pLat*math.Pi/180, pLng*math.Pi/180,
minLat*math.Pi/180, minLng*math.Pi/180,
maxLat*math.Pi/180, maxLng*math.Pi/180,
)
return result
}
func pointRectDistGeodeticRad(φq, λq, φl, λl, φh, λh float64) float64 {
// Algorithm from:
// Schubert, E., Zimek, A., & Kriegel, H.-P. (2013).
// Geodetic Distance Queries on R-Trees for Indexing Geographic Data.
// Lecture Notes in Computer Science, 146164.
// doi:10.1007/978-3-642-40235-7_9
const (
twoΠ = 2 * math.Pi
halfΠ = math.Pi / 2
)
// distance on the unit sphere computed using Haversine formula
distRad := func(φa, λa, φb, λb float64) float64 {
if φa == φb && λa == λb {
return 0
}
Δφ := φa - φb
Δλ := λa - λb
sinΔφ := math.Sin(Δφ / 2)
sinΔλ := math.Sin(Δλ / 2)
cosφa := math.Cos(φa)
cosφb := math.Cos(φb)
return 2 * math.Asin(math.Sqrt(sinΔφ*sinΔφ+sinΔλ*sinΔλ*cosφa*cosφb))
}
// Simple case, point or invalid rect
if φl >= φh && λl >= λh {
return distRad(φl, λl, φq, λq)
}
if λl <= λq && λq <= λh {
// q is between the bounding meridians of r
// hence, q is north, south or within r
if φl <= φq && φq <= φh { // Inside
return 0
}
if φq < φl { // South
return φl - φq
}
return φq - φh // North
}
// determine if q is closer to the east or west edge of r to select edge for
// tests below
Δλe := λl - λq
Δλw := λq - λh
if Δλe < 0 {
Δλe += twoΠ
}
if Δλw < 0 {
Δλw += twoΠ
}
var Δλ float64 // distance to closest edge
var λedge float64 // longitude of closest edge
if Δλe <= Δλw {
Δλ = Δλe
λedge = λl
} else {
Δλ = Δλw
λedge = λh
}
sinΔλ, cosΔλ := math.Sincos(Δλ)
tanφq := math.Tan(φq)
if Δλ >= halfΠ {
// If Δλ > 90 degrees (1/2 pi in radians) we're in one of the corners
// (NW/SW or NE/SE depending on the edge selected). Compare against the
// center line to decide which case we fall into
φmid := (φh + φl) / 2
if tanφq >= math.Tan(φmid)*cosΔλ {
return distRad(φq, λq, φh, λedge) // North corner
}
return distRad(φq, λq, φl, λedge) // South corner
}
if tanφq >= math.Tan(φh)*cosΔλ {
return distRad(φq, λq, φh, λedge) // North corner
}
if tanφq <= math.Tan(φl)*cosΔλ {
return distRad(φq, λq, φl, λedge) // South corner
}
// We're to the East or West of the rect, compute distance using cross-track
// Note that this is a simplification of the cross track distance formula
// valid since the track in question is a meridian.
return math.Asin(math.Cos(φq) * sinΔλ)
}